1,990 research outputs found

    Visual Entailment Task for Visually-Grounded Language Learning

    Get PDF
    We introduce a new inference task - Visual Entailment (VE) - which differs from traditional Textual Entailment (TE) tasks whereby a premise is defined by an image, rather than a natural language sentence as in TE tasks. A novel dataset SNLI-VE (publicly available at https://github.com/necla-ml/SNLI-VE) is proposed for VE tasks based on the Stanford Natural Language Inference corpus and Flickr30k. We introduce a differentiable architecture called the Explainable Visual Entailment model (EVE) to tackle the VE problem. EVE and several other state-of-the-art visual question answering (VQA) based models are evaluated on the SNLI-VE dataset, facilitating grounded language understanding and providing insights on how modern VQA based models perform.Comment: 4 pages, accepted by Visually Grounded Interaction and Language (ViGIL) workshop in NeurIPS 201

    Visual Entailment: A Novel Task for Fine-Grained Image Understanding

    Get PDF
    Existing visual reasoning datasets such as Visual Question Answering (VQA), often suffer from biases conditioned on the question, image or answer distributions. The recently proposed CLEVR dataset addresses these limitations and requires fine-grained reasoning but the dataset is synthetic and consists of similar objects and sentence structures across the dataset. In this paper, we introduce a new inference task, Visual Entailment (VE) - consisting of image-sentence pairs whereby a premise is defined by an image, rather than a natural language sentence as in traditional Textual Entailment tasks. The goal of a trained VE model is to predict whether the image semantically entails the text. To realize this task, we build a dataset SNLI-VE based on the Stanford Natural Language Inference corpus and Flickr30k dataset. We evaluate various existing VQA baselines and build a model called Explainable Visual Entailment (EVE) system to address the VE task. EVE achieves up to 71% accuracy and outperforms several other state-of-the-art VQA based models. Finally, we demonstrate the explainability of EVE through cross-modal attention visualizations. The SNLI-VE dataset is publicly available at https://github.com/ necla-ml/SNLI-VE

    Neural Skill Transfer from Supervised Language Tasks to Reading Comprehension

    Full text link
    Reading comprehension is a challenging task in natural language processing and requires a set of skills to be solved. While current approaches focus on solving the task as a whole, in this paper, we propose to use a neural network `skill' transfer approach. We transfer knowledge from several lower-level language tasks (skills) including textual entailment, named entity recognition, paraphrase detection and question type classification into the reading comprehension model. We conduct an empirical evaluation and show that transferring language skill knowledge leads to significant improvements for the task with much fewer steps compared to the baseline model. We also show that the skill transfer approach is effective even with small amounts of training data. Another finding of this work is that using token-wise deep label supervision for text classification improves the performance of transfer learning

    A Survey of Paraphrasing and Textual Entailment Methods

    Full text link
    Paraphrasing methods recognize, generate, or extract phrases, sentences, or longer natural language expressions that convey almost the same information. Textual entailment methods, on the other hand, recognize, generate, or extract pairs of natural language expressions, such that a human who reads (and trusts) the first element of a pair would most likely infer that the other element is also true. Paraphrasing can be seen as bidirectional textual entailment and methods from the two areas are often similar. Both kinds of methods are useful, at least in principle, in a wide range of natural language processing applications, including question answering, summarization, text generation, and machine translation. We summarize key ideas from the two areas by considering in turn recognition, generation, and extraction methods, also pointing to prominent articles and resources.Comment: Technical Report, Natural Language Processing Group, Department of Informatics, Athens University of Economics and Business, Greece, 201
    corecore