2,350 research outputs found

    Signal processing algorithms for enhanced image fusion performance and assessment

    Get PDF
    The dissertation presents several signal processing algorithms for image fusion in noisy multimodal conditions. It introduces a novel image fusion method which performs well for image sets heavily corrupted by noise. As opposed to current image fusion schemes, the method has no requirements for a priori knowledge of the noise component. The image is decomposed with Chebyshev polynomials (CP) being used as basis functions to perform fusion at feature level. The properties of CP, namely fast convergence and smooth approximation, renders it ideal for heuristic and indiscriminate denoising fusion tasks. Quantitative evaluation using objective fusion assessment methods show favourable performance of the proposed scheme compared to previous efforts on image fusion, notably in heavily corrupted images. The approach is further improved by incorporating the advantages of CP with a state-of-the-art fusion technique named independent component analysis (ICA), for joint-fusion processing based on region saliency. Whilst CP fusion is robust under severe noise conditions, it is prone to eliminating high frequency information of the images involved, thereby limiting image sharpness. Fusion using ICA, on the other hand, performs well in transferring edges and other salient features of the input images into the composite output. The combination of both methods, coupled with several mathematical morphological operations in an algorithm fusion framework, is considered a viable solution. Again, according to the quantitative metrics the results of our proposed approach are very encouraging as far as joint fusion and denoising are concerned. Another focus of this dissertation is on a novel metric for image fusion evaluation that is based on texture. The conservation of background textural details is considered important in many fusion applications as they help define the image depth and structure, which may prove crucial in many surveillance and remote sensing applications. Our work aims to evaluate the performance of image fusion algorithms based on their ability to retain textural details from the fusion process. This is done by utilising the gray-level co-occurrence matrix (GLCM) model to extract second-order statistical features for the derivation of an image textural measure, which is then used to replace the edge-based calculations in an objective-based fusion metric. Performance evaluation on established fusion methods verifies that the proposed metric is viable, especially for multimodal scenarios

    Generic multimodal biometric fusion

    Get PDF
    Biometric systems utilize physiological or behavioral traits to automatically identify individuals. A unimodal biometric system utilizes only one source of biometric information and suffers from a variety of problems such as noisy data, intra-class variations, restricted degrees of freedom, non-universality, spoof attacks and unacceptable error rates. Multimodal biometrics refers to a system which utilizes multiple biometric information sources and can overcome some of the limitation of unimodal system. Biometric information can be combined at 4 different levels: (i) Raw data level; (ii) Feature level; (iii) Match-score level; and (iv) Decision level. Match score fusion and decision fusion have received significant attention due to convenient information representation and raw data fusion is extremely challenging due to large diversity of representation. Feature level fusion provides a good trade-off between fusion complexity and loss of information due to subsequent processing. This work presents generic feature information fusion techniques for fusion of most of the commonly used feature representation schemes. A novel concept of Local Distance Kernels is introduced to transform the available information into an arbitrary common distance space where they can be easily fused together. Also, a new dynamic learnable noise removal scheme based on thresholding is used to remove shot noise in the distance vectors. Finally we propose the use of AdaBoost and Support Vector Machines for learning the fusion rules to obtain highly reliable final matching scores from the transformed local distance vectors. The integration of the proposed methods leads to large performance improvement over match-score or decision level fusion

    Machine Understanding of Human Behavior

    Get PDF
    A widely accepted prediction is that computing will move to the background, weaving itself into the fabric of our everyday living spaces and projecting the human user into the foreground. If this prediction is to come true, then next generation computing, which we will call human computing, should be about anticipatory user interfaces that should be human-centered, built for humans based on human models. They should transcend the traditional keyboard and mouse to include natural, human-like interactive functions including understanding and emulating certain human behaviors such as affective and social signaling. This article discusses a number of components of human behavior, how they might be integrated into computers, and how far we are from realizing the front end of human computing, that is, how far are we from enabling computers to understand human behavior

    Deep learning approaches to multimodal MRI brain age estimation

    Get PDF
    Brain ageing remains an intricate, multifaceted process, marked not just by chronological time but by a myriad of structural, functional, and microstructural changes that often lead to discrepancies between actual age and the age inferred from neuroimaging. Machine learning methods, and especially Convolutional Neural Networks (CNNs), have proven adept in capturing patterns relating to ageing induced changes in the brain. The differences between the predicted and chronological ages, referred to as brain age deltas, have emerged as useful biomarkers for exploring those factors which promote accelerated ageing or resilience, such as pathologies or lifestyle factors. However, previous studies relied overwhelmingly on structural neuroimaging for predictions, overlooking rich details inherent in other MRI modalities, such as potentially informative functional and microstructural changes. This research, utilising the extensive UK Biobank dataset, reveals that 57 different maps spanning structural, susceptibility-weighted, diffusion, and functional MRI modalities can not only predict an individual's chronological age, but also encode unique ageing-related details. Through the use of both 3D CNNs and the novel 3D Shifted Window (SWIN) Transformers, this work uncovered associations between brain age deltas and 191 different non-imaging derived phenotypes (nIDPs), offering a valuable insight into factors influencing brain ageing. Moreover, this work found that ensembling data from multiple maps results in higher prediction accuracies. After a thorough comparison of both linear and non-linear multi-modal ensembling methods, including deep fusion networks, it was found that linear methods, such as ElasticNet, generally outperform their more complex non-linear counterparts. In addition, while ensembling was found to strengthen age prediction accuracies, it was found to weaken nIDP associations in certain circumstances where ensembled maps might have opposing sensitivities to a particular nIDP, thus reinforcing the need for guided selections of the ensemble components. Finally, while both CNNs and SWINs show comparable brain age prediction precision, SWIN networks stand out for their robustness against data corruption, while also proving a degree of inherent explainability. Overall, the results presented herein demonstrate that other 3D maps and modalities, which have not been considered previously for the task of brain age prediction, encode different information about the ageing brain. This research lays the foundation for further explorations into how different factors, such as off-target drug effects, impact brain ageing. It also ushers in possibilities for enhanced clinical trial design, diagnostic approaches, and therapeutic monitoring grounded in refined brain age prediction models

    Multimodal Data Fusion: An Overview of Methods, Challenges and Prospects

    No full text
    International audienceIn various disciplines, information about the same phenomenon can be acquired from different types of detectors, at different conditions, in multiple experiments or subjects, among others. We use the term "modality" for each such acquisition framework. Due to the rich characteristics of natural phenomena, it is rare that a single modality provides complete knowledge of the phenomenon of interest. The increasing availability of several modalities reporting on the same system introduces new degrees of freedom, which raise questions beyond those related to exploiting each modality separately. As we argue, many of these questions, or "challenges" , are common to multiple domains. This paper deals with two key questions: "why we need data fusion" and "how we perform it". The first question is motivated by numerous examples in science and technology, followed by a mathematical framework that showcases some of the benefits that data fusion provides. In order to address the second question, "diversity" is introduced as a key concept, and a number of data-driven solutions based on matrix and tensor decompositions are discussed, emphasizing how they account for diversity across the datasets. The aim of this paper is to provide the reader, regardless of his or her community of origin, with a taste of the vastness of the field, the prospects and opportunities that it holds
    • …
    corecore