4 research outputs found

    A Feature Ranking Algorithm in Pragmatic Quality Factor Model for Software Quality Assessment

    Get PDF
    Software quality is an important research area and has gain considerable attention from software engineering community in identification of priority quality attributes in software development process. This thesis describes original research in the field of software quality model by presenting a Feature Ranking Algorithm (FRA) for Pragmatic Quality Factor (PQF) model. The proposed algorithm is able to improve the weaknesses in PQF model in updating and learning the important attributes for software quality assessment. The existing assessment techniques lack of the capability to rank the quality attributes and data learning which can enhance the quality assessment process. The aim of the study is to identify and propose the application of Artificial Intelligence (AI) technique for improving quality assessment technique in PQF model. Therefore, FRA using FRT was constructed and the performance of the FRA was evaluated. The methodology used consists of theoretical study, design of formal framework on intelligent software quality, identification of Feature Ranking Technique (FRT), construction and evaluation of FRA algorithm. The assessment of quality attributes has been improved using FRA algorithm enriched with a formula to calculate the priority of attributes and followed by learning adaptation through Java Library for Multi Label Learning (MULAN) application. The result shows that the performance of FRA correlates strongly to PQF model with 98% correlation compared to the Kolmogorov-Smirnov Correlation Based Filter (KSCBF) algorithm with 83% correlation. Statistical significance test was also performed with score of 0.052 compared to the KSCBF algorithm with score of 0.048. The result shows that the FRA was more significant than KSCBF algorithm. The main contribution of this research is on the implementation of FRT with proposed Most Priority of Features (MPF) calculation in FRA for attributes assessment. Overall, the findings and contributions can be regarded as a novel effort in software quality for attributes selection

    Improving Multilabel Classification Performance by Using Ensemble of Multi-label Classifiers

    No full text
    Multilabel classification is a challenging research problem in which each instance is assigned to a subset of labels. Recently, a considerable amount of research has been concerned with the development of “good” multi-label learning methods. Despite the extensive research effort, many scientific challenges posed by e.g. highly imbalanced training sets and correlation among labels remain to be addressed. The aim of this paper is use heterogeneous ensemble of multi-label learners to simultaneously tackle both imbalance and correlation problems. This is different from the existing work in the sense that the later mainly focuses on ensemble techniques within a multi-label learner while we are proposing in this paper to combine these state-of-the-art multi-label methods by ensemble techniques. The proposed ensemble approach (EML) is applied to three publicly available multi-label data sets using several evaluation criteria. We validate the advocated approach experimentally and demonstrate that it yields significant performance gains when compared with state-of-the art multi-label methods

    An empirical evaluation of computational and perceptual multi-label genre classification on music / Christopher Sanden

    Get PDF
    viii, 87 leaves ; 29 cmAutomatic music genre classi cation is a high-level task in the eld of Music Information Retrieval (MIR). It refers to the process of automatically assigning genre labels to music for various tasks, including, but not limited to categorization, organization and browsing. This is a topic which has seen an increase in interest recently as one of the cornerstones of MIR. However, due to the subjective and ambiguous nature of music, traditional single-label classi cation is inadequate. In this thesis, we study multi-label music genre classi cation from perceptual and computational perspectives. First, we design a set of perceptual experiments to investigate the genre-labelling behavior of individuals. The results from these experiments lead us to speculate that multi-label classi cation is more appropriate for classifying music genres. Second, we design a set of computational experiments to evaluate multi-label classi cation algorithms on music. These experiments not only support our speculation but also reveal which algorithms are more suitable for music genre classi cation. Finally, we propose and examine a group of ensemble approaches for combining multi-label classi cation algorithms to further improve classi cation performance. i
    corecore