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Abstract

Existing visual reasoning datasets such as Visual Ques-
tion Answering (VQA), often suffer from biases conditioned
on the question, image or answer distributions. The re-
cently proposed CLEVR dataset addresses these limitations
and requires fine-grained reasoning but the dataset is syn-
thetic and consists of similar objects and sentence struc-
tures across the dataset.

In this paper, we introduce a new inference task, Vi-
sual Entailment (VE) - consisting of image-sentence pairs
whereby a premise is defined by an image, rather than a
natural language sentence as in traditional Textual Entail-
ment tasks. The goal of a trained VE model is to predict
whether the image semantically entails the text. To realize
this task, we build a dataset SNLI-VE based on the Stanford
Natural Language Inference corpus and Flickr30k dataset.
We evaluate various existing VQA baselines and build a
model called Explainable Visual Entailment (EVE) system
to address the VE task. EVE achieves up to 71% accuracy
and outperforms several other state-of-the-art VQA based
models. Finally, we demonstrate the explainability of EVE
through cross-modal attention visualizations. The SNLI-VE
dataset is publicly available at https://github.com/
necla-ml/SNLI-VE.

1. Introduction
The pursuit of “visual intelligence” is a long lasting

theme of the machine learning community. While the per-
formance of image classification and object detection has
significantly improved in the recent years [42, 63, 65, 26],
progress in higher-level scene reasoning tasks such as scene

∗Work performed as a NEC Labs intern

understanding is relatively limited [73].
Recently, several datasets, such as VQA-v1.0 [2],

VQA-v2.0 [23], CLEVR [32], Visual7w [81], Visual
Genome [41], COCO-QA [57], and models [33, 60, 29, 31,
1, 67, 17, 37] have been used to measure the progress in
understanding the interaction between vision and language
modalities. However, the quality of the widely used VQA-
v1.0 dataset [2] suffers from a natural bias [23]. Specifi-
cally, there is a long tail distribution of answers and also
a question-conditioned bias where, questions may hint at
the answers, such that the correct answer may be inferred
without even considering the visual information. For in-
stance, of the question “Do you see a . . . ?”, the model may
bias towards the answer “Yes” since it is correct for 87%
of times during training. Besides, many questions in the
VQA-v1.0 dataset are simple and straightforward and do
not require compositional reasoning from the trained model.
VQA-v2.0 [23] has been proposed to reduce the dataset
“bias” considerably in VQA-v1.0 by associating each ques-
tion with relatively balanced different answers. However,
the questions are rather straight-forward and require limited
fine-grained reasoning.

CLEVR dataset [32], is designed for fine-grained reason-
ing and consists of compositional questions such as “What
size is the cylinder that is left of the brown metal thing that
is left of the big sphere?”. This kind of questions requires
learning fine-grained reasoning based on visual informa-
tion. However, CLEVR is a synthetic dataset, and visual
information and sentence structures are very similar across
the dataset. Hence, models that provide good performance
on CLEVR dataset may not generalize to real-world set-
tings.

To address the above limitations, we propose a novel in-
ference task, Visual Entailment (VE), which requires fine-
grained reasoning in real-world settings. The design is de-
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rived from Text Entailment (TE) [12] task. In our VE task,
a real world image premise Pimage and a natural language
hypothesis Htext are given, and the goal is to determine
if Htext can be concluded given the information provided
by Pimage. Three labels entailment, neutral or contradic-
tion are assigned based on the relationship conveyed by the
(Pimage, Htext).

• Entailment holds if there is enough evidence in Pimage

to conclude that Htext is true.

• Contradiction holds if there is enough evidence in
Pimage to conclude that Htext is false.

• Otherwise, the relationship is neutral, implying the ev-
idence in Pimage is insufficient to draw a conclusion
about Htext.

The main difference between VE and TE task is, the
premise in TE in a natural language sentence Ptext, in-
stead of an image premise Pimage. Note that the existing
of “neutral” makes the VE task more challenging compared
to previous “yes-no” VQA tasks, since “neutral” requires
the model to conclude the uncertainty between “entailment
(yes)” and “contradiction (no)”. Figure 1 illustrates a VE
example, which is from the SNLI-VE dataset we propose
below, that given an image premise, the three different text
hypotheses lead to different labels.

Premise

+

● Two woman are holding 
packages.

● The sisters are hugging 
goodbye while holding to 
go packages after just 
eating lunch.

● The men are fighting 
outside a deli.

=

● Entailment

● Neutral

● Contradiction

Hypothesis Answer

Figure 1. An Example from SNLI-VE dataset

We build the SNLI-VE dataset to illustrate the VE task,
based on Stanford Natural Language Inference (SNLI) [4],
which is a widely used text-entailment dataset, and
Flickr30k [76], which is an image captioning dataset. The
combination of SNLI and Flickr30k is straightforward since
SNLI is created using Flickr30k. The detailed process of
creating the SNLI-VE dataset is discussed in Section 3.2.

We develop an Explainable Visual Entailment (EVE)
model to address the VE task. EVE captures the interac-
tion within and between the image premise and the text hy-
pothesis through attention. We evaluate EVE against sev-
eral other state-of-the-art (SOTA) visual question answer-
ing (VQA) baselines and an image captioning based model
on the SNLI-VE dataset. The interpretability of EVE is
demonstrated using attention visualizations.

In summary, the contributions of our work are:

• We propose a novel inference task, Visual Entailment,
that requires a systematic cross-modal understanding
between vision and a natural language.

• We build a VE dataset, SNLI-VE, consisting of real-
world image and natural language sentence pairs for
VE tasks. The dataset is publicly available1.

• We design a VE model, EVE, to solve the VE task with
interpretable attention visualizations.

• We evaluate EVE against other SOTA VQA and image
captioning based baselines.

2. Related Work

Our work is inspired by previous work on NLI, VQA,
image captioning, and interpretable models.

Natural Language Inference. We focus on textual en-
tailment as our NLI task [18, 11, 3, 12, 46]. Annotated cor-
pus for TE was limited in size until SNLI [4] was proposed,
which is based on the Flickr30k [76] image captions. Since
then, several neural-network based methods have been pro-
posed over SNLI that either use sentence encoding models
to individually encode hypothesis and premise or attention
based models that encode the sentences together and align
similar words in hypothesis and premise [8, 50, 62, 59]. Our
paper extends the TE task in the visual domain – allowing
future work on our SNLI-VE task to build new models on
recent progress in SNLI and VQA. Our work is different
from the recent work [71] that combines both images and
captions as premises.

Visual Question Answering. Recent work on VQA in-
cludes datasets [32, 2, 23, 81, 41, 57, 47, 19, 66] and models
[33, 60, 29, 31, 1, 67, 17, 37]. The goal of VQA is to answer
natural language questions based on the provided visual in-
formation. VQA-v2.0 [23] and CLEVR [32] datasets are
designed to address bias and reasoning limitations of VQA-
v1.0, respectively. Recent work on compositional reason-
ing systems have achieved nearly 100% results on CLEVR
[29] but the SOTA performance on VQA-v2.0 is no more
than 75% [15], implying learning multi-modal feature in-
teraction using natural images has room for improvement.
There have been a large number of models and approaches
to address the VQA task. This includes simple linear mod-
els using ranking loss [16, 36], bi-linear pooling meth-
ods [45, 20, 55, 17, 37], attention-based methods [1, 52, 64]
and reasoning based approaches [54, 27, 33, 38, 29] on
CLEVER and VQA-v1.0 datasets.

1https://github.com/necla-ml/SNLI-VE
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Image Captioning. The problem of image captioning ex-
plores the generation of natural language sentences to best
depict input image content. A common approach for these
tasks is to use temporal models over convolutional fea-
tures [36, 70, 7]. Recent work has also explored generating
richer captions to describe images in a more fine-grained
manner [34]. EVE differs from image-captioning since it
requires discerning fine-grained information about an image
conditioned on the hypothesis into three classes. However,
existing image-captioning methods can serve as a baseline,
where the output class label is based on a distance measure
between the generated caption and the input hypothesis.

Visual Relationship Detection. Relationship detection
among image constituents uses separate branches in a Con-
vNet to model objects, humans, and their interactions
[5, 21]. A distinct approach in Santoro et al. [60] treats
each of the cells across channels in convolutional feature
maps as an object and the relationships are modeled by a
pairwise concatenation of the feature representations of in-
dividual cells.

Scene graph based relationship modeling, using a struc-
tured representation for describing object relationships and
their attributes [35, 43, 44, 74] has been extensively studied.
Furthermore, pairing different objects in a scene [13, 28, 60,
78] is also common. However, a scene with many objects
may have only a few individual interacting objects. Hence,
it can be inefficient to model all relationships across all in-
dividual object pairs [80], making these methods computa-
tionally expensive for complex scene understanding tasks
such as VE.

Our model, EVE instead uses self-attention to efficiently
learn the relationships between various scene elements and
words instead of bi-gram or tri-gram based modeling as
used in previous work.

Interpretability. As deep neural networks have become
widespread in real-world applications, there has been an in-
creasing focus on interpretability and transparency. Recent
work addresses this requirement either through saliency-
map visualizations [61, 77, 49], attention mechanism
[75, 79, 51, 14], or other analysis [30, 39, 56, 58]. Our
work demonstrates interpretability via attention visualiza-
tions.

3. Visual Entailment Task
3.1. Formal Definition

We introduce a dataset D for VE task structured as
{(i1, h1, l1), (i1, h2, l2) . . . (i1, hm1 , lm1), . . . (in, hmn , lmn)},
where (ik, hs, ls) is an instance from D, with ik, hs, and
ls denoting an image premise, a text hypothesis and a class
label, respectively. It is worth noting that each image ik

Premise

+

● The man wearing the black 
shirt plays a game of golf.

● A man plays on a golf course 
to relax.

● The man in the black shirt 
trades Pokemon cards with 
his girlfriend.

=

● Entailment

● Neutral

● Contradiction

Hypothesis Answer

Premise

+

● An Indian woman is doing 
her laundry in a lake.

● An Indian woman is doing 
laundry for her son in the 
lake.

● An Indian woman is 
putting her laundry into 
the machine.

=

● Entailment

● Neutral

● Contradiction

Hypothesis Answer

Premise

+

● An SUV and a man are 
going in opposite 
directions.

● A taxi SUV races to pick 
up some clients while a 
man walks peacefully in 
the other direction. 

● A man is chasing an SUV 
that is going in the same 
direction as him.

=

● Entailment

● Neutral

● Contradiction

Hypothesis Answer

Figure 2. More examples from SNLI-VE dataset

is used multiple times with different labels given distinct
hypotheses {hmk

}.
Three labels e, n, or c are assigned based on the re-

lationship conveyed by (ik, hs). Specifically, i) e (entail-
ment) is assigned if ik |= hs, ii) n (neutral) is assigned if
ik 6|= hs ∧ ik 6|= ¬hs, iii) c (contradiction) is assigned if
ik |= ¬hs.

3.2. Visual Entailment Dataset

3.2.1 Dataset criteria

Based on the vision community’s experience with SNLI,
VQA-v1.0, VQA-v2.0, and CLEVR, there are four criteria
in developing an effective dataset:

1. Structured set of real-world images. The dataset
should be based on real-world images and the same
image can be paired with different hypotheses to form
different labels.

2. Fine-grained. The dataset should enforce fine-grained
reasoning about subtle changes in hypotheses that
could lead to distinct labels.

3. Sanitization. No instance overlapping across different
dataset partitions. One image can only exist in a single
partition.

4. Account for any bias. Measure the dataset bias and
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Training Validation Testing

#Image 29,783 1,000 1,000
#Entailment 176,932 5,959 5,973
#Neutral 176,045 5,960 5,964
#Contradiction 176,550 5,939 5,964
Vocabulary Size 29,550 6,576 6,592

Table 1. SNLI-VE dataset

provide baselines to serve as the performance lower
bound for potential future evaluations.

3.2.2 SNLI-VE Construction

We now describe how we construct SNLI-VE, which is a
dataset for VE tasks.

We build the dataset SNLI-VE based on two existing
datasets, Flickr30k [76] and SNLI [4]. Flickr30k is a
widely used image captioning dataset containing 31,783 im-
ages and 158,915 corresponding captions. The images in
Flickr30k consist of everyday activities, events and scenes
[76], with 5 captions per image generated via crowdsourc-
ing. SNLI is a large annotated TE dataset built upon
Flickr30k captions. Each image caption in Flickr30k is used
as a text premise in SNLI. The authors of SNLI collect mul-
tiple hypotheses in the three classes - entailment, neutral,
and contradiction - for a given premise via Amazon Me-
chanical Turk [68], resulting in about 570K (Ptext, Htext)
pairs. Data validation is conducted in SNLI to measure the
label agreement. Specifically, each (Ptext, Htext) pair is
assigned a gold label, indicating the label is agreed by a
majority of crowdsourcing workers (at least 3 out of 5). If
such a consensus is not reached, the gold label is marked as
“-”.

Since SNLI was constructed using Flickr30k captions,
for each (Ptext, Htext) pair in SNLI, it is feasible to find
the corresponding Flickr30k image through the annotations
in SNLI. This enables us to create a structured VE dataset
based on both. Specifically, for each (Ptext, Htext) pair
in SNLI with an agreed gold label, we replace the text
premise with its corresponding Flickr30k image, resulting
in a (Pimage, Htext) pair in SNLI-VE. Figures 1 and 2 il-
lustrate examples from the SNLI-VE dataset. SNLI-VE nat-
urally meets the aforementioned criterion 1 and criterion 2.
Each image in SNLI-VE are real-world ones and is associ-
ated with distinct labels given different hypotheses. Further-
more, Flickr30k and SNLI are well-studied datasets, allow-
ing the community to focus on the new task that our paper
introduces, rather than spending time familiarizing oneself
with the idiosyncrasies of a new dataset.

A sanity check is applied to SNLI-VE dataset partitions
in order to guarantee criterion 3. We notice the original
SNLI dataset partitions does not consider the arrangement

SNLI-VE VQA-v2.0 CLEVR

Partition Size:
Training 529,527 443,757 699,989
Validation 17,858 214,354 149,991
Testing 17,901 555,187 149,988

Question Length:
Mean 7.4 6.1 18.4
Median 7.0 6.0 17.0
Mode 6 5 14
Max 56 23 43

Vocabulary Size 32,191 19,174 87

Table 2. Dataset Comparison Summary

of the original caption images. If SNLI-VE directly adopts
the original partitions from SNLI, all images in validation
or testing partitions also exist in the training partitions, vi-
olating criterion 3. To amend this, we disjointedly par-
tition SNLI-VE by images following the partition in [22]
and make sure instances with different labels are of similar
numbers across training, validation, and testing partitions as
shown in Table 1.

Regarding criterion 4, since SNLI has already been
extensively studied, we are aware that there exists a
hypothesis-conditioned bias in SNLI as recently reported by
Gururangan et al. [24]. Though the labels in SNLI-VE are
distributed evenly across dataset partitions, SNLI-VE still
inevitably suffers from this bias inherently. Therefore, we
provide a hypothesis-only baseline in Section 5.1 to serve
as a performance lower bound.

3.3. SNLI-VE and VQA Datasets

Figure 3. Question Length Distribution

We further compare our SNLI-VE dataset with the two
widely used VQA datasets, VQA-v2.0 and CLEVR. The
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comparison focuses on the questions (for SNLI-VE dataset,
we consider a hypothesis as a question). Table 2 is a sta-
tistical summary about the questions from three datasets.
Before generating Table 2, questions are prepossessed by
three steps: i) split into words, ii) lower case all words, iii)
removing punctuation symbols {‘’“”,.-?!}. Figure 3 depicts
a detailed question length distribution.

According to Table 2, among the three datasets, our
SNLI-VE dataset, which contains the smallest total num-
ber of questions (summing up training, validation and test-
ing partitions), has the largest vocabulary size. The maxi-
mum question length in SNLI-VE is 56, which is the largest
among these three datasets, and represents real-world de-
scriptions. Both the mean and median lengths are larger
than VQA-v2.0 dataset. The question length distribution
of SNLI-VE, as shown in Figure 3, is quite heavy-tailed
in contrast to the others. These observations indicate that
the text in SNLI-VE may be difficult to handle compared
to VQA-v2.0 for certain models. As for CLEVR dataset,
even though most sentences are much longer than SNLI-
VE as shown in Figure 3, the vocabulary size is only 87.
We believe this is due to the synthetic nature of CLEVR,
which also indicates models that achieve high-accuracy on
CLEVR may not be able to generalize to our SNLI-VE
dataset.

4. EVE: Explainable Visual Entailment System
The design of our explainable VE architecture, as shown

in Figure 4, is based on the Attention Top-Down/Bottom-
Up model discussed later in Subsection 5.4, which is the
winner of VQA Challenge, 2017. Similar to the Attention
Top-Down/Bottom-Up, our EVE architecture is composed
of a text and an image branch. The text branch extracts fea-
tures from the input text hypothesis Htext through an RNN.
The image branch generates image features from Pimage.
The features produced from the two branches are then fused
and projected through fully-connected (FC) layers towards
predicting the final conclusion. The image features can
be configured to take the feature maps from a pre-trained
convolutional neural network (CNN) or ROI-pooled image
regions from a region of interest (ROI) proposal network
(RPN).

We build two model variants, EVE-Image and EVE-ROI,
for image and ROI features, respectively. EVE-Image in-
corporates a pre-trained ResNet101 [26], which generates
k feature maps of size d×d. For each feature map position,
the feature vector across all the k feature maps is considered
as an object. As a result, there are a total number of d × d
objects of feature size k for an input image. In contrast,
the EVE-ROI variant takes ROIs as objects extracted from
a pre-trained Mask R-CNN [48].

In order to accurately solve this cross-model VE task,
we need: both a mechanism to identify the salient features

in images and text inputs and a cross-modal embedding to
effectively learn the image-text interactions, which are ad-
dressed by employing self-attention and text-image atten-
tion techniques in the EVE model respectively. We next
describe the design and implementation of the mechanisms
in EVE model.

4.1. Self-Attention

EVE utilizes self-attention [69] in both text and image
branches as highlighted with dotted blue frame in Figure 4.
Since the hypothesis in SNLI-VE can be relatively long and
complex, self-attention helps focus on important keywords
in a sentence that relate to each other. The text branch ap-
plies self-attention to the projected word embeddings from
a multi-layer perceptron (MLP). It is worth noting that al-
though word embeddings, either from GloVe or other exist-
ing models, may be fixed, the MLP transformation is able
to be trained to generate adaptive projected word embed-
dings. Similarly, the image branch applies the self-attention
to projected image regions either from the aforementioned
feature maps or ROIs in expectation of capturing the hidden
relations between elements in the same feature space.

Specifically, we use the scaled dot product (SDP) atten-
tion in [69] to capture this hidden information:

Attsdp = softmax(
RQT

√
dk

)) (1)

QAtt = AttsdpQ (2)

where Q ∈ RM×dk is the query feature matrix and R ∈
RN×dk is the reference feature matrix. M and N repre-
sent the number of features vectors in matrix Q and R re-
spectively, and dk denotes the dimension of each feature
vector. Attsdp ∈ RN×M is the resulting attention mask
for Q given R. Each element aij in Attsdp represents how
much weight (before scaled by 1√

dk
and normalized by soft-

max) the model should put on each query feature vector
qj∈{1,2,...,M} ∈ Rdk in Q w.r.t. each reference feature vec-
tor ri∈{1,2,...,N} ∈ Rdk in R. The attended query feature
matrix QAtt ∈ RN×dk is the weighted and fused version
of the original query feature matrix Q, calculated by the
matrix dot product between the attention mask Attsdp and
the query feature matrix Q. Note that for the self-attention,
the query matrix Q ∈ RM×dk and the “reference” matrix
R ∈ RN×dk are the same matrix.

4.2. Text-Image Attention

Multi-modal tasks such as phrase grounding [6] demon-
strate that high-quality cross-modal feature interactions im-
prove the overall performance. The dotted red frame high-
lighted area in Figure 4 shows that EVE incorporates the
text-image attention to relevant image regions based on the
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CNN / Mask RCNN

Word Embedding 
(GloVe) GRU

MLP on
each

"object"
Image Self Attention 
(Scaled Dot-Product)

MLP on
each word

Text Self Attention 
(Scaled Dot-Product)

Text-Image Attention 
(Scaled Dot-Product) Pooling

Merge 
(*) 

MLP

MLP

Merge 
(+) N

Softmax

E

C

dim=300

dim=300

dim=3

dim=3

EVE-Image EVE-ROI

Mask RCNN

ROI-1 feature vector

ROI-2 feature vector

...

Two woman are holding packages.

Figure 4. Our model EVE combines image and ROI information to model fine-grained cross-modal information

text embedding from the GRU. The feature interaction be-
tween the text and image regions are computed using the
same SDP technique introduced in Section 4.1, serving as
the attention weights. The weighted features of image re-
gions are then fused with the text features for further deci-
sion making. Specifically, for the text-image attention, the
query matrix Q ∈ RM×dk is the image features while the
“reference” matrix R ∈ RN×dk is the text features. Note
that although Q and R are from different feature spaces, the
dimension of each feature vector is projected to be the same
dk in respective branches for ease of the attention calcula-
tion.

5. Experiments

In this section, we evaluate EVE as well as several other
baseline models on SNLI-VE. Most of the baselines are ex-
isting or previous SOTA VQA architectures. The perfor-
mance results of all models are listed in Table 3.

All models are implemented in PyTorch. We use the pre-
trained GloVe.6B.300D for word embedding [53], where
6B is the corpus size and 300D is the embedding dimen-
sion. Input hypotheses are padded to the maximum sentence
length in a batch. Note we do not truncate the sentences
because unlike VQA where the beginning of questions typ-
ically indicates what is asked about, labels of VE task may
depend on keywords or small details at the end of sentences.
For example, truncating the hypothesis “The person who is
standing next to the tree and wearing a blue shirt is playing

” inevitably loses the key detail and changes the con-
clusion. In addition, the maximum sentence length in SNLI
is 56, which is much larger than 23 in VQA-v2.0 as shown
in Table 2. Always padding to the dataset maximum is not

necessarily efficient for training. As a consequence, we opt
for padding to the batch-wise maximum sentence length.

Unless explicitly mentioned, all models are trained using
a cross-entropy loss function optimized by the Adam opti-
mizer with a batch size of 64. We use an adaptive learning
rate scheduler which reduces the learning rate whenever no
improvement on the validation dataset for a period of time.
The initial learning rate and weight decay are both set to be
1e − 4. The maximum number of training epochs is set to
100. We save a checkpoint whenever the model achieves a
higher overall validation accuracy. The final model check-
point selected for testing is the one with the highest lowest
per class accuracy in case the model performance is biased
towards particular classes. The batch size is set as 32 for
validation and testing. In the following, we discuss the de-
tails for each baseline.

5.1. Hypothesis Only

This baseline verifies the existing data bias in the SNLI
dataset, as mentioned by Gururangan et al. [24] and Vu et
al. [71], by using hypotheses only without the image
premise information.

The model consists of a text processing component fol-
lowed by two FC layers. The text processing component is
used to extract the text feature from the given hypothesis. It
first generates a sequence of word-embeddings for the given
text hypothesis. The embedding sequence is then fed into a
GRU [10] to output the text features of dimension 300. The
input and output dimensions of the two FC layers are [300,
300] and [300, 3] respectively.

Without any premise information, this baseline is sup-
posed to make a random guess out of the three classes but
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Val Acc Per Class (%) Test Acc
Overall (%)

Test Acc Per Class (%)Model Name Val Acc
Overall (%) C N E C N E

Hypothesis Only 66.68 67.54 66.90 65.60 66.71 67.60 67.71 64.83
Image Captioning 67.83 66.61 69.23 67.65 67.67 66.25 70.69 66.08
Relational Network 67.56 67.86 67.80 67.02 67.55 67.29 68.86 66.50
Attention Top-Down 70.53 70.23 68.66 72.71 70.30 69.72 69.33 71.86
Attention Bottom-Up 69.34 71.26 70.10 66.67 68.90 70.52 70.96 65.23
EVE-Image* 71.56 71.04 70.55 73.10 71.16 71.56 70.52 71.39
EVE-ROI* 70.81 68.55 68.78 75.10 70.47 67.69 69.45 74.25

Table 3. Model Performance on SNLI-VE dataset

the resulting accuracy is up to 67%, implying the existence
of a dataset bias. We do not intend to rewrite the hypothe-
ses in SNLI to reduce the bias but instead, aim at using the
premise (image) features to outperform the hypothesis only
baseline.

5.2. Image Captioning

Since the original SNLI premises are image captions,
a straightforward idea to address VE is to first apply an
image caption generator to convert image premises to text
premises and then followed by a TE classifier. Particularly,
we adopt the PyTorch tutorial implementation [9] as a cap-
tion generator. A pre-trained ResNet152 serves as the im-
age encoder while the caption decoder is a long short-term
memory (LSTM) network. Once the image caption is gen-
erated, the image premise is replaced with the caption and
the original VE task is reduced to a TE task. Similar to the
Hypothesis-Only baseline, the TE classifier is composed of
two text processing components to extract text features from
both the premise and hypothesis. The text features are fused
and go through two FC layers with input and output dimen-
sions of [600, 300] and [300, 3] for the final prediction.

The resulting performance achieves a slightly higher ac-
curacy of 67.83% and 67.67% on the validation and test-
ing partitions over the Hypothesis-Only baseline, implying
that the generated image caption premise does not improve
much. We suspect that the generated captions may not cover
the necessary information in the image as required by the
hypothesis to make the correct conclusion. This is possible
in a complex scene where exhaustive enumeration of cap-
tions may be needed to cover every detail potentially de-
scribed by the hypothesis.

5.3. Relational Network

The Relational Network (RN) baseline is based on [60]
which is proposed to tackle the CLEVR dataset with high
accuracy. There are an image branch and a text branch in
the model. The image branch extracts image features in a
similar manner as EVE, as described in Section 4, but with-
out self-attention. The text branch generates the hypothe-
sis embedding through an RNN. The highlight of RN is to

capture pairwise feature interactions between image regions
and the text embedding. Each pair of image region feature
and question embedding goes through an MLP. The final
classification takes the element-wise sum over the MLP out-
put for each pair as input.

Despite the high accuracy on the synthetic dataset
CLEVR, RN only achieves a marginal improvement on
SNLI-VE at the accuracy of 67.56% and 67.55% on the
validation and testing partitions. This may be attributed to
the limited representational power of RN that fails to pro-
duce effective cross-modal feature fusion of the natural im-
age premises and the free-form text hypothesis input from
SNLI-VE.

5.4. Attention Top-Down and Bottom-Up

We consider the Attention Top-Down and Attention
Bottom-Up baselines based on the winner of VQA chal-
lenge 2017 [1]. Similar to the RN baseline, there is an image
branch and a text branch. The difference between the im-
age branches in Attention Top-Down and Attention Bottom-
Up is similar to our EVE. The image features of Attention
Top-Down come from the feature maps generated from a
pre-trained CNN. As for Attention Bottom-Up, the image
features are the top 10 ROIs extracted from a pre-trained
Mask-RCNN implementation [25]. No self-attention is ap-
plied in both image and text branches. Moreover, the text-
image attention is implemented by feeding the concatena-
tion of both image and text features into an FC layer to
derive the attention weights rather than using SDP as de-
scribed in Section 4.1. Then the attended image features
and text features are projected separately and fused by dot
product. The fused features go through two different MLPs.
The element-wise sum of both MLP output serves as the fi-
nal features for classification.

The SOTA VQA winner model, Attention Top-Down,
achieves an accuracy of 70.53% and 70.30% on the vali-
dation and testing partitions respectively, implying cross-
modal attention is the key to effectively leveraging image
premise features. The Attention Bottom-Up model using
ROIs also achieves a good accuracy of 69.34% and 68.90%
on the validation and testing partitions. The reason why
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Attention Bottom-Up performs worse than Attention Top-
Down could be possibly due to lack of background infor-
mation in ROI features and ROI feature quality. It is not
guaranteed that those top ROIs cover necessary details de-
scribed by the hypothesis. However, even with more than
10 ROIs, we observe no significant improvement in perfor-
mance.

5.5. EVE-Image and EVE-ROI

The details of our EVE architecture have been described
in Section 4. EVE-Image achieves the best performance
of 71.56% and 71.16% accuracy on the validation and test-
ing partitions respectively. The performance of EVE-ROI is
similar, with an accuracy of 70.81% and 70.47%, possibly
suffering from similar issues as the Attention Bottom-Up
model. However, the improvement is likely due to the in-
troduction of self-attention and text-image attention through
SDP that potentially captures the hidden relations in the
same feature space and better attended cross-modal feature
interaction.

Figure 5. An attention visualization for EVE-Image

Figure 6. An attention visualization for EVE-ROI

Attention Visualization. The explainability of EVE is at-
tained using attention visualizations in the areas of interest
in the image premise given the hypothesis. Figure 5 and 6
illustrate two visualization examples of the text-image at-
tention from EVE-Image and EVE-ROI respectively. The
image premise of the EVE-Image example is shown on the
left of Figure 5, and the corresponding hypothesis is “A hu-
man playing guitar”. On the right of Figure 5, our EVE-
Image model successfully attends to the guitar area, lead-
ing to the correct conclusion: entailment. In Figure 6, our
EVE-ROI focuses on the children and the sand area in the
image premise, leading to the contradiction conclusion for
the given hypothesis “Two children are swimming in the
ocean.”

5.6. Discussion

In this section, we discuss why existing VQA and
CLEVER models have modest performs over SNLI-VE
dataset and the possible future directions based on our ex-
perience. VQA models are not trained to distinguish fine-
grained information. Furthermore, with the same image
present across all the three classes in the SNLI-VE dataset,
SNLI-VE removes any bias that may originate from just the
image premise information and an effectively fused rep-
resentation is important for high accuracy. Furthermore,
models that provide good performance on CLEVR may not
work on SNLI-VE since these models have rather simplistic
image processing pipelines, often with a couple of convolu-
tional layers that may be sufficient to process synthetic im-
ages but works poorly on real images. More importantly,
the sentences are not synthetic in the SNLI-VE dataset.
As a result, building compositional reasoning modules over
SNLI-VE hypotheses is out of reach for existing models.

To effectively address SNLI-VE, we believe three ap-
proaches can be beneficial. First, using external knowledge
beyond pre-trained models and/or visual entity extraction
can be beneficial. If the external knowledge can provide in-
formation allowing the model to learn relationships between
the entities that may be obvious to humans but difficult or
impossible to learn from the dataset (such as “two women
in the image are sisters”), it will improve the model perfor-
mance over SNLI-VE.

Second, it is possible for the hypothesis to contain mul-
tiple class labels assigned to its different entities or rela-
tionships w.r.t. the premise. However, SNLI-VE lacks an-
notations for localizing the labels to specific entities in the
hypothesis (e.g. as is often provided in synthetic datasets
like bABi [72]). Since the hypothesis can be broken down
into individual entities and relationships between pairs of
entities, providing fine-grained labels for each target in the
hypothesis likely facilitates strongly-supervised training.

Finally, a third possible approach is to build effective
attention based models as done in TE that encodes the
sentences together and align similar words in hypothesis
and premise instead of a late-fusion of separately encoded
modalities. Hence, the active research on visual grounding
can benefit addressing the SNLI-VE task.

6. Conclusion

We introduce a novel task, visual entailment, that re-
quires fine-grained reasoning over the image and text. We
build the SNLI-VE dataset for VE using real-world im-
ages from Flickr30k as premises, and the corresponding text
hypotheses from SNLI. We then develop the EVE archi-
tecture to address VE and evaluate against multiple base-
lines, including existing SOTA VQA based models. We ex-
pect more effort to be devoted to generating fine-grained
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VE annotations for large image datasets such as the Visual
Genome [41] and Open Images Dataset [40] as well as im-
proved models on fine-grained visual reasoning.

Acknowledgments
Ning Xie and Derek Doran were supported by the Ohio

Federal Research Network project Human-Centered Big
Data. Any opinions, findings, and conclusions or recom-
mendations expressed in this article are those of the au-
thor(s) and do not necessarily reflect the views of the Ohio
Federal Research Network.

References
[1] P. Anderson, X. He, C. Buehler, D. Teney, M. Johnson,

S. Gould, and L. Zhang. Bottom-up and top-down atten-
tion for image captioning and visual question answering. In
CVPR, volume 3, page 6, 2018. 1, 2, 7

[2] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra,
C. Lawrence Zitnick, and D. Parikh. Vqa: Visual question
answering. In Proceedings of the IEEE international confer-
ence on computer vision, pages 2425–2433, 2015. 1, 2

[3] J. Bos and K. Markert. Recognising textual entailment with
logical inference. In Proceedings of the conference on Hu-
man Language Technology and Empirical Methods in Nat-
ural Language Processing, pages 628–635. Association for
Computational Linguistics, 2005. 2

[4] S. R. Bowman, G. Angeli, C. Potts, and C. D. Manning. A
large annotated corpus for learning natural language infer-
ence. arXiv preprint arXiv:1508.05326, 2015. 2, 4

[5] Y.-W. Chao, Y. Liu, X. Liu, H. Zeng, and J. Deng. Learn-
ing to detect human-object interactions. arXiv preprint
arXiv:1702.05448, 2017. 3

[6] K. Chen, R. Kovvuri, and R. Nevatia. Query-guided regres-
sion network with context policy for phrase grounding. In
Proceedings of the IEEE International Conference on Com-
puter Vision (ICCV), 2017. 5

[7] L. Chen, H. Zhang, J. Xiao, L. Nie, J. Shao, W. Liu, and
T.-S. Chua. Sca-cnn: Spatial and channel-wise attention
in convolutional networks for image captioning. In 2017
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 6298–6306. IEEE, 2017. 2

[8] Q. Chen, X. Zhu, Z. Ling, S. Wei, H. Jiang, and D. Inkpen.
Enhanced lstm for natural language inference. arXiv preprint
arXiv:1609.06038, 2016. 2

[9] Y. Choi. Image captioning pytorch implemen-
tation. https://github.com/yunjey/
pytorch-tutorial/tree/master/tutorials/
03-advanced/image_captioning. Accessed:
2018-10-30. 7

[10] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical
evaluation of gated recurrent neural networks on sequence
modeling. arXiv preprint arXiv:1412.3555, 2014. 6

[11] C. Condoravdi, D. Crouch, V. De Paiva, R. Stolle, and D. G.
Bobrow. Entailment, intensionality and text understanding.
In Proceedings of the HLT-NAACL 2003 workshop on Text

meaning-Volume 9, pages 38–45. Association for Computa-
tional Linguistics, 2003. 2

[12] I. Dagan, O. Glickman, and B. Magnini. The pascal recog-
nising textual entailment challenge. In Machine learn-
ing challenges. evaluating predictive uncertainty, visual ob-
ject classification, and recognising tectual entailment, pages
177–190. Springer, 2006. 1, 2

[13] B. Dai, Y. Zhang, and D. Lin. Detecting visual relation-
ships with deep relational networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2017. 3

[14] A. Das, H. Agrawal, L. Zitnick, D. Parikh, and D. Batra.
Human attention in visual question answering: Do humans
and deep networks look at the same regions? Computer
Vision and Image Understanding, 163:90–100, 2017. 3

[15] EvalAI. VQA challenge leaderboard 2018. https:
//evalai.cloudcv.org/web/challenges/
challenge-page/80/leaderboard/124. Ac-
cessed: 2018-11-11. 2

[16] A. Frome, G. S. Corrado, J. Shlens, S. Bengio, J. Dean,
T. Mikolov, et al. Devise: A deep visual-semantic embed-
ding model. In Advances in neural information processing
systems, pages 2121–2129, 2013. 2

[17] A. Fukui, D. H. Park, D. Yang, A. Rohrbach, T. Darrell,
and M. Rohrbach. Multimodal compact bilinear pooling
for visual question answering and visual grounding. arXiv
preprint arXiv:1606.01847, 2016. 1, 2

[18] Y. Fyodorov, Y. Winter, and N. Francez. A natural logic
inference system. In Proceedings of the 2nd Workshop on
Inference in Computational Semantics (ICoS-2). Citeseer,
2000. 2

[19] H. Gao, J. Mao, J. Zhou, Z. Huang, L. Wang, and W. Xu.
Are you talking to a machine? dataset and methods for mul-
tilingual image question. In Advances in neural information
processing systems, pages 2296–2304, 2015. 2

[20] Y. Gao, O. Beijbom, N. Zhang, and T. Darrell. Compact
bilinear pooling. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 317–326,
2016. 2

[21] G. Gkioxari, R. Girshick, P. Dollár, and K. He. Detecting
and recognizing human-object interactions. arXiv preprint
arXiv:1704.07333, 2017. 3

[22] Y. Gong, L. Wang, M. Hodosh, J. Hockenmaier, and
S. Lazebnik. Improving image-sentence embeddings using
large weakly annotated photo collections. In European Con-
ference on Computer Vision, pages 529–545. Springer, 2014.
4

[23] Y. Goyal, T. Khot, D. Summers-Stay, D. Batra, and
D. Parikh. Making the v in vqa matter: Elevating the role of
image understanding in visual question answering. In CVPR,
volume 1, page 3, 2017. 1, 2

[24] S. Gururangan, S. Swayamdipta, O. Levy, R. Schwartz, S. R.
Bowman, and N. A. Smith. Annotation artifacts in natural
language inference data. arXiv preprint arXiv:1803.02324,
2018. 4, 6

[25] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn.
In Computer Vision (ICCV), 2017 IEEE International Con-
ference on, pages 2980–2988. IEEE, 2017. 7

9

https://github.com/yunjey/pytorch-tutorial/tree/master/tutorials/03-advanced/image_captioning
https://github.com/yunjey/pytorch-tutorial/tree/master/tutorials/03-advanced/image_captioning
https://github.com/yunjey/pytorch-tutorial/tree/master/tutorials/03-advanced/image_captioning
https://evalai.cloudcv.org/web/challenges/challenge-page/80/leaderboard/124
https://evalai.cloudcv.org/web/challenges/challenge-page/80/leaderboard/124
https://evalai.cloudcv.org/web/challenges/challenge-page/80/leaderboard/124


[26] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
770–778, 2016. 1, 5

[27] R. Hu, J. Andreas, M. Rohrbach, T. Darrell, and K. Saenko.
Learning to reason: End-to-end module networks for visual
question answering. CoRR, abs/1704.05526, 3, 2017. 2

[28] R. Hu, M. Rohrbach, J. Andreas, T. Darrell, and K. Saenko.
Modeling relationships in referential expressions with com-
positional modular networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
2016. 3

[29] D. A. Hudson and C. D. Manning. Compositional at-
tention networks for machine reasoning. arXiv preprint
arXiv:1803.03067, 2018. 1, 2

[30] H. Jiang, B. Kim, and M. Gupta. To trust or not to trust a
classifier. arXiv preprint arXiv:1805.11783, 2018. 3

[31] Y. Jiang, V. Natarajan, X. Chen, M. Rohrbach, D. Batra, and
D. Parikh. Pythia v0. 1: the winning entry to the vqa chal-
lenge 2018. arXiv preprint arXiv:1807.09956, 2018. 1, 2

[32] J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei,
C. L. Zitnick, and R. Girshick. Clevr: A diagnostic dataset
for compositional language and elementary visual reasoning.
In Computer Vision and Pattern Recognition (CVPR), 2017
IEEE Conference on, pages 1988–1997. IEEE, 2017. 1, 2

[33] J. Johnson, B. Hariharan, L. van der Maaten, J. Hoffman,
L. Fei-Fei, C. L. Zitnick, and R. B. Girshick. Inferring and
executing programs for visual reasoning. In ICCV, pages
3008–3017, 2017. 1, 2

[34] J. Johnson, A. Karpathy, and L. Fei-Fei. Densecap: Fully
convolutional localization networks for dense captioning. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 4565–4574, 2016. 3

[35] J. Johnson, R. Krishna, M. Stark, L.-J. Li, D. Shamma,
M. Bernstein, and L. Fei-Fei. Image retrieval using scene
graphs. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3668–3678, 2015. 3

[36] A. Karpathy and L. Fei-Fei. Deep visual-semantic align-
ments for generating image descriptions. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 3128–3137, 2015. 2

[37] J.-H. Kim, J. Jun, and B.-T. Zhang. Bilinear attention net-
works. arXiv preprint arXiv:1805.07932, 2018. 1, 2

[38] S. W. Kim, M. Tapaswi, and S. Fidler. Progressive reasoning
by module composition. arXiv preprint arXiv:1806.02453,
2018. 2

[39] P. W. Koh and P. Liang. Understanding black-box predictions
via influence functions. arXiv preprint arXiv:1703.04730,
2017. 3

[40] I. Krasin, T. Duerig, N. Alldrin, V. Ferrari, S. Abu-El-
Haija, A. Kuznetsova, H. Rom, J. Uijlings, S. Popov,
S. Kamali, M. Malloci, J. Pont-Tuset, A. Veit, S. Be-
longie, V. Gomes, A. Gupta, C. Sun, G. Chechik, D. Cai,
Z. Feng, D. Narayanan, and K. Murphy. Openim-
ages: A public dataset for large-scale multi-label and
multi-class image classification. Dataset available from
https://storage.googleapis.com/openimages/web/index.html,
2017. 8

[41] R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz,
S. Chen, Y. Kalantidis, L.-J. Li, D. A. Shamma, M. Bern-
stein, and L. Fei-Fei. Visual genome: Connecting language
and vision using crowdsourced dense image annotations.
2016. 1, 2, 8

[42] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages
1097–1105, 2012. 1

[43] Y. Li, W. Ouyang, B. Zhou, K. Wang, and X. Wang. Scene
graph generation from objects, phrases and region captions.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1261–1270, 2017. 3

[44] X. Liang, L. Lee, and E. P. Xing. Deep variation-structured
reinforcement learning for visual relationship and attribute
detection. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017. 3

[45] T.-Y. Lin, A. RoyChowdhury, and S. Maji. Bilinear cnn mod-
els for fine-grained visual recognition. In Proceedings of the
IEEE International Conference on Computer Vision, pages
1449–1457, 2015. 2

[46] B. MacCartney and C. D. Manning. An extended model of
natural logic. In Proceedings of the eighth international con-
ference on computational semantics, pages 140–156. Asso-
ciation for Computational Linguistics, 2009. 2

[47] M. Malinowski and M. Fritz. A multi-world approach to
question answering about real-world scenes based on uncer-
tain input. In Advances in neural information processing sys-
tems, pages 1682–1690, 2014. 2

[48] I. Matterport. Mask rcnn pytorch implementation.
https://github.com/multimodallearning/
pytorch-mask-rcnn. Accessed: 2018-10-30. 5

[49] G. Montavon, S. Lapuschkin, A. Binder, W. Samek, and K.-
R. Müller. Explaining nonlinear classification decisions with
deep taylor decomposition. Pattern Recognition, 65:211–
222, 2017. 3

[50] Y. Nie and M. Bansal. Shortcut-stacked sentence
encoders for multi-domain inference. arXiv preprint
arXiv:1708.02312, 2017. 2

[51] D. H. Park, L. A. Hendricks, Z. Akata, B. Schiele, T. Dar-
rell, and M. Rohrbach. Attentive explanations: Justify-
ing decisions and pointing to the evidence. arXiv preprint
arXiv:1612.04757, 2016. 3

[52] M. Pedersoli, T. Lucas, C. Schmid, and J. Verbeek. Ar-
eas of attention for image captioning. arXiv preprint
arXiv:1612.01033, 2016. 2

[53] J. Pennington, R. Socher, and C. Manning. Glove: Global
vectors for word representation. In Proceedings of the 2014
conference on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543, 2014. 6

[54] E. Perez, F. Strub, H. De Vries, V. Dumoulin, and
A. Courville. Film: Visual reasoning with a general con-
ditioning layer. arXiv preprint arXiv:1709.07871, 2017. 2

[55] N. Pham and R. Pagh. Fast and scalable polynomial kernels
via explicit feature maps. In Proceedings of the 19th ACM
SIGKDD international conference on Knowledge discovery
and data mining, pages 239–247. ACM, 2013. 2

10

https://github.com/multimodallearning/pytorch-mask-rcnn
https://github.com/multimodallearning/pytorch-mask-rcnn


[56] M. Raghu, J. Gilmer, J. Yosinski, and J. Sohl-Dickstein.
Svcca: Singular vector canonical correlation analysis for
deep learning dynamics and interpretability. In Advances in
Neural Information Processing Systems, pages 6076–6085,
2017. 3

[57] M. Ren, R. Kiros, and R. Zemel. Exploring models and data
for image question answering. In Advances in neural infor-
mation processing systems, pages 2953–2961, 2015. 1, 2

[58] M. T. Ribeiro, S. Singh, and C. Guestrin. Why should i trust
you?: Explaining the predictions of any classifier. In Pro-
ceedings of the 22nd ACM SIGKDD international confer-
ence on knowledge discovery and data mining, pages 1135–
1144. ACM, 2016. 3
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Supplementary: Additional Examples
Figure 7 shows random examples from SNLI-VE with predictions from our EVE-Image. Each example consists of an

image premise and three selected hypotheses of different labels. Note that for each image premise, the total number of
hypotheses are not limited to three.

Cameras are set up on tripods along the side of the
road. 
-> entailment (pred: entailment) 
Cameras are set up to film a high speed police chase. 
-> neutral (pred: neutral) 
People are holding cameras and taking pictures of
people walking inside. 
-> contradiction (pred: contradiction) 

People in black shirts are having a confrontation. 
-> entailment (pred: entailment) 
Two men, who are twins, are wearing matching
black shirt and are about to fight over a girl.
-> neutral (pred: neutral) 
Dogs in black shirts are having a confrontation. 
-> contradiction (pred: contradiction)

A police officer dressed in a bright shirt and a black
hat wets his lips. 
-> entailment (pred: contradiction)
A police officer watches sailors boarding a ship. 
-> neutral (pred: neutral)
A police officer driving in a car. 
-> contradiction (pred: contradiction)

People sit outside the leaning tower of Piza
being photographed. 
-> entailment (pred: entailment)
A girl is relaxing in the park. 
-> neutral (pred: contradiction)
A women pushed the Leaning Tower of Pisa
until it stood straight. 
-> contradiction (pred: contradiction)

There is a person playing sports outdoors. 
-> entailment (pred: entailment)
A man bring to the ball back that was thrown out
of zone. 
-> neutral (pred: entailment)
A man shoots a basketball at a net. 
-> contradiction (pred: contradiction)

A group is with a dog outside. 
-> entailment (pred: entailment)
Good friends at a park gathering having a picnic. 
-> neutral (pred: neutral)
4 women, one child and a black and white dog run
outside at a social event. 
-> contradiction (pred: neutral)

A woman fell while playing volleyball. 
-> entailment (pred: contradiction)
A woman hits the ground while trying to return a
spike during a game of volleyball.
-> neutral (pred: neutral)
Girls writing letters. 
-> contradiction (pred: contradiction)

An energetic boy runs around a group of people. 
-> entailment (pred: entailment)
A little boy is bored and decides to run around while
watching the school play of Romeo and Juliet. 
-> neutral (pred: neutral)
The child was crying. 
-> contradiction (pred: contradiction)

Children playing in a store with floor displays. 
-> entailment (pred: entailment)
Two people are checking out the bed to see if
they want to buy it. 
-> neutral (pred: neutral)
Two children play in a Goodwill, laying under
the racks of clothes that line the walls. 
-> contradiction (pred: neutral)

A large family poses for a photo. 
-> entailment (pred: neutral)
A family member documents a wedding by
taking a photo. 
-> neutral (pred: neutral)
Some people inside a church at a wedding. 
-> contradiction (pred: contradiction)

There is a man wearing a black shaggy hat and a
leopard printed sash. 
-> entailment (pred: entailment)
a man in fancy attire holds a drum. 
-> neutral (pred: entailment)
A man holds a large monkey. 
-> contradiction (pred: contradiction)

A man is watching another man play a game. 
-> entailment (pred: entailment)
The game is complicated and needs to be
learned by demonstration 
-> neutral (pred: neutral)
A young boy is throwing a ball to his dog. 
-> contradiction (pred: neutral)

There are people parading around. 
-> entailment (pred: entailment)
A group of men is celebrating a team victory by
marching down the street waving flags.
-> neutral (pred: neutral)
children are running past a flag. 
-> contradiction (pred: entailment)

A few people are getting off a plane. 
-> entailment (pred: entailment)
Everybody is boarding in the correct order.
-> neutral (pred: contradiction)
The plane was destroyed. 
-> contradiction (pred: contradiction)

People stand on the sidewalk, wearing bright clothing. 
-> entailment (pred: entailment)
People stand on a sidewalk near the beach in bright
summer clothes. 
-> neutral (pred: neutral)
The group of people are inside of a building. 
-> contradiction (pred: contradiction)

Group of man playing chess in a pool. 
-> entailment (pred: contradiction)
The men are trying to beat the hot, summer heat and
still play chess, hence playing chess in the pool. 
-> neutral (pred: neutral)
The men are playing checkers in the shade at the
park. 
-> contradiction (pred: contradiction)

Figure 7. Random examples from SNLI-VE with prediction results from our best-performed EVE-Image
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