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Abstract

Automatic music genre classification is a high-level task in the field of Music Information

Retrieval (MIR). It refers to the process of automatically assigning genre labels to music

for various tasks, including, but not limited to categorization, organization and browsing.

This is a topic which has seen an increase in interest recently as one of the cornerstones of

MIR. However, due to the subjective and ambiguous nature of music, traditional single-label

classification is inadequate.

In this thesis, we study multi-label music genre classification from perceptual and com-

putational perspectives. First, we design a set of perceptual experiments to investigate

the genre-labelling behavior of individuals. The results from these experiments lead us to

speculate that multi-label classification is more appropriate for classifying music genres.

Second, we design a set of computational experiments to evaluate multi-label classification

algorithms on music. These experiments not only support our speculation but also reveal

which algorithms are more suitable for music genre classification. Finally, we propose and

examine a group of ensemble approaches for combining multi-label classification algorithms

to further improve classification performance.
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Chapter 1

Introduction

For the past decade, digital music collections have been growing in volume due to advances in

technologies such as storage capacity, network transmission, data compression, information

retrieval, etc. Never before have listeners had access to such extensive collections of music.

Furthermore, the steep rise in music downloading has created a major shift in the music

industry away from physical media formats and towards electronic distribution. Large

online music providers now offer consumers millions of songs from catalogs of material

extending over many decades, genres, and styles. Application requirements from users,

including music recommendation, recognition, and categorization are becoming more and

more demanding [62].

At present, digital music collections are commonly represented and accessed through

textual meta-data, such as genre, style, mood, release year, and artist. For instance, tra-

ditional methods of searching and indexing categorize audio pieces into music genres such

as Classical, Rock, Jazz, Pop, and others. This method relies on human experts as well

as amateurs to annotate the music [81]. Although this meta-data can be rich and descrip-

tive, it is difficult to maintain consistency when music collections become large. Moreover,

annotating music manually is tedious, time-consuming, and erroneous [23]. For example,

Microsoft’s MSN Music Search Engine required the assistance of 30 musicologists over a

period of one year in order to manually label approximately 200,000 songs [1, 13].
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All these call for novel approaches to organize, browse, and update music, which are

collectively referred to as Music Information Retrieval.

1.1 Music Information Retrieval

Music Information Retrieval (MIR) is a growing interdisciplinary area, engaging in the de-

sign and implementation of algorithmic approaches to managing digital music collections

for preservation, access, and other uses [28]. Practitioners come from backgrounds, includ-

ing, but not limited to, computer science, information retrieval, audio engineering, cognitive

science and musicology. [28] The primary goal of MIR research is to facilitate access to the

world’s vast music collections, both new and historical, on a level equal to that currently

being afforded by text-based search engines, such as Google 1. The growth of interest in

MIR is evidenced from the number of publications in multimedia conferences, e.g., ISMIR

(International Conference on Music Information Retrieval), ICMC (International Computer

Music Conference), etc.

MIR approaches can be typically categorized into two groups: (1) those that are based

on meta-data and (2) those that are based on the music content directly. Due to the limited

amounts of meta-data and the uncertain quality associated with the data, meta-based ap-

proaches are often seen as less reliable than their alternative. Content-based approaches, on

the other hand, describe a music piece by a set of features that are directly computed from

its content. For this reason, we believe content-based approaches provide greater potential

towards the development of novel approaches to MIR problems. Below is a list of some

typical problems along this direction.

• Automatic genre classification: The task of automatically separating music into dif-

ferent groups such that each group uniformly represents a music genre, i.e. the clas-

sification of music based on genres [62].

• Fingerprinting: The process of creating an acoustic fingerprint, a reproducible hash

1http://www.google.com.
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extracted from the audio content, that can identify an audio sample or locate similar

pieces in a collection [77, 78].

• Tag prediction: Automatic textual annotation of music with tags that listeners would

likely use or find helpful. The tags associated with a song can be used to search for new

music (tag-based browsing) or to automatically generate music recommendations [32,

51].

• Play-list generation: The automatic formulation of playlists consisting of music pieces

that satisfy some ordering criteria. This is typically done with respect to content

descriptors previously collected by listeners [4].

• Mood classification: The task of automatically classifying music based on mood or

emotion [66, 84].

• Music recommendation: The automatic recommendation of music to a listener. It

consists of suggesting, providing guidance, or advising on interesting music. Music

recommendation systems are generally structured to find songs which are similar to

an input song based on a defined metric [4].

This thesis focuses on the automatic classification of music. We attempt to classify

music into different genres using information derived from the content of the audio. This

is a topic which has seen an increased interest recently as one of the cornerstones of music

information retrieval.

1.2 Automatic Music Genre Classification

As a fundamental task of music information retrieval, automatic genre classification has

attracted considerable attention. For instance, musical genres have been historically used

as categorical descriptions to organize music collections. Although no universally accepted

definition of genres exists, a genre can be characterized by the common characteristics

3



Preprocessing Segmentation
Feature

Extraction
Classification

Input Signal

Class Label

Figure 1.1: The generic process of automatic genre classification.

shared by its members. These characteristics are related to the instrumentation, harmonic

content, rhythmic structures, scales, modes, etc. [75]

One of the easiest ways to annotate genre information from a music database is to

ask human experts. However, human annotations are difficult to maintain and in cases

are not comprehensive, due to the ambiguity and subjectivity that is introduced in this

process [53]. Moreover, music genre annotation by human experts is an involved process, in

terms of financial and labor costs. Therefore, manual annotation is not sufficient to handle

a large volume of music titles.

In response to these, automatic genre classification techniques are being investigated

and developed to assist in annotating large collections of digital music. In general, these

techniques make use of perceptual, statistical, and spectral features derived from the audio

content to automatically label a music piece. This is also in accordance with the statement

from Tzanetakis et al. [76] that “there are perceptual criteria related to the texture, rhyth-

mic structure and instrumentation of music that can be used to characterize a particular

genre [algorithmically]”. In addition, automatic genre classification facilitates structuring

and organizing large archives of audio.

The basic process of automatic genre classification is composed of four steps, as shown

in Figure 1.1, including: (1) Preprocessing, (2) Segmentation, (3) Feature extraction, and

(4) Classification. The preprocessing step consists of performing operations, such as nor-

malization and downsampling, to an audio signal. The purpose of this step is to provide

a low-level signal representation on which the succeeding segmentation and feature extrac-

4



tion steps can be conducted [47]. The segmentation step partitions a signal into a series of

sections that are of perceptually, statistically, or spectrally “meaningful”, while the feature

extraction step describes each section using set of characteristics [16, 58]. These two steps

provide a low-dimensional representation as the basis for the audio classification step, in

which a classification model is built to predict the genre of an unknown music piece. In

Chapter 2 we examine these steps in detail.

1.2.1 Current State in Automatic Genre Classification

It is obvious that automatic genre classification has value in both research and applications.

However, as McKay indicates [48], there is some controversy regarding the current state

of automatic genre classification with some works even suggesting that it be abandoned in

favor of a more general similarity search problem. For instance, genre-labeling is intrinsically

difficult as the ground truth against which it is compared is based upon subjective responses.

It has been suggested that only limited agreement can be achieved among human annotators

when classifying music by genres. This imposes an unavoidable ceiling on the performance

of automatic genre classification [48]. Moreover, the time and expertise needed to manually

classify a corpus of music poses serious obstacles to generating quality ground truth. To

further complicate matters, the understanding of existing genres can change with time and

even merge, which can necessitate the re-annotation of ground truth [48].

Despite these controversies, genre categorization provides a common vocabulary which

can be used to discuss musical categories. Additionally, users are already accustomed to

browsing music collection by genres, and this approach is proven to be at least reasonably

effective [48]. Although one may argue that in automatic genre classification generating

“ground truth” is a serious issue that needs to be handled, manually labeling growing

music collections is a much greater challenge. Therefore, continuing efforts in automatic

genre classification have much to offer.

5



1.3 Contribution

In the current practice of automatic genre classification, an important issue that has rarely

been addressed is the assignment of multiple genre labels to individual music pieces. It is

often observed that a music piece could belong to multiple genres. Furthermore, different

portions of a music piece might be recognized as different genres which stand in contrast

to each other. Therefore, it is desirable that automatic genre classification be modeled as a

multi-label problem.

The work presented in this thesis is motivated by the current state of automatic genre

classification approaches. A survey of existing music information retrieval literature reveals

little work focusing on multi-label genre classification. Furthermore, there has been limited

work investigating genre-labeling behavior of individuals. Therefore, in this thesis, we

investigate various issues pertaining to the task of multi-label genre classification.

First, we will explore the genre-labeling behavior of humans. The purpose of this is

to investigate inter-song similarity and dissimilarity, with regard to music genres. We are

interested in exploring how participants classify music excerpts extracted from the same

piece of music. This stands in contrast to other human genre-labeling studies which compare

the performance of each participant to some ground truth.

To support our speculation that a music piece might be a composition of multiple genres,

we design a set of classification experiments. Insight is offered into what classification

algorithms and parameters are best suited for the task of multi-label genre classification.

While previous studies have used these techniques for detecting emotion in music, to the

best of our knowledge, our attempt is the first to use them for music genre classification.

A wealth of knowledge exists in machine learning for improving classification accuracy.

However, there has been little work concentrating on improvements to multi-label classi-

fication performance. In our work we propose a set of ensemble techniques for improving

multi-label genre classification. Specifically, background information relating to genre struc-

ture is used in an attempt to improve classification performance.

6



1.4 Outline

The thesis is outlined as follows. Chapter 2 reviews previous works related to perceptual

and algorithmic genre classification. Moreover, issues relating to the use of music genres

are explored.

In Chapter 3 a series of perceptual experiments are performed to explore the multi-

genre-labeling behavior of individuals. Given a set of excerpts from an audio recording,

participants are asked to classify each excerpt and assign a genre class to it. While pre-

vious studies have explored the genre-labeling behavior of participants, to the best of our

knowledge, there have been no studies investigating perceptual multi-genre-labeling.

In Chapter 4, a selection of multi-label classification algorithms are evaluated for the

task of genre classification. Issues pertaining to the creation of a dataset are explored.

Results are presented for various feature extraction parameters. Specifically, classification

performance is presented for an assortment of frame sizes. Finally new techniques for

improving multi-label genre classification, based on an ensemble of classifiers approach, are

presented in Chapter 5. These techniques aim to improve classification performance and

are evaluated for their effectiveness.

In Chapter 6, we present our conclusion and some discussion including limitations and

recommendations for future research.
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Chapter 2

Background

This chapter reviews previous works related to perceptual and algorithmic genre classifi-

cation and is structured as follows. Section 2.1 discusses issues pertaining to music genres

and human categorization of music. Section 2.2 presents relevant background on content-

based audio analysis, including feature extraction and segmentation techniques. Section 2.3

proceeds with an overview of classification algorithms widely used in music retrieval and

Section 2.4 focuses on the automatic classification of music. We dedicate some discussions

to multi-label classification algorithms in Section 2.5 and introduce a set of evaluation mea-

sures for determining predictive performance in Section 2.6. Finally, previous works on the

multi-label classification of music are presented in Section 2.7.

2.1 Music Genres

Music genres are labels that have been created to help describe the vast universe of music

and have historically been used as categorical descriptions to organize music collections.

However, no universally accepted definition of music genres exists as boundaries between

genres become vague due to complex interactions among historical, cultural, and personal

backgrounds [75].

It is commonly accepted that the definition of most music genres is subjective; the
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boundary of each music genre can be based on individual perspectives. As a result, genre

boundaries can shift from individual to individual [3]. These observations have led people

to suggest a new definition of genre classification for the purpose of Music Information

Retrieval (MIR) [54]. In spite of this, musical genre is still the primary descriptor used

to classify music [1, 53] and it is clear that the members of some genres share certain

characteristics [75]. Although a genre may represent a simplification of an artist’s musical

discourse, it is of great interest as a summary of some shared characteristics [62].

Research into music genres attempts to address issues related to how they are created,

defined, and perceived. Fabbri [24] suggests that music genres can be characterized using

a set of rules including behavior, economical, social, ideological, and technical. Note that

only the last rule deals with musical content. In addition, Firth [26] and Brackett [9, 10]

offer insight into how music genres are formed, characterized and constructed. However,

Aucouturier and Pachet [1] describe that “[musical genres are] not founded on any intrinsic

property of the music, but rather depends on cultural extrinsic habits”. Craft et al. [17]

propose that there are three factors influencing how an individual assigns a genre label to a

music piece: (1) The number of musical cues associated with different genres in the piece;

(2) The social and cultural background of the individual; and (3) The individual’s personal

experience of the genres involved.

2.1.1 Genre Labeling by Humans

One of the easiest way to extract genre information from a collection of music is to ask

human experts. However, in addition to the deficiencies outlined in Chapter 1 regarding

the use of human experts, there has been few studies examining human genre-labeling

behavior.

An interesting experiment conducted by Chase [11] investigates the discrimination of

musical stimuli by fish (Cyprinus carpio). In the study, a fish learns to discriminate blues

recordings from classical ones with a low error rate. In addition, Crump [18] reports that
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pigeons demonstrate the ability to discriminate between Bach and Stravinksy. These results

suggest that music genres may depend not only on cultural extrinsic habits but also on

intrinsic properties of the music content.

Gjerdingen and Perrott [29] find a close immediacy of genre identification as a response

to a musical stimulus. A group of participants are asked to evaluate brief excerpts of

commercially recorded music and assign to them one of ten genre labels. The participants

only need approximately 300 milliseconds of audio to accurately predict a music genre.

Lippens et al. [42] conduct a human-labeling experiment using a collection of 160 pieces

of music. A group of participants are asked to evaluate and assign one of six genre labels to

a music piece. The experiment is designed to compare the performance between automatic

and human genre classification. Their results show that there is a certain degree of sub-

jectivity in genre annotations by humans and, consequently, automatic classification [31].

The results from this study are re-analyzed rigorously by Craft et al. [17] to include music

pieces that are annotated as “other” or with multiple genres.

Additional studies in [33, 49, 50] deal with human-involved evaluations of music genres.

It is generally concluded that intrinsic properties of music exist that can be used for genre

classification. However, some music pieces from different genres do share similar characteris-

tics, such as timbre, tempo, etc., which can result in poor genre classification. It is therefore

important to emphasize that a degree of inconsistency exists in music classification [3].

2.2 Content-based Audio Analysis

In content-based audio analysis, a music piece is described by a set of features (to be

discussed in the following) that are directly computed from its content, i.e., the audio

signal is parameterized into suitable feature vectors, which should retain salient information

while discarding unnecessary details [57]. More specifically, samples from an audio signal

cannot be used directly for analysis due to the large volume of information in the signal.

Therefore, the initial step in content-based audio analysis is to represent the audio signal in
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a low-dimension form which can be used to manipulate more meaningful information [62].

The basic process for representing an audio signal can be defined by four steps: (1)

Data preprocessing, (2) Segmentation, (3) Feature extraction, and (4) Data aggregation, as

discussed in Chapter 1. In the following we review each step in detail.

2.2.1 Preprocessing

In order to extract features from an audio signal, samples are often preprocessed using stan-

dard digital signal processing techniques. The purpose of this is to help improve performance

when features are processed by classification algorithms.

One common technique is to normalize the amplitudes in an audio signal such that they

are uniformly scaled for further manipulation [47]. This is achieved by uniformly increasing

or deceasing the amplitude of an audio signal such that the resulting peak amplitude matches

a desired target. Normalization is helpful when applying classification algorithms as it

controls variability in recording levels. However, this might not be desired in cases where

variability can be a useful indicator in an application under consideration.

Another common technique is downsampling, which reduces the sampling rate of an

audio signal. It is useful for adjusting different audio sources to the same bandwidth. It is

also useful to reduce data size, which helps speed up the feature extraction process and the

related classification algorithms [47]. Note that in the downsampling process, the sampling

quality of some audio source is reduced for the sake of representing multiple audio sources.

Other preprocessing techniques, such as rectification [47] and channel merging [47, 81], can

also be used to further reduce the data size.

2.2.2 Feature Extraction

The feature extraction step transforms the input audio signal into a low-dimensional rep-

resentation which contains the information necessary for classification or content analysis.
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Feature extraction methods draw inspiration from a variety of sources, including signal pro-

cessing, physics of sound, psychoacoustics, speech perception, and music theory [8]. They

use information such as spectral or statistical variations in order to determine rhythm, pitch,

tempo, melody, and timbre. [60]

As discussed by Gouyon et al. [52], “a key assumption [in feature extraction] is that the

signal can be regarded as being stationary over intervals of a few milliseconds”. Therefore,

an audio signal is typically divided into small, possibly overlapping, frames (also referred

to as analysis windows [75]). This approach, commonly referred to as the bag-of-frames

approach, models the audio signal as a statistical distribution of audio features computed

from individual, short frames [55]. These frames can vary in size. For instance, Tzanetakis

and Cook [75] use a frame size of 23-milliseconds while Jiang et al. [35] partition an audio

signal into frames of 200-milliseconds. To minimize the discontinuities at the beginning

and end of a frame, a window function (e.g. Gaussian or Hanning window) is applied. As

an example, analysis of the spectral content of each frame can be performed and a vector

of features calculated [74]. These features are a summary of the corresponding spectral

characteristics of a signal.

To capture the long term nature of sound “texture”, i.e., the melodic, rhythmic, and

harmonic composition, features are typically computed as the running means and variance

over a set of consecutive frames, which is collectively referred to as a texture window [75].

In practice, instead of using the feature values directly from the frames, the parameters of

a running multi-dimensional Gaussian distribution are estimated for a texture window [75].

In our work we make use of low-level features for music classification. These are simple

mathematical transformations designed to capture perceptually significant aspects of the

sound. However, one would ideally like to be able to extract high-level features such as

chords, rhythmic patters, and pitches. Despite this, it is not currently known as how to

reliably extract such high-level features from audio signals [47]. For this reason, a compre-

hensive survey of high-level features and their extraction techniques is beyond the scope

of our discussion. For more information regarding these features, the interested reader is
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referred to [1, 75]. In the following, a selection of acoustic features for audio classification

and music content analysis are presented.

Temporal Features

Features can be calculated directly from the temporal representation of the audio signal,

i.e., the sequence of samples. It has been shown that some of these low-level features

correlate with perceptual qualities. For instance, amplitude is correlated with loudness

while frequency is related to pitch [52]. The following is a list of some low-level features that

pertain to our work, where x[n] refers to the value of the signal x at sample n, for a frame

consisting of N samples.

Zero Crossings Rate (ZCR) is defined as the rate of sign change along an audio signal,

i.e., the number of times the signal changes its sign in a frame. This feature provides an

indication of signal noisiness [75]. The zero crossing rate is computed as

ZCR =
1

2

N∑
n=1

|sign(x[n])− sign(x[n− 1])|,

where the sign function is 1 for a positive argument and 0 for a negative argument.

Root Mean Square (RMS): A measure of the average energy, or loudness, of an audio signal

calculated over a frame. It is calculated by taking the mean of the square of all sample

values in a frame and then taking the square root. RMS gives a good indication of loudness

and may also serve for high-level tasks such as tempo/beat estimation [16].

RMS =

√√√√ 1

N

N∑
n=1

x[n]2

Fraction of Low Energy Frames: The percentage of a set of consecutive frames that have a

RMS below some threshold. This feature measures the amplitude distribution of an audio

signal [47].
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Relative Difference Function: A measure of relative change in an audio signal. This feature

can be useful in detecting significant changes, such as note onsets [47].

For more information regarding temporal features, the reader is referred to [1, 75, 87].

Spectral Features

It is common for a feature to be calculated on a different representation, e.g., the spectral

domain of an audio signal. A spectrum is obtained from each frame by applying the Dis-

crete Fourier Transform (DFT) to it. These features, also known as Spectral Distribution

Descriptors, describe the shape of the spectral representation for a given frame and are

considered to be indicative of perceptual characteristics of the audio signal [62, 81]. The

following is a list of spectral features used in our work, where Xt(n) is the nth frequency

sample of frame t and N is the index of the highest frequency sample. More detailed

discussions on other spectral features are found in [47, 75, 87].

Spectral Centroid (SC): An indicator of the balancing point of a spectrum [47, 75]. It is

considered to correlate with the perceptual qualities brightness or sharpness. The spectral

centroid of frame t is calculated as

SCt =

∑N
n=1 |Xt(n)| · n∑N
n=1 |Xt(n)|

.

Spectral Flux (SF): A measure representing the change in shape of the magnitude spectrum

by calculating the difference between magnitude spectra of successive frames [47, 75]. It is

calculated as

SF t =
N∑
n=1

|(Xt(n)−Xt−1(n))|.

Spectral Rolloff (SR): An indicator of frequency below which a certain amount, represented

as a percentage, of spectral energy resides [47, 75]. It measures the “skewness” of the
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spectral shape for frame t. The spectral rolloff is defined as SRt such that

SRt∑
n=1

Xt(n) = C ·
N∑
n=1

Xt(n),

where C is a threshold between 0 and 1.

Cepstral Features

Mel-frequency cepstral coefficients (MFCC) are a popular feature extraction method in au-

dio analysis. MFCCs are designed to capture short-term spectral-based features and are

perceptually motivated based on the DFT [75]. They are calculated by taking the log-

amplitude of the magnitude spectrum and then grouping and smoothing the spectrum bins

based on the Mel-frequency scale [1, 75]. The Mel-frequency scale is intended to simulate

the distribution of the human ears’ critical bandwidth. It is based on the mapping between

actual frequency and perceived pitch. Since the human auditory system does not perceive

pitch in a linear manner, the mapping is approximately linear below 1kHz and logarithmic

above [43, 81]. Typically, there are 13 coefficients extracted for audio representation.

Chroma Features

While MFCCs are a popular feature extraction method for audio analysis, they mainly

reflect the instruments and arrangement of the music rather than the melodic or harmonic

content [22]. Chroma features attempt to represent the harmonic content (e.g., keys and

chords) of a short-time window of audio while minimizing the influence of instrumenta-

tion [30]. This is achieved by computing the energy present at frequencies that correspond to

each of the 12 notes in a standard chromatic scale (e.g., the black and white keys within one

octave on a piano) [46]. That is, the energy is collapsed into a 12-bin octave-independent his-

togram representing the relative intensity of each of the 12 semitones of an equal-tempered

chromatic scale. There are several advantages to using the chroma feature including the
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ability to effectively identify chord names and detect modulating repetition [30].

2.2.3 Segmentation

The features extracted from each frame of an audio signal represent a significant reduction

in terms of data size and dimensionality. However, this yields a large number of feature

vectors for each audio signal. To further reduce an audio signal to a lower dimensional form,

instead of extracting features on a frame-by-frame basis, features can be calculated on a

group of consecutive frames. To this end, we need to determine the grouping of consecutive

frames. This process, known as segmentation, is accomplished by applying acoustic analysis

to the frames from an audio signal and looking for “significant” transitions. For instance,

Bello and Pickens [7] describe a beat-synchronous segmentation method in which an audio

signal is divided into frames whose sizes are equal to the beat period, and whose starts and

ends are synchronized with beats.

Tzanetakis and Cook [73] develop an automatic segmentation algorithm based on the

detection of temporal change. The method uses the amount of change of a feature vector

as a boundary detector. That is, when the amount of change in a feature vector is greater

than a given threshold, a boundary decision is made [52].

A slightly different approach is to develop a similarity matrix between frames and their

neighbors [25]. This method embeds the parameterized audio into a 2-dimensional matrix

and then calculates a measure of (dis)similarity between the feature vectors of two audio

frames. A kernel function is used to find a measure of similarity and cross-similarity within

the matrix. The difference between these two values estimates the novelty of an audio

signal. The data points corresponding to the extremes of these novelty scores are selected

as segmentation locations [6, 25].

West and Cox [82] introduce an event-level segmentation method based on an onset

detection function. As described, “event-level segmentation of the audio stream aims to

produce more informative features than those produced for individual audio frames, whilst
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generating significantly less data”. Moreover, they perform an evaluation of segmentation

techniques, concluding that event-level segmentation methods based on an onset detection

function outperform fixed-length techniques.

2.2.4 Aggregating Features

In order to efficiently perform content-based audio analysis, inducing genre classification,

feature vectors must be aggregated to produce a smaller number of more informative vectors.

A common approach is to summarize the distribution of feature vectors over the whole audio

signal.

Previous works have made use of estimating a Gaussian distribution of feature values.

For example, Lambrou et al. [37], Tzanetakis and Cook [75], and Li et al. [40] use a Gaussian

distribution with diagonal covariance. More recently, some have demonstrated approaches

based on Gaussian mixtures, which are fitted to the distribution of features [45]. The

advantage of this approach is that it can provide a better fit to the empirical distribution.

However, these distributions are over the frame-level feature space, which can have many

dimensions. Furthermore, a single distribution can be efficiently represented as a single

vector and can be used for distribution-based comparisons, vector distance measures, or

classification algorithms [81].

2.3 Single-Label Classification Algorithms

Machine learning has developed a multitude of methods for deriving statistical classifiers

from example instances. These classifiers are first constructed via learning algorithms based

on a set of training instances. A prediction can then be made for an unseen test instance

regarding what class it most likely belongs to. In the traditional task of single-label classifi-

cation each instance is associated with a single class label and a classifier learns to associate

each new test instance with one of these known class labels. In the context of this section,
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we define an instance to be a music piece characterized by a list of audio features and

labeled with an appropriate music genre. In the following, we introduce an overview of

classification algorithms that are widely used in music retrieval.

2.3.1 Gaussian Mixture Models

Gaussian Mixture Models (GMM) are used for estimating the distribution of features. The

basis for using GMM is that the distribution of feature vectors extracted from a class can

be modeled by a mixture of Gaussian densities. For each class we assume the existence of

a probability density function expressed as the weighted sum of simpler Gaussian densities,

called components of the mixture. An iterative algorithm is typically used to estimate the

parameters for each Gaussian component and the mixture weights [41]. Classification can

be performed by modeling each class as a GMM; an instance is then classified by calculating,

for each class (GMM), the probability that the instance is produced by the respective GMM

and predicting the class with the maximum likelihood [52].

2.3.2 k-Nearest Neighbor

The k-Nearest Neighbors (k-NN) classifier is a non-parametric, lazy classifier which has been

commonly used for various tasks in MIR, including genre classification [41, 52]. Lazy classi-

fiers do not form a model of the data prior to classification. Instead, the entire classification

procedure is executed ad-hoc. Training is performed by storing the features of each train-

ing instance. A test instance can then be classified by calculating the distance between its

features and those of the training instances. The class label of the testing instance can be

determined by the class that occurs most frequently among the k nearest neighbors’ [47].

There are a variety of distance metrics that can be used to calculate the distance between

features of two instances. For example, Euclidean distance is the most commonly used

metric. However, it is sometimes more appropriate to use alternatives, such as Manhattan
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distance, Mahalanobis distance, or Tanimoto distance [47].

2.3.3 Support Vector Machine

Support Vector Machines (SVM) are an efficient training algorithm that can represent com-

plex, non-linear functions. They have been successfully applied in pattern recognition and

are commonly used in genre classification [45, 50, 85].

In essence, SVMs search for a hyperplane that separates the positive data points and

the negative data points with maximum margin. If the data are not linearly separable in

the feature space, they can be projected into a higher dimensional space by means of a

kernel function, which maps a lower-dimensional space to a higher-dimensional one where a

hyperplane can be used to effectively discriminate between data points. The most popular

kernel functions are polynomials of various degrees, radial-basis functions, and sigmoid

functions.

2.3.4 Decision Trees

Decisions Trees are one of the most popular classification methods in statistical pattern

classification. In general, a decision tree corresponds to a set of classification rules that

predict the class of an instance based on specific characteristics of its features. Classification

is performed using a divide-and-conquer strategy where complex decision functions are

broken down into a series of simple decisions.

A decision tree for a classification task produces a hierarchy of if-then rules, which

can be examined in order to gain insight into the classification process. These rules are a

natural way of thinking, making decision tree classification much more human-meaningful

than other classification algorithms.
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2.4 Single-Label Classification on Music

In this section we briefly review related works in the area of automatic music classification

and focus on single-label approaches.

Berstra et al. [8] explore the effects of segment size on classification accuracy. They

use a variety of frame sizes and analyze the results for evidence that certain segment sizes

work better than others. A supervised learning algorithm for classifying music, based on an

ensemble classifier ADABOOST, is presented. The input music is initially partitioned into

short frames. Features, such as MFCCs, ZCRs, Spectral Centroid, Spectral Rolloff, etc., are

then extracted from each frame. After this, non-overlapping blocks of consecutive frames are

grouped into segments. Each segment is summarized by fitting independent Gaussians to

the features. The resulting means and variance are then input to the classifier. An “optimal”

segment size is experimentally determined and the evaluation of the classification accuracy

is performed using a data set consisting of 1000 30-second music pieces labeled with one of

the ten genres.

Tzanetakis et al. [76] describe a Gaussian classifier for the automatic genre classification

of music and propose a set of features for representing texture, instrumentation and rhyth-

mic structure. To evaluate the performance on the proposed feature set, the classifier is

trained and evaluated using audio datasets collected from radio broadcasts, compact disks

and the Internet. The mean and standard deviation of the features are calculated over a

texture window, consisting of 40 analysis windows. The dataset consists of 50 audio clips,

each 30-seconds long. The classification accuracy is better for the proposed feature set than

any randomly generated ones.

Pampalk et al. [56] demonstrate that the performance of genre classification can be

improved by combining spectral similarity with complementary information, in particular,

fluctuation patterns. This is evaluated using a nearest neighbor classifier and four music

collections with a total of approximately 6000 pieces. Improvements in classification ac-

curacy are reported for only one of the four collections. It is suggested that this confirms
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the claims by Aucouturier and Pachet [2] who infer the existence of a “glass ceiling” which

cannot be surpassed without taking cognitive processing at a higher level into account. In

addition, using an artist filter is recommended to ensure that artists in the test set are

not present in the training set; otherwise, genre classification might transform into artist

identification.

Xu et al. [85] present and demonstrate an automatic classification approach for musical

genres using a multi-layer support vector machine. They consider features that are related

to temporal, spectral and cepstral domains. The selected features include ZCR, MFCCs,

etc. A dataset consisting of 100 music samples collected from compact disks and the Internet

are used for experiments and divided into four major genres: classical, jazz, pop and rock.

Different features and support vectors are employed for separate layers in the classifier.

In the first layer, a music piece is classified into either pop/classical or rock/jazz. In the

second layer, further classification is performed between pop and classical or between rock

and jazz. Experiment results illustrate that the multi-layer classifier has good classification

performance and is more advantageous than Euclidean distance-based methods, such as

k-NN, and other statistical learning methods.

For more discussions on genre classification, the interested reader is referred to [62].

2.5 Multi-Label Classification Algorithms

Different from traditional single-label classification where each object belongs to only one

class, multi-label classification deals with problems where an object may belong to more

than one class. That is, multi-label classification algorithms assign one or multiple classes

to an instance simultaneously. These algorithms can be grouped into two categories as

proposed in [67]: (1) problem transformation methods, and (2) algorithm adaptation meth-

ods. Problem transformation methods transform a multi-label classification problem into

one or more single-label classification problems while algorithm adaptation methods extend

traditional single-label classifiers to handle multiple labels directly. Below, we review a set
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of multi-label classification algorithms.

2.5.1 Label Powerset

Multi-label classification can be decomposed to a conventional classification problem by

considering each unique set of class labels as one single class [69]. This approach is referred

to as label powerset and is a simple but effective problem transformation method. It has

the advantage of taking label correlations into account. Given a new instance, a selected

single-label classifier outputs the most probable class, which is a set of labels. However, it

is challenged by domains with a large number of labels and training instances [70].

2.5.2 Binary Relevance

Binary relevance is a popular problem transformation approach where a separate binary

classifier is trained for each label, i.e., it trains |L| binary classifiers C1, · · · , C|L|, where

L = {l1, l2, · · · , lN} is the finite set of labels in a multi-label classification task. Each

classifier Cj is responsible for predicting the presence or absence of each corresponding

label lj ∈ L. When classifying a new instance, this approach outputs the union of the

labels that are predicted by the |L| binary classifiers [64, 69]. Binary relevance is simple to

implement and has been used as a baseline throughout the multi-label literature. Although

it is has a linear complexity with respect to the number of labels, an obvious disadvantage

of this approach is that it ignores correlations and interdependencies between labels. [27].

2.5.3 Multi-label k-NN

A number of multi-label classification approaches have been based on the traditional k-

NN (discussed in Section 2.3.2) algorithm. For example, Multi-label k-NN (ML-kNN, for

short) [86] is an instance-based adaptation of the kNN algorithm for multi-label data. The
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algorithm identifies, for each unseen test instance, the k nearest neighbors in the training

set. The maximum a posteriori probability principle is utilized to determine the label set of

the test instance, based on prior and posterior probabilities for the frequency of each label

from the k nearest neighbors [69]. This method is shown to perform well in practice and

outperforms some state-of-the-art classification approaches [64, 86].

2.5.4 Instance Based Logistic Regression

Cheng and Hüllermeier [14] present another approach to instance-based classification that

can be used for both general and multi-label cases. It considers the labels of neighboring

instances as features of an unseen instance and reduces instance-based learning to logistic

regression. The approach allows one to take into consideration interdependencies among

different labels for multi-label classification. The approach is shown to improve upon some

existing multi-label classification approaches, in particular, ML-kNN, which is considered

state-of-the-art in multi-label classification.

2.5.5 Random k-Labelsets

To deal with the problems inherent to Label Powerset, a variety of algorithms have been

proposed. One approach is Random k-Labelsets [70, 72]. This approach constructs an

ensemble of label powerset classifiers, each of which is trained using a different small ran-

dom subset of labels. This approach has the advantage of taking label correlations into

account while avoiding the problems associated with label powerset when a large number

of labels and training instances are used [69]. However, to get “near-optimal” performance,

appropriate parameters in the approach must be optimized. When the number of training

instances is insufficient, this can be difficult.
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2.5.6 Calibrated Label Ranking

Fürnkranz et al. [27] propose an efficient pairwise method for multi-label classification re-

ferred to as Calibrated Label Ranking. This approach performs classification by introducing

an artificial calibration label that, in each instance, separates the relevant labels from the

irrelevant ones. An additional L binary classifiers approximating the standard binary rele-

vance problem are required to calibrate this label at training time. The key idea is to add

an additional label to the original label set which is interpreted as a “neutral element”. This

approach has been shown to perform well against other multi-label classification approaches

and has become a heavily cited work. It is important to note that calibrated label ranking is

an extension of the ranking by pairwise comparison scheme (RPC), which obtains a ranking

by counting the votes received by each label [34].

2.5.7 Hierarchy of Multi-label Classifiers

High dimensionality of label space may pose challenges for a multi-label classification al-

gorithm. For example, the computational cost of training a multi-label classifier may be

strongly affected by the number of labels. Tsoumakas et al. [68] describe an algorithm, re-

ferred to as Hierarchy of Multi-label Classifiers (HOMER), for effective and computationally

efficient multi-label classification in domains with many labels. The approach constructs

a hierarchy of multi-label classifiers, each dealing with a much smaller set of labels. Its

efficiency is due to splitting up the label set using a modified k-means clustering algorithm

and handling each subset individually [59]. It is shown that this approach provides more

accurate predictions than Binary Relevance in less time [68].

2.6 Multi-label Evaluation

In single-label classification, predictive performance can be calculated by the traditional

accuracy measure, where each test instance is either correct or incorrect, and performance
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is given by the number of correctly classified test instances relative to the total number of

test instances. However, multi-label classification requires different evaluation measures. In

the following, we review a set of evaluation measures proposed in literature that will be

used in our work. For consistency, we use the same notation as used in [86].

Let X denote the domain of instances (D) and let Y = {l1, l2, · · · , lN} be the finite set

of labels (L). We assume that a multi-label classifier induces an ordering of the possible

labels for a given instance. That is, the output of the classifier is a real-valued function of

the form f : X × Y → R. It is supposed that, given an instance xi ∈ X and its associated

label set Yi ⊆ Y, a successful classifier will output larger values for labels in Yi than those

not in Yi. That is, f(xi, y1) > f(xi, y2) for any y1 ∈ Yi and y2 /∈ Yi.

The function f(·, ·) can be transformed to a ranking function rankf (·, ·) which maps the

output of f(xi, y) for any y ∈ Y to {l1, l2, · · · , lN} such that if f(xi, y1) > f(xi, y2) then

rankf (xi, y1) < rankf (xi, y2). A corresponding multi-label classifier h(·) can be derived

from the function f(·, ·) by setting h(xi) = {y|f(xi, y) > t(xi), y ∈ Y}, where t(·) is a

threshold function.

2.6.1 Example-based

Several measures have been proposed that are calculated based on the average difference

of the actual and the predicted set of labels over all test examples while others decompose

the evaluation process into separate evaluations for each label, which they subsequently

average over all labels. Tsoumakas et al. [69] refer to the former as example-based and the

latter as label-based evaluation measures. Below we present a set of example-based measures

including Accuracy, Recall, Precision, F1, and Hamming Loss.
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Accuracy, Recall, Precision, F-measure

The following measures are related to the predicted and original labels for each instance

in the testing set. That is, they are discussed on a per instance basis and the aggregate

value is an average over all instances. The bigger the value of each measure, the better the

performance.

Accuracy(h) =
1

|D|

|D|∑
i=1

|Yi ∩ h(xi)|
|Yi ∪ h(xi)|

Recall(h) =
1

|D|

|D|∑
i=1

|Yi ∩ h(xi)|
|Yi|

Precision(h) =
1

|D|

|D|∑
i=1

|Yi ∩ h(xi)|
|h(xi)|

F −measure(h) =
1

|D|

|D|∑
i=1

2|Yi ∩ h(xi)|
|h(xi)|+ |Yi|

Hamming Loss

Hamming Loss computes the percentage of labels that are misclassified, i.e. a label not

belonging to the instance is predicted or a label belonging to the instance is not predicted [63,

86]. The smaller the value of HammingLosss(h), the better the performance. Hamming

Loss is calculated as

HammingLosss(h) =
1

|D|

|D|∑
i=1

1

|L|
|h(xi)∆Yi|,

where the ∆ operator stands for the symmetric difference between two sets and corresponds

to the XOR operation in Boolean logic [67].

2.6.2 Label-based

Any known measure for binary evaluation can be used here, such as accuracy, precision,

and recall. The calculation of theses measures for all labels can be achieved using two

averaging operations, called macro-averaging and micro-averaging [69]. These operations are

26



typically considered for averaging precision, recall, and their harmonic mean (F -measure)

in information retrieval tasks.

Consider a binary evaluation measure M(tp, tn, fp, fn) that is calculated based on the

number of true positives (tp), true negatives (tn), false positives (fp), and false negatives

(fn). Let tpλ, fpλ, tnλ, and fnλ be the number of true positives, false positives, true

negatives, and false negatives after binary evaluation for a label λ. The macro-averaged

and micro-averaged versions of M are calculated as:

Mmacro =
1

|L|

|L|∑
λ=1

M(tpλ, fpλ, tnλ, fnλ),

Mmicro = M

 |L|∑
λ=1

tpλ,

|L|∑
λ=1

fpλ,

|L|∑
λ=1

tnλ,

|L|∑
λ=1

fnλ

 .

Note that micro-averaging has the same result as macro-averaging for some measures,

such as accuracy, while it differs for other measure, such as precision and recall. While

the previous evaluation measures are based on the multi-label classifier h(·), the remaining

measures are defined based on the real-valued function f(·, ·) which concerns the ranking

quality of different labels for each instance.

2.6.3 Ranking

Average Precision

Average Precision evaluates the average fraction of labels ranked above a particular label

y ∈ Y which are actually in Y . This measure is frequently used for the evaluation of

information retrieval tasks [63]. The bigger the value of AvgPrecisions(f), the better the

classification performance.

AvgPrecision(f) =
1

|D|

|D|∑
i=1

1

|Yi|
∑
y∈Yi

|{y′|rankf (xi, y
′) ≤ rankf (xi, y), y′ ∈ Yi}|
rankf (xi, y)
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One-Error

One-Error calculates the number of times the top-ranked label is not in the label set of

an instance [63, 86]. That is, it determines whether the top-ranked label is relevant and

ignores the relevancy of all other labels [27]. The smaller the value of OneErrors(f), the

better the performance. One-Error is calculated as

OneError(f) =
1

|D|

|D|∑
i=1

J[arg max
y∈Y

f(xi, y)] /∈ YiK,

where for any predicate π, JπK equals 1 if π holds and 0 otherwise [86].

Coverage

Coverage measures how far we need, on average, to go down the list of labels in order to

cover all the possible labels assigned to an instance. The goal of coverage is to assess the

performance of a classifier for all the possible labels of instances [63, 86]. The smaller the

value of Coverages(f), the better the performance.

Coverage(f) =
1

|D|

|D|∑
i=1

(max
y∈Yi

rankf (xi, y)− 1)

Ranking loss

Ranking loss computes the average fraction of label pairs which are not correctly ordered,

i.e., label pairs that are reversely ordered for an instance [86, 27]. The smaller the value of

RankingLosss(f), the better the performance. Ranking Loss is calculated as

RankingLoss(f) =
1

|D|

|D|∑
i=1

1

|Yi||Yi|
|{(y1, y2)|f(xi, y1) ≤ f(xi, y2), (y1, y2) ∈ Yi × Yi}|,

where Y denotes the complementary set of Y in Y.
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2.7 Multi-Label Classification on Music

As of recently, multi-label classification methods have been used to categorize music into

emotions. The classes representing emotions can be labeled in different ways. For instance,

Dellaert et al. [20] classify emotions (in speech) into 4 classes: happy, sad, anger, and

fear. In addition, Li and Ogihara [39] use 13 classes including labels such as frustrated,

passionate, dark, depressing, dramatic, and etc.

Wieczorkowska et al. [84] address the problem of multi-label classification of emotions

using a modified k-NN algorithm. A set of 875 audio samples, 30 seconds each, manually

labeled into 13 classes of emotion are used for their experiment. The modified k-NN al-

gorithm aims at taking multiple labels into account. Therefore, the algorithm returns a

set of labels for each neighbor of a test instance. In addition, Trohidis et al. [66] evaluate

four multi-label classification algorithms for the purpose of detecting emotions in music.

They classify emotions into 6 main clusters: amazed-surprised, happy-pleased, relaxing-

calm, quiet-still, sad-lonely, and angry-fearful. Experiments are conducted on a set of 593

samples, from which a 30-second excerpt is extracted and annotated with a set of emo-

tions. It is claimed that the overall predictive performance is high and encourages further

investigation of multi-labeling methods.

Multi-label classification methods have also been used for the purpose of automatic tag

annotation of music. These tags can be any semantically meaningful words and can rep-

resent a variety of different concepts including genre, instrumentation, geographic origins,

social conditions, and emotions. Automatic tag annotation of music learns a relationship

between acoustic features and words from a dataset of labeled audio tracks [51]. The result-

ing trained model can retrieve audio samples based on lists of tags and annotate unlabeled

ones. For example, Wang et al. [79] study the problem of combining user-generated tags

and music content for artistic style classification. They investigate the effectiveness of using

tags and audio content separately for clustering, and propose a novel language model that

makes use of both of them. Results show that tag features are more effective than music
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content for style clustering, and the proposed model can marginally improve clustering per-

formance by combining tags and music content. In addition, Wang et al. [80] propose a

multi-label music style classification approach, called Hypergraph integrated Support Vector

Machine, which can integrate both music content and music tags for automatic music style

classification. The effectiveness of the approach is demonstrated using a set of experiments

on real world data.

Pachet and Roy [55] address the problem of improving multi-label analysis of music

using a correction scheme. In this scheme, an extra layer of classifiers is built to exploit

redundancies between labels and correct some of the errors coming from the individual

classifiers. Statistical redundancies in the training dataset are used to correct individual

classifier errors. A series of experiments are conducted to validate the approach using a

large-scale database of music and metadata. Each music piece is annotated with a set of

labels from 16 categories representing a specific dimension of music description. Categories

include style, genre, dynamics, tempo, metric, mood, character, etc. The experiments show

that the approach brings statistically significant improvements and is worth considering for

multi-label classification of music.

2.8 Summary

Music genre classification is a high-level task in Music Information Retrieval. It has wide

applications in the management of music repositories, including music categorization, orga-

nization, and browsing. However, to the best of our knowledge, there has been limited work

regarding multi-label genre classification on music. In the following chapters, we study this

problem from perceptual and algorithmic perspectives.
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Chapter 3

Perception Based Multi-Genre

Labeling

In this chapter we explore the multi-genre-labeling behavior of individuals by conducting a

series of perceptual experiments1. Given a set of excerpts from a music piece, individuals are

asked to classify each excerpt and assign to it a single genre class. The purpose of this study

is to investigate inter-song similarity and dissimilarity, with regard to music genre, i.e., how

(dis)similar is a song to itself at different time intervals. This stands in contrast to other

human genre-labeling studies which compare the performance of each individual to some

ground-truth. This distinction is important as the evaluation of any genre-labeling process

is intrinsically difficult. Recall that the ground-truth against which any genre-labeling is

compared is subjective and ambiguous [17].

This chapter is organized as follows. Section 3.1 explains the preparation of our ex-

periments, including the description of the participants, the music used, the experiment

environment, etc. In Sections 3.2 and 3.3 we analyze and discuss the results of our experi-

ment. Section 3.4 summarizes the chapter along with some remarks.

1A preliminary version of this chapter is reported in [61].
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3.1 Experiment Setup

Previous human classification experiments explore the genre-labeling behavior of individuals

by presenting them with a short excerpt of audio and asking them to categorize it into one

of predefined genre class labels.

In this section we describe the setup for our human classification experiments where

participants are asked to classify multiple audio excerpts, from different sections of an audio

piece, according to their perceived genre. We desire to gain insight into how participants

label a full-length piece by breaking it into a series of smaller sections with a finer temporal

resolution.

From this study, we expect to find a large diversity in the responses from our individuals

as the relative knowledge, social, and cultural background of them will give rise to different

answers. As described by Craft et al. [17], “any unity of response is [due to] the widespread

agreed nature of the musical cues to genre of particular pieces, but the expected response

from a group of individuals will be a diversity”.

3.1.1 Dataset

The Magnatune dataset, licensed as creative commons [56], is a free collection of full-length

polyphonic tracks which are unequally distributed over eight musical genres, including Clas-

sical, Jazz, World, Electronic, Metal, Pop, Rock, and Punk. Each track in this dataset is

annotated with one of eight musical genres according to the Magnatune website2.

For our experiment we use a variant of the Magnatune dataset [21], denoted as Dv,

which consists of approximately 700 tracks. The eight genres, presented in Table 3.1, are

used to represent the diversity of musical styles in the dataset. This collection was used as a

training set for the International Society for Music Information Retrieval genre classification

contest in 2004 [16, 21] and has been used for a variety of experiments in content-based

music analysis.

2http://www.magnatune.com.
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Genre Number of Tracks

Classical 320
World 122
Electronic 115
Rock 95
Metal 29
Jazz 26
Punk 16
Pop 6

Table 3.1: Distribution of songs in Dv.

Although genres can lose their prominence or change their characteristics over time [48],

which can necessitate re-annotation of ground-truth [29], this collection is considered rep-

resentative of mainstream music genres at the time of the study. The distribution of songs

in Dv is shown in Table 3.1.

3.1.2 Stimuli

A total of 23 audio tracks, defined as Dt (⊂ Dv), are selected for our study. For each of the

eight genres included in Dv, we attempt to select three or four tracks that we subjectively

feel have the characteristic of the respective genre. Due to the unbalanced distributions of

songs in Dv [16, 56], some genres are represented using only two tracks in Dt. As discussed

by Gjerdingen and Perrott [29], “ when an artist is strongly associated with one genre,

that association may trump musical distinctions that would otherwise indicate a different

genre”. For this reason our selection criteria is also based on choosing tracks and artists

that are not common in mainstream music at the time of this study.

From each track in Dt, denoted as T , we manually extract a set of 30-second audio clips,

CT , based on what we subjectively feel are drastic changes in terms of the sound texture and

global timbre. We choose a clip length of 30-seconds as it is common in MIR. For example,

Barrington et al. [4] adopt a clip length of 30-seconds when performing human evaluation

of music recommendation systems, while Lippens et al. [42] also use the same length clips
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to perform a comparison of human and automatic musical genre classification. Typically,

30 seconds is used as it is sufficiently short to make evaluation trials manageable.

For the purpose of this study we define 2 ≤ |CT | ≤ 4, i.e., we extract a minimum of

two clips and a maximum of four from each track T ∈ Dt. In order to represent different

sections and structures of T , we attempt to extract clips from the beginning, middle, and

end of the track. A total of 63 30-second audio clips, denoted as Dc, are extracted from the

tracks in Dt.

3.1.3 Participants

As discussed by Levitin [15], to compensate for large individual differences in human-

involved experiments, it is desirable that a group of 30 to 100 individuals participate.

Additionally, for an assigned labeling to be considered reliable, an individual must be cog-

nizant of the stylistic characteristics of each genre in the dataset [17]. For these reasons,

our goal is to include a large number of participants who are familiar with the eight genres

in our dataset.

A total of 101 participants majoring in psychology, music, and computer science volun-

teered for this study. There are 29 males and 72 females, with a mean age of 21.1 years.

83 of them report listening to music on a frequent basis while 15 report occasionally and

3 rarely. The participants in this study come from a wide musical background: 49% have

played an instrument (for a mean length of 9.13 years), 58% have taken formal music lessons,

and 16% have taken music courses at the college or university level.

3.1.4 Experiment Procedure

To ensure accurate and consistent results, each participant is tested on an IBM-compatible

PC using a custom audio player designed to minimize visual distractions. S/he is expected

to listen to a playlist of 63 audio clips, which are randomly ordered with the criteria that
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any two clips from the same track are of maximum distance apart in the playlist. This is to

ensure responses are not influenced by the order in which the stimuli is presented [15]. The

participants are instructed to indicate which genre of music they consider best represent

the clip by clicking one of eight genre buttons displayed on screen. After every five music

clips, 30-seconds of silence is presented to prevent audio fatigue [15]. At any time during the

testing individuals are given the opportunity to change their genre selection for a particular

clip.
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Figure 3.1: Unanimity of dataset Dt.

3.2 Experiment Results

In this section we report the results obtained in our human classification experiment. We

follow an approach similar to other human genre-labeling studies and first report the clas-

sification accuracy.

For each individual we compare her/his selected genres with the labels defined by the

Magnatune website. We observe that for approximately 65% of all the votes, the participants

and Magnatune agree on the same genres. However, this does not imply that the other 35%

are incorrect, since genre classification of music involves a degree of subjectivity [29]. We
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now examine the results from our study with regard to inter-song genre similarity and

dissimilarity.

Using a notation similar to the one introduced by Lippens et al. [42], for each track

T ∈ Dt, we denote QT,g as the number of votes for a given genre g. To calculate QT,g, we

sum up the total number of votes for genre g over all the individual clips from track T . We

then define QT to be the total number of genre votes for a given track T . For each track

T we consider the genre with the maximum number of votes to be the elected genre and

set QT
max to be this number. We also calculate QmaxT /QT to represent the unanimity, or

consensus, of the elected genre from track T . Figure 3.1 shows the unanimity of votes for

each track in Dt.
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Figure 3.2: Distribution of votes for Track
T8 (High Unanimity).
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Figure 3.3: Distribution of votes for Track
T10 (Low Unanimity).

From Figure 3.1 we observe that there is a degree of uncertainty involved in the classi-

fication of dataset Dt as the unanimity of votes range from 33% to 85%. However, this is

not the case for some of the tracks. For example, Figure 3.2 shows the distribution of votes

for track T8. We observe that the votes are primarily centered around a small number of

genres, e.g., Jazz.

When we analyze the distribution of votes for clips Dc = {1, 2, · · · , 63}, as shown in

Figure 3.4, and examine the clips for track T8, where CT8 = {19, 20, 21}, we find that the

majority of them are voted for in a similar way. Figures 3.4 and 3.5 reveal the distribution
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Track Clip Number(s)

1 1,2
2 3,4
3 5,6
4 7,8,9,10
5 11,12,13
6 14,15,16
7 17,18
8 19,20,21
9 22,23,24
10 25,26,27,28
11 29,30,31
12 32,33,34,35

Track Clip Number(s)

13 36,37,38
14 39,40,41
15 42,43,44
16 45,46
17 47,48
18 49,50
19 51,52,53,54
20 55,56,57
21 58,59
22 60,61
23 62,63

Table 3.2: Set of clips extracted from each track in Dt.

of votes for each clip in Dc. Only those genres with a consensus of ≥ 10% are reported in

the figures for illustration purposes. Table 3.2 reports the set of clips, extracted form each

track in Dt, used to construct Figures 3.4 and 3.5, for cross reference.

Although we find cases where individuals have a high degree of agreement on some

genres, there are instances where they do not and the distribution of votes are spread over

multiple genres. For instance, Figure 3.3 shows an example distribution of votes for a track

with low unanimity, i.e., the votes are distributed among a number of different genres. This

result supports our expectation of finding a large diversity in the responses of individuals.

Track Elected Genre(s)

1 (Classical) Classical
2 (Classical) Classical, World
3 (Classical) Classical, World
4 (Electronic) Electronic, Pop, Rock
5 (Electronic) Electronic, World
6 (Electronic) Pop, World
7 (Jazz) Jazz, World
8 (Jazz) Jazz
9 (Metal) Metal, Rock
10 (Metal) Classical, Metal, Rock
11 (Metal) Metal, Rock
12 (Pop) Electronic, Pop

Track Elected Genre(s)

13 (Pop) Electronic
14 (Punk) Rock, Punk
15 (Punk) Rock, Punk
16 (Punk) Rock, Metal
17 (Rock) Jazz, Pop
18 (Rock) Jazz, Pop
19 (Rock) Classical, Pop, Electronic
20 (World) Electronic, World
21 (World) Electronic, World
22 (World) World
23 (World) World

Table 3.3: Elected genres for each track in Dt
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Table 3.3 shows the elected genre(s), based on Figures 3.4 and 3.5, for each song in Dt.

We can see that different sections of a music piece can be classified into different genres

and stand in contrast to the rest of the piece [5]. This shows that assigning only a single

genre label to an entire music piece can be an ambiguous process. It is important to note

that the elected genre for each clip is calculated in the following manner. For each clip, we

collect the number of votes for a genre assigned to it. Then, we consider the genre with the

maximum number of votes to be elected.

3.3 Discussions

There are a number of interesting results from our genre classification experiment. However,

we limit our discussions to those results and issues pertinent to perceptual and automatic

genre classification.

Genre Consensus: We have observed that there is little ambiguity in the votes for some

of the tracks. Consequently, those tracks are easier to classify using a single label. To help

explain this, Gjerdingen and Perrott [29] describe that “it may be helpful to think of an

abstract space of genres. In that space, the location of Classical might be off by itself, a

considerable distance from any popular genre”. From this description, certain genres are

intrinsically close to others in the abstract genre space while some are not.

A genre that is derived or influenced by others will reside closer to its influencing genres.

Therefore, a music piece which is a composition of multiple artistic styles will result in

confused boundaries in the abstract genre space, as different sections of it may sound like

other genres, leading to a lower unanimity.

Length of Audio Excerpt: It has been a common practice for automatic genre classifi-

cation approaches to evaluate a piece of music based on a random 30-second excerpt [41,

75, 76, 82, 83]. While this is efficient it is not effective as it can be a source of inaccuracy
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and confusion when trying to classify a corpus of music. One critical problem is how repre-

sentative a randomly selected excerpt is. Performance is highly dependent on the dataset

and, in particular, on the individual audio clips used for training and classification.

Furthermore, using the genre label associated with the entire track as the ground-truth

for a random 30-second excerpt will result in varying performance. For instance, consider

T19 from Table 3.4. Although the entire track has been annotated by Magnatune as Rock,

classifying any of the four clips will result in a predicted genre different from the ground-

truth. This result is confirmed by the participants in our study who have shown the track

to be a composition of multiple genres for different sections.

Track Clip Clas. World Elec. Rock Metal Jazz Punk Pop

19 (Rock)

51 76.53% 4.08% 1.02% 1.02% 0.00% 2.04% 1.02% 14.29%
52 11.00% 2.00% 0.00% 8.00% 0.00% 14.00% 0.00% 65.00%
53 12.00% 11.00% 0.00% 2.00% 0.00% 5.00% 1.00% 69.00%
54 19.80% 5.94% 49.50% 0.99% 0.00% 10.89% 0.99% 11.88%

Table 3.4: Distribution of votes for T19.

To enhance performance, we suggest that genre classification approaches take the en-

tirety of a music piece into consideration. Although this might bring new challenges, we

consider that this is a direction which should be further explored.

Multi-genre Labeling: Currently, genre classification paradigms are usually designed for

strict classification, i.e., one excerpt must belong to one genre. This type of classification

works well when genre boundaries are known and have clear distinctions. However, artists

mix and incorporate different musical styles to create music, which can result in fuzzy genre

boundaries [62]. The problem then becomes more challenging since standard classification

approaches may not be sufficient.

New directions are needed to help deal with the ambiguity of classifying audio using only

a single genre descriptor; it may be hard to assign unambiguously one label to one music

piece. To address this problem and offer a realistic classification approach which is close to
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Genre1, Genre2, Genre3, ...

Figure 3.6: Multi-label Classification

the human experience, one needs to consider the assignment of multiple or compound genre

labels to a music piece [17, 62]. This methodology is illustrated in Figure 3.6.

Genre1 Genre1, Genre2 Genre3 Genre2, Genre3

Figure 3.7: Segmented Multi-label Classification

However, as evident from our study, different sections of an audio recording can belong

to a variety of genres. Therefore, classification approaches should ideally annotate each

section of a music piece with a set of labels [44, 48]. Figure 3.7 depicts this scenario.

We conjecture that multi-label classification is a step in the right direction for tackling

the issues of automatic genre classification. Although it suffers from difficulties similar to

current classification approaches, such as the acquisition of accurate ground-truth, it has

the potential of overcoming current performance limitations and offering a classification

approach which is closer to the human experience.

3.4 Summary

The study in this chapter has demonstrated, using a series of perceptual experiments, that

a music piece can be considered a composition of different genres. More specifically, the

participants in our study consistently indicate that different portions of a music piece can

be classified into different genres. As musical genres mix, there is an increasing need for
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genre classification to consider multi-label techniques. Furthermore, there is a strong need

to consider the analysis of entire music pieces for the purpose of genre classification.

In the next chapter, we design a series of computational experiments to evaluate a set

of multi-label classification approaches. Our goal is to support our speculation that music

genre classification is a multi-label process.
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Chapter 4

Multi-Label Genre Classification

Previous genre classification approaches are concerned with learning from a set of instances

that are associated with a single genre label. However, a music piece may belong to an un-

restricted set of musical genres, making single-label classification problematic, as evidenced

from our study in Chapter 3.

In this chapter, we design a series of experiments to evaluate a set of multi-label clas-

sification algorithms. The goal of this work is to support our speculation that music genre

classification is a multi-label process, in which multiple labels can be assigned to a music

piece, and to show which algorithms are more suitable for multi-label genre classification.

The chapter is organized as follows. Section 4.1 introduces the area of multi-label

classification. Section 4.2 presents our experimental setup for the evaluation of multi-

label genre classification including, dataset preparation and feature extraction parameters.

Experiment results are presented in Section 4.3. Finally, Sections 4.4 and 4.5 conclude the

chapter with some discussions.

4.1 Introduction

Multi-label classification is the task of assigning one or multiple classes to an instance si-

multaneously, i.e., instances are associated with a set of labels Y ⊆ L, where L (|L| > 1)
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is a set of disjoint class labels. This makes multi-label classification more difficult than

traditional single-label classification. Despite this, multi-label classification has been in-

creasingly used by current applications, including semantic classification of images, protein

function classification, etc. [69] The initial work along this direction is motivated to han-

dle the ambiguous situation in text categorization, where each document may belong to

multiple topics simultaneously [86].

Despite the volume of previous results on multi-label classification, to the best of our

knowledge, there has been limited work on the application of them to music genre classifi-

cation. Lukashevich et al. [44] present a two-dimensional approach for genre classification.

The multi-label classification problem is decomposed into multiple single-class problems.

The novelty of the approach lies in the combination of segment-wise and domain-specific

genre classification. The music collection used for testing is comprised of 430 full-length

music pieces from 16 world genres. However, as described by Zhang and Zhou [86], decom-

posing multi-label problems into multiple binary classification problems does not consider

the correlation between the labels of each instance. Therefore, the expressive power of such

an approach can be limited.

In the following sections, we show our initial investigations on the application of multi-

label classification algorithms on music genres.

4.2 Experiment Setup

4.2.1 Datasets

There are a variety of benchmark datasets available for multi-label classification in various

domains. However, no dataset exists specifically for the task of multi-label genre classifica-

tion on music. Current datasets used in the evaluation of genre classification are comprised

of music pieces annotated with a single genre. Therefore, for the purpose of our experiment,

we derive three multi-genre datasets from the Magnatagatune collection [38].
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Magnatagatune is a collection of approximately 25,000 clips of music, each annotated

with a combination of 188 different tags including tempo, mood, and style. The annotations

are collected through an on-line game, referred to as “TagATune”, developed to collect tags

for music and sound clips. Each clip, 29 seconds in length, is an excerpt of a music piece

published by Magnatune. All of the tags in the dataset have been verified, i.e., a tag

is associated with a clip only if it is generated independently by more than two players.

Moreover, only those tags that are associated with more than 50 clips are included in the

collection.

For our experiment, we are only interested in those clips annotated with musical genres.

A set of 22 genre tags, including examples such as classical, dance, pop, rap, funk, opera,

country, etc, are identified and used to create a subset of the Magnatagatune collection,

referred to as Ds in our following discussions. Ds is created by filtering the Magnatagatune

collection to contain only clips annotated with the set of selected genre tags. In addition, a

clip is selected only if it is annotated with a minimum of two genres. A total of 3969 clips

are included in Ds. The following three datasets are further derived from Ds.

The Random dataset, denoted DRa, consists of 1000 clips chosen at random from Ds. No

other selection criteria are used in the creation of the dataset.

The UniqueArtist dataset, denoted DAr, consists of 198 clips derived from Ds. The dataset

is created by randomly selecting a single clip form each artist in Ds. The use of an artist

filter ensures that the artists in the test set are not present in the training set during

classification.

In addition to using an artist filter, we also employ an album filter. The UniqueAlbum

dataset, denoted as DAl, consists of 375 clips derived from Ds. The dataset is created by

randomly selecting a single clip form each album in Ds. Similar to the artist filter, the use

of an album filter ensures that clips from the same album are not present in the training

and testing sets simultaneously.

Table 4.1 displays the datasets and their associated statistics. The label cardinality
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Dataset (D) Instances (|D|) Labels (|L|) Cardinality (LC) Density (LD)

Random 1000 22 2.278 0.1035
UniqueArtist 198 22 2.166 0.0984
UniqueAlbum 375 22 2.212 0.1005

Table 4.1: Multi-genre music datasets and their statistics

(LC) of a dataset D is the average number of labels each instance has in D and is used

to indicate the number of alternative labels that characterize the instances in a multi-label

training dataset [67]. Let D be a multi-label dataset consisting of |D| multi-label examples

(xi, Yi) where i = 1, 2, · · · , |D|. Label cardinality is calculated as

LC(D) =
1

|D|

|D|∑
i=1

|Yi|.

The label density (LD) of a dataset D is the average number of labels of the instances

in D divided by the total number of labels |L| [67]. Label density is calculated as

LC(D) =
1

|D|

|D|∑
i=1

|Yi|
|L|

.

Label density takes into consideration the number of labels in the domain. Two datasets

with the same label cardinality but with a difference in the number of labels (different label

densities) might cause different behavior to multi-label classification.

4.2.2 Audio Parameters

Prior to classification, a music piece must be segmented and parameterized. The parameter-

ization of music data can be based on audio features and their changes over time. However,

there is no accepted criteria as which features are best for music classification [8]. Therefore,

we use the following set of features which are commonly employed for genre classification:

MFCC, ZCR, Spectral Centroid, Rolloff, Spectral Flux, and Chroma. See Chapter 2 for a
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discussion on them.

Following a general trend in MIR research, we consider a bag-of-frames approach. That

is, in order to capture the fine-timescale structure of music, such as timbre, features are

extracted from short audio frames. While promising results have been reported for a wide

range of frame sizes for conventional single-label genre classification, we present a system-

atic exploration of the effects of frame size on multi-label classification. For each <dataset,

classifier> pair, we examine the classification performance as we adjust the frame size, fr,

represented as the number of samples collected during a certain time period. Each pair

is evaluated using fr ∈ {256, 340, 512, 1024, 2048, 3200, 4096}, corresponding to approxi-

mately 16ms, 21ms, 32ms, 64ms, 128ms, 200ms, and 256ms, respectively. A total of seven

experiments are performed for each <dataset, classifier> pair.

The process of extracting features from each frame yields a large number of feature vec-

tors. To reduce them to a lower dimensional format, the feature vectors must be aggregated.

Similar to the works by Tzanetaks and Cook [75] and Li et al. [41], frame-level features in

our experiment are compressed into a single set of song-level features by fitting individual

Gaussians to each feature (diagonal covariance among Gaussians). This results in a single

feature vector for each music piece which can then be used for classification.

4.2.3 Multi-label Classifiers

The following multi-label classification algorithms, discussed in Chapter 2, are evaluated

for multi-label genre classification: Binary Relevance (BR), Label Powerset (LP), Random

k-Labelsets (RakEL), Calibrated Label Ranking (CLR), ML-kNN, HOMER, and Instance

Based Logistic Regression (IBLR).

Furthermore, a Decision Tree (DT) and Support Vector Machine (SVM) are used as

base classifiers in BR, LP, CLR, HOMER, and RakEL. A total of 12 classifiers, presented

in Table 4.2, are derived for experimentation. The Mulan [71] open source library for multi-

label learning is used to train each of the classification algorithms using default parameters,
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Classifier Base Classifier Classifier Base Classifier

BR DT HOMER DT
BR SVM HOMER SVM
LP DT RakEL DT
LP SVM RakEL SVM
CLR DT ML-kNN N/A
CLR SVM IBLR N/A

Table 4.2: Multi-label classifiers along with the associated base classifier, where applicable.

e.g., the number of neighbors is set to 10 for ML-kNN and IBLR; the SVM is trained with

a linear kernel and complexity constant equal to one.

A total of 84 classification experiments are performed using 10-fold cross validation for

each dataset presented in Table 4.1, i.e., the dataset is divided into two groups: one used for

training and the other for testing. More specifically, each dataset is divided into 10 subsets

of (approximately) equal size. Classification is then performed 10 times, each time leaving

out one of the subsets from training and using it for testing. For each of the 12 classifiers,

seven experiments are conducted using different frame sizes. A total of 252 experiments are

conducted on the Random, UniqueArtist, and UniqueAlbum datasets, as introduced above.

In order to evaluate the performance of multi-label classification algorithms, different

evaluation measures, as presented below, are employed.

4.2.4 Evaluation Measures

Performance evaluation of multi-label classification requires different measures than those

used in traditional single-label classification. In our experiments, the evaluation measures

we select are as follows: Hamming Loss, One-Error, Coverage, Ranking Loss, and Average

Precision. For discussions on them, see Chapter 2.
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4.3 Experiment Results

In this section, we present the results from our experiments on the three datasets Random

(DRa), UniqueArtist (DAr), and UniqueAlbum (DAl). To reduce the number of figures, we

omit reporting results for the evaluation measure Coverage as it exhibits patterns similar

to Ranking Loss.

4.3.1 Random Dataset

In the first set of experiments, we evaluate the multi-label classifiers using DRa. Table 4.3

shows the comparison of performance over all frame sizes fr; the best result for each measure

is shown in bold face. We note that in the Table 4.3, (↓) indicates better performance when

the result is smaller while, (↑) indicates better performance when the result is bigger. The

frame-level features, calculated for each fr, are used directly for genre classification. The

classifier CLR(SVM) outperforms the other classifiers for all evaluation measures. To our

surprise, LP performs poorly for all evaluation measures, with the exception of Hamming

Loss. Moreover, LP(SVM) performs poorly for One-Error, which might be due to the large

number of labels in the dataset [70].

HamLoss ↓ OneError ↓ Coverage ↓ RankLoss ↓ AvgPrec ↑
BR (DT) 0.079 0.355 8.884 0.218 0.642
BR (SVM) 0.063 0.304 10.497 0.273 0.629
CLR (DT) 0.071 0.243 3.857 0.076 0.767
CLR (SVM) 0.063 0.229 3.588 0.070 0.780
HOMER (DT) 0.095 0.378 7.658 0.187 0.636
HOMER (SVM) 0.070 0.296 7.573 0.176 0.690
IBLR 0.071 0.285 4.093 0.087 0.748
LP (DT) 0.092 0.493 10.953 0.324 0.542
LP (SVM) 0.070 0.973 19.496 0.822 0.135
MLkNN 0.067 0.255 3.990 0.082 0.761
RAkEL (DT) 0.070 0.255 6.523 0.145 0.729
RAkEL (SVM) 0.063 0.259 9.949 0.246 0.665

Table 4.3: Average classification performance of DRa for all frame sizes.

In the following, we present the results for each classifier over individual frame sizes.
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For illustration purpose, we only present the six top classifiers that have the best classifica-

tion performance. Figure 4.1 shows the classification performance of CLR, HOMER(SVM),

IBLR, ML-kNN, and RAkEL(DT) using the evaluation measures Average Precision, Ham-

ming Loss, Coverage, and One-Error. Classification performance is reported for frame sizes

fr chosen from {256, 340, 512, 1024, 2048, 3200, 4096}.
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Figure 4.1: Classification performance using the DRa dataset for different frame sizes

We first observe that all classifiers tend to follow the same pattern. That is, a decrease

in performance is observed across all measure when fr = 2048 and fr = 4096. Moreover,

IBLR’s performance decreases dramatically for Hamming Loss and One-Error when fr =

4096. It is important to note the performance achieved when fr = 3200. More specifically,

for this frame size, we observe a similar classification performance but with a decreased

experiment running time. Therefore, it might be more advantageous to model the audio

signal using larger frames while at the same time maintaining classification performance.
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Interestingly, all of the classifiers tend to increase in performance and then plateau

when fr = {340, 512, 1024}. Although the variance in folds from the cross validation makes

it difficult to speak of trends, it appears that classification performance is optimal at a

frame size between 340 and 1024 for different classifiers. More specifically, CLR(SVM)

outperforms the others when fr = 512 for a majority of evaluation measures.

We observe that IBLR and ML-kNN perform analogous to CLR(SVM) for a variety of

measures and follow similar patterns. Moreover, we find situations where IBLR outperforms

ML-kNN. This is expected as IBLR has been shown to outperform ML-kNN in previous

works [14].

HOMER has been shown to handle domains with large number of labels more accurately

than Binary Relevance [68]. Although this result is confirmed in our experiments, we find

that it performs poorly as evaluated by Coverage, Ranking Loss, and Average Precision, in

comparison to CLR, IBLR, ML-kNN, and RAkEL. This is surprising as HOMER is designed

to deal with high dimensionality of label space by splitting up the label set. Whether this

is true in general needs further investigation.

fr HamLoss ↓ OneError ↓ Coverage ↓ RankLoss ↓ AvgPrec ↑
CLR(SVM) 512 0.057 0.189 3.206 0.056 0.811
ML-kNN 340 0.058 0.198 3.442 0.064 0.809
IBLR 340 0.059 0.205 3.451 0.065 0.808

Table 4.4: Comparison of CLR(SVM), ML-kNN, and IBLR for DRa

Overall, we observe that CLR(SVM), ML-kNN, and IBLR report the best performance

on DRa. Table 4.4 presents a comparison of these results.

4.3.2 UniqueArtist Dataset

Table 4.5 shows the comparison of multi-label classifiers, averaged over all frame sizes, for

the UniqueArtist dataset, DAr. We find it interesting that for this dataset the average

classification performance of each classifier is lower than the performance on DRa. For

51



example, while CLR(SVM) and CLR(DT) perform well on DRa, we note a decrease in

their classification performance on DAr. Additionally, we notice a performance difference

between IBLR and ML-kNN on this dataset. These results are expected as classification

accuracy can be lower if an artist filter is used [56], as discussed in Chapter 2.

HamLoss ↓ OneError ↓ Coverage ↓ RankLoss ↓ AvgPrec ↑
BR (DT) 0.094 0.466 10.221 0.271 0.545
BR (SVM) 0.070 0.400 12.051 0.341 0.518
CLR (DT) 0.082 0.331 5.074 0.116 0.679
CLR (SVM) 0.071 0.303 4.615 0.104 0.703
HOMER (DT) 0.121 0.520 9.708 0.266 0.508
HOMER (SVM) 0.086 0.399 8.751 0.223 0.601
IBLR 0.104 0.512 6.225 0.160 0.580
LP (DT) 0.107 0.619 12.577 0.384 0.444
LP (SVM) 0.085 0.962 19.024 0.771 0.146
MLkNN 0.080 0.338 5.082 0.118 0.671
RAkEL (DT) 0.085 0.348 8.163 0.200 0.629
RAkEL (SVM) 0.071 0.356 11.441 0.312 0.559

Table 4.5: Average classification performance of DAr for all fr

On average, we observe that CLR(SVM), CLR(DT), and ML-kNN demonstrate good

performance on DAr. As before, CLR(SVM) ranks first in the majority of evaluation mea-

sures while the performance of CLR(DT), IBLR, and ML-kNN varies. We observe that

LP performs poorly, once again, for all evaluation measures. However, for One-Error and

Ranking Loss, LP(SVM) is evaluated better on DAr.

Figure 4.2 shows the performance comparison of the chosen classifiers for each frame size

onDAr. Once again we observe that the classifiers follow a similar trend with regard to frame

size. The classification performance initially increases when fr = 340 and decreases until

fr = 2048. However, the performance peaks for various classifiers, as evaluated for some

measures, when fr = 4096. For instance, CLR(SVM) peaks in performance for Coverage

at a frame size of 4096. We find that the classifiers have an inferior performance when

fr = 2048; a similar result is observed for DRa.

The performance tends to be good for a variety of evaluation measures and classifiers

when fr ∈ {340, 512, 4096}. Specifically, CLR(SVM) outperforms the other classifiers and
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Figure 4.2: Classification performance using the DAr dataset for different frame sizes

achieves the best performance on DAr when fr = 340. It is interesting to note that the

performance of the classifiers on DAr increases for fr = 4096, as compared to DRa, where

an improvement is not reported by all the evaluation measures.

Furthermore, we have a similar observation when fr = 4096 as we do on DRa with

respect to the relation between classification performance and experiment running time.

To our surprise, we find that IBLR does not perform well on DAr. Inadequate results are

reported when compared to CLR, HOMER(SVM), ML-kNN, and RAkEL(DT). This is in

contrast to its performance on DRa, where it produces comparable results to CLR(SVM).

We note that ML-kNN outperforms IBLR for measures of Average Precision, Hamming Loss

and One-Error. This is unexpected as IBLR has been shown to improve upon ML-kNN [14].

In summary, CLR(SVM), CLR(DT), and ML-kNN report the best performance on DAr.

Table 4.6 presents a comparison of the results.
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fr HamLoss ↓ OneError ↓ Coverage ↓ RankLoss ↓ AvgPrec ↑
CLR(SVM) 340 0.067 0.253 4.134 0.090 0.739
CLR(DT) 340 0.075 0.257 4.906 0.108 0.717
ML-kNN 4096 0.076 0.314 4.565 0.102 0.705

Table 4.6: Comparison of CLR(SVM), CLR(DT), and ML-kNN for DAr

4.3.3 UniqueAlbum Dataset

For the final set of experiments we evaluate the multi-label classifiers using the UniqueAlbum

dataset, DAl. Table 4.7 shows the comparison of classifiers, averaged over all fr for DAl.

We observe that for this dataset the average performance of each classifier is lower than its

counterpart on DRa but higher than on DAr. For example, CLR(SVM) achieves an Average

Precision of 0.780 on DRa, 0.703 on DAr, and 0.723 on DAl. On average, CLR(SVM),

CLR(DT), and ML-kNN outperform the other classifiers on DAl while CLR(SVM) achieves

the highest performance.

HamLoss ↓ OneError ↓ Coverage ↓ RankLoss ↓ AvgPrec ↑
BR (DT) 0.092 0.437 10.360 0.276 0.564
BR (SVM) 0.073 0.445 12.127 0.347 0.511
CLR (DT) 0.084 0.334 4.694 0.104 0.694
CLR (SVM) 0.073 0.301 4.261 0.091 0.723
HOMER (DT) 0.114 0.485 9.170 0.243 0.541
HOMER (SVM) 0.086 0.391 8.612 0.215 0.613
IBLR 0.089 0.424 5.093 0.123 0.651
LP (DT) 0.107 0.587 12.289 0.377 0.462
LP (SVM) 0.083 0.975 19.103 0.780 0.143
MLkNN 0.079 0.333 4.725 0.105 0.693
RAkEL (DT) 0.085 0.345 7.635 0.183 0.646
RAkEL (SVM) 0.073 0.375 11.363 0.309 0.563

Table 4.7: Average classification performance of DAl for all fr

Figure 4.3 shows the performance comparison of CLR, HOMER(SVM), IBLR, ML-

kNN, and RAkEL(DT) for each frame size fr ∈ {256, 340, 512, 1024, 2048, 3200, 4096} on

DAl. We first notice that all classifiers follow similar patterns as in DRa and DAr. More

specifically, the classifiers closely emulate those patterns found in DAr with an exception

that the performance increases for fr = 4096. For instance, CLR(SVM) achieves good
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performance when fr = 4096, behind which ML-kNN and CLR(DT) follow shortly and

offer comparable performance across the evaluation measures. This is in contrast to DRa,

where the performance peaks when fr ∈ {340, 512, 1024}.
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Figure 4.3: Classification performance using the DAl dataset for different frame sizes

fr HamLoss ↓ OneError ↓ Coverage ↓ RankLoss ↓ AvgPrec ↑
CLR(SVM) 4096 0.057 0.195 3.23 0.057 0.806
CLR(DT) 4096 0.065 0.195 3.33 0.059 0.809
ML-kNN 4096 0.058 0.201 3.52 0.064 0.808

Table 4.8: Comparison of CLR(SVM), CLR(DT), and ML-kNN for DAl

As before, we observe that IBLR performs poorly on DAl for a selection of evaluation

measures. However, we note its performance is moderate for Ranking Loss in compari-

son to HOMER(SVM) and RAkEL(DT). Overall, CLR(SVM), CLR(DT), and ML-kNN

demonstrate good achievement on DAl. Table 4.8 shows a comparison of results for DAl.

55



4.4 Discussions

Realizing that multi-label genre classification is well motivated and little previous work has

been done toward this, we show our initial attempts in this chapter along this direction. We

perform a series of empirical experiments using a set of multi-label classification algorithms.

The results in our experiments show the merits of multi-label genre classification. In all

three datasets, we observe a set of classifiers consistently perform well, namely, CLR(SVM),

CLR(DT), and ML-kNN. In the following, we also discuss some other related issues.

Frame Size: It is difficult to select an optimal frame size for all classifiers. For instance,

CLR(SVM) performs good on DRa when fr = 512 and it does the same on DAl when

fr = 4096. In spite of this, we also observe patterns that can be exploited to achieve

adequate performance. For instance, a variety of classifiers tend to perform well when

fr ∈ {340, 512, 1024}. Although good performance may not be achieved, a trade off is made

between an exhaustive search for the best frame size and a decrease in performance.

Data Selection: We observe, on average, DRa achieves the best dataset performance as

shown in Table 4.3. Moreover, classification performance on DAr is lower than DRa and

DAl. The artist filter limits performance by restricting artists from appearing in both

training and testing sets. Consequently, there is little overlap in artistic styles among the

music pieces in these sets, resulting in a “unique” collection used for training and testing.

In addition, DAl employs an album filter to exclude music pieces from the same album

appearing in both training and testing sets. However, this does not exclude artists from

appearing in them. For this reason, we observe classification performance on DAl is better

than DAr.

Texture Window: As previously discussed in Chapter 2, classification performance can be

increased by using a texture window. This captures the long term nature of sound “texture”
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Figure 4.4: Classification performance of CLR(SVM) on each dataset using a texture win-
dow.

by estimating the parameters of a running multi-dimensional Gaussian distribution. It has

been shown by Tzanetakis and Cook [75] that a texture window of approximately one (1)

second can increase classification performance. Therefore, we apply a texture window, with

sizes varying from one (1) second to ten (10) seconds, to the feature extraction process

and plot the classification performance on each of the three datasets. Figure 4.4 shows the

classification results of CLR(SVM) on each dataset using a texture window.

We observe that the classification performance on DRa is increased when a texture

window of one (1) second is used. However, the performance dramatically decreases for the

other datasets when a texture window of any size is applied. These results are consistently

observed for other classifiers. This is contrary to what is commonly reported in other

studies [75, 83]. It would be interesting to further investigate along this direction.
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4.5 Summary

In this chapter we report our recent study on multi-label music genre classification. Al-

though we only create three datasets in our experiments, it is our belief that our results

should be applicable to other music collections. The results presented not only show the

necessity of multi-label genre classification on music but also offer insight into which al-

gorithms are more suitable for the task. Further investigation is needed into alternative

segmentation and feature extraction algorithms in the hope of further increasing classifica-

tion performance.

In the next chapter, we propose a set of ensemble techniques to combine together the

predictive power of multi-label classifiers, with the aim to further improve the performance

of music genre classification.
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Chapter 5

Ensemble of Multi-Label Classifiers

In this chapter, we propose an ensemble of classifiers for improving multi-label music genre

classification. Our approach is to combine the predictive power of multiple classifiers and

show performance gains over the individual multi-label classification algorithms introduced

in Chapter 2 and Chapter 4.

This chapter is organized as follows. Section 5.1 introduces ensemble techniques for

combining multiple classifiers. Section 5.2 discusses our proposed ensemble technique for

combining multi-label classifiers. In Section 5.3 we design a series of experiments to evaluate

our techniques. Experiment results are presented in Section 5.4. Finally, Sections 5.5 and 5.6

summarize the chapter with discussions and future work.

5.1 Introduction

Despite extensive work in multi-label classification, there exist two major challenges, among

others, especially in music genre classification. The first challenge is that we can have highly

imbalanced data sets, due to the availability of instances for some labels, while the second

is related to our limited knowledge regarding the correlation among class labels for a given

dataset.

Most multi-label classification approaches are designed to focus mainly on the second
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problem and limited work has been devoted to handling imbalanced datasets [65]. One

approach is an ensemble of multi-label classifiers, which consists of a set of individually

trained classifiers, H1, H2, ...,Hq, whose predictions are combined when classifying instances.

Figure 5.1 illustrates the basic approach for building an ensemble of diverse classifiers. This

approach is generally more accurate and achieves greater predictive performance than any

of the individual classifier making up the ensemble [12].

Data Prediction
Combine
Votes

H 

H 

H 

1

2

q

...

Figure 5.1: Building an ensemble of classifiers: generate a set of diverse classifiers,
H1, H2, ...,Hq, and combine the predictions for an unknown instance using voting strategies.

Ensembles can be homogeneous, where every individual classifier is constructed using

the same algorithm, or heterogeneous, where each classifier is constructed from a different

algorithm [12, 65]. Some multi-label classification algorithms directly use homogeneous or

heterogeneous ensemble techniques internally to improve overall performance. For example,

Instance Based Logistic Regression [14], introduced in Chapter 2 and Chapter 4, uses a

combination of Logistic Regression and Nearest Neighbor classifiers to improve the overall

performance.

Tahir et al. [65] present a first study, as claimed, on combining the outputs of multi-label

classification algorithms. They propose two heterogeneous ensemble techniques and apply

them to publicly available datasets using a selection of evaluation measures. The results

show that these approaches provide significant performance improvements when compared

with individual multi-label classifiers.
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The goal of our work in this chapter is to use a heterogeneous ensemble of existing

multi-label classification algorithms to improve music genre classification. The advantage

of using an ensemble approach is that both aforementioned problems can be handled simul-

taneously. That is, training set imbalance can be addressed by using multiple multi-label

classifiers. Moreover, the correlation problem can be handled using classifiers that consider

label correlations. In the following, we introduce a set of ensemble techniques that combine

multiple classifiers for the purpose of music genre classification.

5.2 Ensemble of Multi-label Classifiers (EML)

Let D denote a set of music pieces and let L = {l1, l2, ...lN} be the finite set of labels. Given

a training set Ds = {(x1, Y1), (x2, Y2), · · · , (xm, Ym)}, where xi ∈ D is a single music piece

and Yi ⊆ L is the label set associated with xi. We attempt to design a multi-label classifier

that predicts a set of labels for an unseen music piece from a test set Dt = {(x1, Y1), (x2, Y2),

· · · , (xn, Yn)}.

An ensemble of multi-label (EML) classifiers trains q multi-label classifiersH1, H2, ...,Hq.

In our work, all classifiers are likely to be unique and able to generate different multi-label

predictions. For an unseen instance xj , classifier Hk produces two N -dimensional vectors:

a score vector P jk = [pj1,k, p
j
2,k, · · · , p

j
N,k], where the value pjb,k is the confidence of the class

label lb assigned by classifier Hk being correct, and a bipartition vector V j
k = [vj1,k, v

j
2,k, · · · ,

vjN,k] where vjb,k is 1 if the class label lb is predicted by classifier Hk and 0 otherwise.

We denote by Heml the classifier obtained after applying an ensemble technique to the

q classifiers. We use P jeml = [pj1,eml, p
j
2,eml, · · · , p

j
N,eml] to represent the resulting score

vector for the unseen instance yj and use V j
eml = [vj1,eml, v

j
2,eml, · · · , v

j
N,eml] to represent the

corresponding binary vector.

There are a variety techniques to combine the outputs of these q classifiers. While some

combiners are based on the bipartition vector, others are based on the score vector. In this

work, we propose two novel ensemble techniques – one that considers both the bipartition
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and score vectors and the other that utilizes a taxonomy of musical genres. These techniques

are discussed below.

5.2.1 Bipartition-based Ensemble

Intersection Rule

The Intersection rule (denoted as EMLI) calculates the intersection of the bipartition

vectors from the q classifiers using vji,eml =
∑q

s=1 ∩v
j
i,s,for i = 1, 2, · · · , N , i.e., the binary

values for each label in all vectors are combined using the logical AND operator. The set

of output labels common to all classifiers result in an ensemble decision. We propose this

naive method to emphasize the common labels output by all individual classifiers.

Union Rule

The Union rule (denoted as EMLU ) calculates the union of the binary vectors from the

q classifiers using vji,eml =
∑q

s=1 ∪v
j
i,s, for i = 1, 2, · · · , N , i.e., the binary values for each

label in all vectors are combined using the logical OR operator. An ensemble decision is

constructed by computing, for each label, the union of outputs from the q classifiers. We

propose this method to optimistically select a label for the ensemble if it is selected by any

of the individual classifiers.

Majority Vote Rule

The Majority Vote rule (denoted as EMLMV ) counts the number of times a label appears in

the q classifiers. It is one of the most frequently used methods for combining label outputs

from classifiers [36],

vji,eml =

 1 if
∑q

s=1 v
j
i,s/q ≥ 0.5

0 otherwise
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where i = 1, 2, · · · , N .

5.2.2 Score-based Ensemble

Minimum Rule

The Minimum rule [36, 65] (denoted as EMLMin) represents a pessimistic view of the scores

from the q classifiers and only considers the smallest score for each class label. We calculate

the minimum score as shown in the following equation,

pji,eml = minsp
j
i,s, i = 1, 2, · · · , N.

Maximum Rule

The Maximum rule [36, 65] (denoted as EMLMax) represents an optimistic view of the

scores from the q classifiers and only considers the largest score for each class label. We

calculate the maximum score as shown in the following equation,

pji,eml = maxsp
j
i,s, i = 1, 2, · · · , N.

Mean Rule

The Mean rule [36, 65] (denoted as EMLMean) considers the scores from the q classifiers

for a class label. We calculate the mean score as shown in the following equation,

pji,eml =

q∑
s=1

vji,s/q, i = 1, 2, · · · , N.
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Top-k Rule

We propose the Top-k rule (denote as EMLTopk), which is a combination of the Maximum

and Mean rules. It selects the top k largest scores and averages them. We use the fol-

lowing equation to calculate pji,eml. Constant k is a user-selected parameter. This method

represents our desire to have a degree of certainty when calculating the score for Heml.

pji,eml = avg(topk(vji,1, v
j
i,2, · · · , v

j
i,q))

where i = 1, 2, · · · , N , function topk(·) picks the largest k elements from a set and function

avg(·) averages them.

5.2.3 Score-based Label Selection

In addition, we also consider the score output from each classifier and select the top n scores

and the corresponding labels. We then merge the results from all the classifiers, from which

we select the top k labels that appear the most, where n ≥ k. If there is a tie, we arbitrarily

select one. For each of these k labels, we set the corresponding entry to be “1” in the

bipartition vector for the final ensemble Heml. For the other labels, we set the respective

entries to be “0”. In this proposed technique, since we first select the top n scores and

then select the top k class labels accordingly, we refer to it as EMLCnLk
in the following

discussions.

5.2.4 Hierarchical Label Substitution

We propose a novel ensemble technique that utilizes taxonomy information of music genres.

We call this technique Hierarchical Label Substitution (HLS). The technique reduces the

number of labels using a substitution method. A set of multi-label classifiers are trained

and the resulting output is combined using one of the bipartition-based techniques described
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above. A set of labels in the ensemble decision are then substituted based on a local genre

hierarchy, represented as a taxonomy. For our experiments, we derive our local genre

hierarchy based on the taxonomy of music genres developed by Allmusic1 to help navigate

music catalogs. Figure 5.2 depicts a small portion of the local genre hierarchy.

Electronic

Electronica Dance

Techno Disco

Classical

OrchestralOpera

Music

Figure 5.2: Example genre taxonomy used for Hierarchical Label Substitution.

Our hierarchy is constructed to only contain music genres in our datasets and consists

of top level nodes referred to as “meta genres” [19], as shown in Figure 5.2. These should

represent main musical genres, such as Classical, Rock, Jazz, etc. The hierarchy is further

defined to consist of children nodes, i.e., sub-genres, which can be conceptualized as specific

genres derived from a parent genre and become more concrete as the depth increases. For

example, from Figure 5.2, Techno is considered as a sub-genre of Electronica. It is important

to emphasize that our taxonomy is by no means authoritative but our ensemble technique

is applicable to any other genre taxonomy.

We define a depth d for label substitution, where all labels below the level at d are

substituted with the parent label at this level. For example, for genre Electronic, at d = 1,

any occurrence of labels in the resulting classifier output below level d will be replaced with

their parent label recursively, e.g., Disco would be replaced with Dance and Techo with

Electronica. It is easy to see that, as d decreases, the resulting label set shrinks.

Although our ensemble technique produces a smaller label set, the usefulness lies in its

1http://www.allmusic.com.
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ability to simplify the label space by reducing the number of possible “overlapping” genres.

Moreover it has been shown [1] that there is little consensus between the genre labels used

by individuals. Simplification to a common set of high-level genres may provide a remedy

to this.

5.3 Experiment Setup

In this section we describe the preparation for our experiments. We apply the ensemble

techniques discussed above to a set of multi-label classification algorithms and evaluate their

performance. The evaluation is conducted on the three datasets, DRa, DAr, and DAl, using

10-fold cross validation.

5.3.1 Multi-label Classification Algorithms

We select and combine the following multi-label classification algorithms using a set of

ensemble techniques: Random k-Labelsets (RakEL), Calibrated Label Ranking (CLR),

Multi-label k-Nearest Neighbor (ML-kNN), Hierarchy of Multi-label Classifiers (HOMER),

and Instance Based Logistic Regression (IBLR). As shown in Chapter 4, these classification

algorithms achieve good performance on a variety of music datasets, as compared to the

other multi-label classifiers. Furthermore, a Decision Tree is used as a base classifier in

RakEL while a Support Vector Machine is used in CLR and HOMER.

5.3.2 Audio Parameters

Similar to Chapter 4, we select the following set of features for classification: MFCC, Zero

Crossing Rate, Spectral Centroid, Rolloff, Spectral Flux, and Chroma. Moreover, to capture

the fine-timescale structures of music, we extract features from short audio frames. However,

it is difficult to select an optimal frame size for all classifiers as discussed in Section 4.4.
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For the purpose of our experiments, we select a frame size of 340 samples, corresponding to

approximately 23 milliseconds. This size has been commonly used in MIR literature for a

variety of tasks.

5.3.3 Evaluation Measures

To evaluate the performance of our proposed ensemble techniques, a variety of evaluation

measures are employed. Recall from Chapter 2 that these measures can be categorized into

three groups: example-based, label-based and rank-based. The first two groups are based

on the bipartition vectors while the third group derives ranking information from the score

vectors and conducts evaluations accordingly. We consider the following measures.

• Example-based: Hamming Loss (HamLoss), Accuracy (Accu.), Recall, F-Measure

(F1) and Precision (Prec.).

• Label-based: Micro Precision (MicroP), Micro F-Measure (MicroF1), Micro Recall

(MicroR), Macro Precision (MacroP), Macro F-Measure (MacroF1) and Macro Recall

(MacroR).

• Rank-based: Average Precision (AvgPrec), Coverage , Ranking Loss (RankLoss), and

One-Error.

5.3.4 Ensemble Parameters

We use the following ensemble parameters in our experiments. For hierarchical label sub-

stitution (HLS), we set d = 1, i.e., sub-genres are replaced with their respective “meta

genre”. In addition, we set k = 3 for EMLTopk, that is, we select the top 3 largest scores

and average them. For score-based label selection (EMLCnLk
), we set n = 3 and k = 2.

More specifically, we first select the top 3 scores from each classifier and then select the top

2 class labels accordingly. We provide more discussions on these parameters in Section 5.5.
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5.4 Results

In this section, we present the results from our experiments on the three datasets Random

(DRa), UniqueArtist (DAr), and UniqueAlbum (DAl). Each ensemble technique is compared

with the individual multi-label classifiers to determine its performance.

HamLoss ↓ Accu. ↑ Recall ↑ F1 ↑ Prec. ↑
CLR 0.0567 0.5697 0.5959 0.8098 0.8255
IBLR 0.0586 0.6045 0.6481 0.8040 0.7715
MLKNN 0.0576 0.6042 0.6354 0.8120 0.7764
RAkEL 0.0620 0.5918 0.6648 0.7739 0.7357
HOMER 0.0635 0.6255 0.6949 0.7867 0.7299
EMLU 0.0710 0.6239 0.7893 0.7568 0.6861
EMLI 0.0607 0.4828 0.4936 0.8008 0.8853
EMLMV 0.0544 0.6233 0.6559 0.8123 0.7958
HLS(EMLU ) 0.0402 0.7001 0.8435 0.8177 0.7652
HLS(EMLI) 0.0337 0.6198 0.6198 0.9180 0.9453
HLS(EMLMV ) 0.0304 0.7322 0.7491 0.8978 0.8741
EMLCnLk

0.0601 0.6277 0.6731 0.7843 0.7390

Table 5.1: Comparison of bipartition-based ensembles for DRa using example-based mea-
sures.

5.4.1 Random Dataset

Table 5.1 shows the comparison of the bipartition-based ensemble techniques with the indi-

vidual multi-label classifiers for DRa using example-based evaluation measures, as discussed

in Section 5.3.3; the best result on each measure is shown in bold face. Note that in the

Table 5.1, (↓) indicates better performance when the value is smaller while (↑) indicates

better performance when the value is bigger. When the individual multi-label classifiers are

compared with each other, it is hard to pick between CLR and HOMER for this dataset

since their performance is comparable for different measures. Moreover, when we compare

the classifiers using label-based measures, presented in Table 5.2, we find that CLR performs

well for MicroP, MacroP, and MacroF1, while IBLR, HOMER, and RAkEL perform well for

MicroF1, MicroR, and MacroR respectively. However, by using ensemble techniques, sig-

nificant performance gains have been observed in almost all example-based and label-based
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measures. Specifically, HLS outperforms the individual multi-label classification algorithms

and the other EML techniques for example-based measures and also offers an improvement

in classification performance for a selection of label-based measures.

MicroP ↑ MicroF1 ↑ MicroR ↑ MacroP ↑ MacroF1 ↑ MacroR ↑
CLR 0.8273 0.6759 0.5721 0.8141 0.8088 0.2613
IBLR 0.7661 0.6886 0.6259 0.6190 0.6438 0.3277
MLKNN 0.7841 0.6874 0.6125 0.7910 0.6622 0.2857
RAkEL 0.7255 0.6829 0.6453 0.6490 0.6507 0.3317
HOMER 0.7039 0.6877 0.6737 0.6347 0.7110 0.3175
EMLU 0.6294 0.6918 0.7688 0.4677 0.6513 0.4221
EMLI 0.8904 0.6171 0.4728 0.9196 0.7637 0.2201
EMLMV 0.8011 0.7065 0.6322 0.8124 0.6816 0.2905
HLS(EMLU ) 0.6623 0.7081 0.7626 0.4731 0.6206 0.3864
HLS(EMLI) 0.9453 0.6560 0.5031 0.9549 0.7956 0.1788
HLS(EMLMV ) 0.8566 0.7262 0.6312 0.8363 0.6735 0.2333
EMLCnLk

0.7390 0.6911 0.6494 0.7493 0.6543 0.3258

Table 5.2: Comparison of bipartition-based ensembles for DRa using label-based measures.

Table 5.3 presents the comparison of score-based ensemble techniques with the individ-

ual classifiers for DRa using rank-based evaluation measures. First, when the individual

classifiers are compared with each other, we find that CLR delivers the best performance

for all of the measures. We find this interesting as CLR does not outperform the other

multi-label classifiers for the example-based and label-based measures. Further investiga-

tion is needed to determine why this situation occurs. As before, the fusion of multi-label

classifiers has improved the overall performance for rank-based measures. We observe that

EMLTopk makes an impact on the performance in comparison to the other EML techniques

and multi-label classifiers. Moreover, it offers the best performance for all of the rank-based

measures for DRa.

We find that the largest performance improvements are offered by HLS for bipartition-

based ensembles and EMLTopk for score-based ensembles, respectively. However, it is im-

portant to note that not all EML techniques offer improvements for DRa.
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AvgPrec ↑ Coverage ↓ RankLoss ↓ OneError ↓
CLR 0.8080 3.2160 0.0569 0.1940
IBLR 0.8067 3.4510 0.0649 0.2050
MLKNN 0.8094 3.4420 0.0637 0.1980
RAkEL 0.7747 5.5360 0.1129 0.2140
HOMER 0.7240 7.2170 0.1617 0.2440
EMLMax 0.7905 3.243 0.0592 0.2530
EMLMin 0.7584 7.181 0.1556 0.1860
EMLMean 0.8195 3.206 0.0556 0.1840
EMLTopk 0.8195 3.1690 0.0550 0.1820

Table 5.3: Comparison of score-based ensembles for DRa using rank-based measures.

HamLoss ↓ Accu. ↑ Recall ↑ F1 ↑ Prec. ↑
CLR 0.0618 0.4641 0.4833 0.7390 0.8314
IBLR 0.0966 0.3811 0.4684 0.6723 0.5691
MLKNN 0.0750 0.3765 0.3965 0.6801 0.7418
RAkEL 0.0798 0.4500 0.5234 0.6932 0.6498
HOMER 0.0818 0.4900 0.5706 0.6984 0.6478
EMLU 0.1149 0.4647 0.7210 0.6297 0.5139
EMLI 0.0749 0.2671 0.2680 0.6865 0.9291
EMLMV 0.0646 0.4719 0.4934 0.7311 0.7843
HLS(EMLU ) 0.0763 0.5146 0.7908 0.6753 0.5631
HLS(EMLI) 0.0485 0.4134 0.4134 0.8517 0.9401
HLS(EMLMV ) 0.0432 0.6064 0.6273 0.8465 0.8201
EMLCnLk

0.0779 0.5053 0.5735 0.7078 0.6133

Table 5.4: Comparison of bipartition-based ensembles for DAr using example-based mea-
sures.

5.4.2 UniqueArtist Dataset

Table 5.4 shows the comparison of the bipartition-based ensembles with the individual

multi-label classifiers for DAr using example-based evaluation measures. It is interesting to

observe that for this data set, when the individual multi-label classifiers are compared with

each other, we find a similar trend to the results reported in Table 5.1. That is, CLR and

HOMER perform well for different evaluation measures. When we compare the individual

classifiers using label-based measures, presented in Table 5.5, we observe that CLR performs

well for MicroP, MicroF1, MacroP, and MacroF1, while HOMER and RAkEL perform well

for MicroR, and MacroR, respectively. This is similar to the results reported in Table 5.2. As

before, using the proposed ensemble of multi-label classifiers has improved the overall per-

70



formance for example-based and label-based measures. That is, HLS(EMLI), HLS(EMLU ),

HLS(EMLMV ), and EMLU deliver improvements for example-based and label-based mea-

sures.

MicroP ↑ MicroF1 ↑ MicroR ↑ MacroP ↑ MacroF1 ↑ MacroR ↑
CLR 0.8164 0.5995 0.4775 0.7903 0.7590 0.2987
IBLR 0.5159 0.4847 0.4603 0.3592 0.6399 0.3440
MLKNN 0.7229 0.5025 0.3892 0.6971 0.6920 0.2476
RAkEL 0.6127 0.5595 0.5182 0.5298 0.6665 0.3448
HOMER 0.5951 0.5759 0.5637 0.5184 0.6760 0.3723
EMLU 0.4514 0.5528 0.7194 0.3221 0.6463 0.5386
EMLI 0.9227 0.4034 0.2610 0.9137 0.6463 0.1638
EMLMV 0.7741 0.5946 0.4847 0.7402 0.7530 0.3058
HLS(EMLU ) 0.4786 0.5744 0.7241 0.3342 0.6415 0.5217
HLS(EMLI) 0.9401 0.4962 0.3409 0.9402 0.6588 0.2014
HLS(EMLMV ) 0.7979 0.6338 0.5276 0.7781 0.8005 0.3062
EMLCnLk

0.6133 0.5890 0.5671 0.5815 0.7141 0.3658

Table 5.5: Comparison of bipartition-based ensembles for DAr using label-based measures.

Table 5.6 presents the comparison of score-based ensembles with the individual classifiers

for DAr using rank-based evaluation measures. When the individual multi-label classifiers

are compared with each other, we find that CLR performs the best for all of the measures.

However, the combination of multi-label classifiers offers improvements for different evalu-

ation measures. For example, performance gains are observed for AvgPrec and OneError

with an ensemble using the Top-k rule (EMLTopk). We also observe that CLR outperforms

all of the proposed ensemble techniques for Coverage and RankLoss.

AvgPrec ↑ Coverage ↓ RankLoss ↓ OneError ↓
CLR 0.7386 4.1342 0.0895 0.2526
IBLR 0.6218 5.7395 0.1412 0.4453
MLKNN 0.6907 4.8618 0.1100 0.2926
RAkEL 0.6579 8.0492 0.1951 0.2995
HOMER 0.6591 7.4418 0.1762 0.3089
EMLMax 0.6910 4.3029 0.0978 0.3695
EMLMin 0.6574 8.7550 0.2165 0.2534
EMLMean 0.7372 4.2997 0.0923 0.2482
EMLTopk 0.7430 4.3258 0.0929 0.2179

Table 5.6: Comparison of score-based ensembles for DAr using rank-based measures.
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It is interesting to observe that for this dataset the average classification performance

of each multi-label classifier and ensemble is lower than the performance on DRa. This is

analogous to the results presented in Chapter 4.

HamLoss ↓ Accu. ↑ Recall ↑ F1 ↑ Prec. ↑
CLR 0.0690 0.4240 0.4438 0.7726 0.7915
IBLR 0.0843 0.4327 0.5075 0.7008 0.6239
MLKNN 0.0765 0.3893 0.4105 0.7160 0.7189
RAkEL 0.0844 0.4364 0.5193 0.6830 0.6097
HOMER 0.0837 0.4964 0.5896 0.7077 0.6208
EMLU 0.1071 0.4795 0.7246 0.6465 0.5289
EMLI 0.0788 0.2661 0.2705 0.7156 0.8560
EMLMV 0.0687 0.4685 0.4932 0.7551 0.7376
HLS(EMLU ) 0.0722 0.5309 0.7950 0.6898 0.5778
HLS(EMLI) 0.0505 0.4106 0.4106 0.9001 0.8925
HLS(EMLMV ) 0.0444 0.5891 0.6084 0.8479 0.8034
EMLCnLk

0.0774 0.5115 0.5803 0.7078 0.6272

Table 5.7: Comparison of bipartition-based ensembles for DAl using example-based mea-
sures.

5.4.3 UniqueAlbum Dataset

Finally, Table 5.7 shows the comparison of the bipartition-based ensembles with the indi-

vidual multi-label classifiers for DAl using example-based evaluation measures. It is easy to

see that the results for the individual classifiers are similar to those observed for DRa and

DAr. Specifically, we observe that CLR performs well for HamLoss, F1 and Prec. while

HOMER delivers the best performance for Accu. and Recall. Moreover, when we compare

the individual classifiers using label-based measures, presented in Table 5.8, we find that

CLR and HOMER perform well. However, using the proposed ensemble techniques im-

proves classification performance. Once again, we observe that HLS outperforms the other

ensembles and classifiers for the majority of the evaluation measures and delivers an increase

in performance. For example, there is a 17.63% increase in MacroP for HLS(EMLI) when

compared to CLR.
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MicroP ↑ MicroF1 ↑ MicroR ↑ MacroP ↑ MacroF1 ↑ MacroR ↑
CLR 0.7905 0.5522 0.4276 0.7645 0.6965 0.2408
IBLR 0.5977 0.5425 0.4976 0.3931 0.6262 0.3296
MLKNN 0.7206 0.5090 0.3960 0.6664 0.6498 0.2220
RAkEL 0.5942 0.5479 0.5094 0.4929 0.6156 0.3079
HOMER 0.5884 0.5801 0.5753 0.5282 0.6702 0.3394
EMLU 0.4788 0.5739 0.7180 0.3176 0.6098 0.4924
EMLI 0.8626 0.3923 0.2558 0.8269 0.5679 0.1400
EMLMV 0.7468 0.5822 0.4786 0.7075 0.7246 0.2630
HLS(EMLU ) 0.4887 0.5821 0.7227 0.2983 0.5937 0.4760
HLS(EMLI) 0.8925 0.4613 0.3135 0.8993 0.6222 0.1615
HLS(EMLMV ) 0.7852 0.6102 0.5004 0.7204 0.7495 0.2458
EMLCnLk

0.6272 0.5956 0.5672 0.6308 0.6484 0.3301

Table 5.8: Comparison of bipartition-based ensembles for DAl using label-based measures.

Table 5.9 shows the comparison of score-based ensembles with the individual classifiers

for DAl using rank-based evaluation measures. With regard to the individual multi-label

classifiers, we observe that CLR performs the best for all of the measures. This is analogous

to the results presented for DRa and DAr. As before, improvements are observed by using

the proposed ensemble of multi-label classifiers. Specifically, EMLMean offers the best per-

formance of the proposed ensembles while EMLTopk follows shortly behind. Furthermore,

we observe that CLR outperforms the other proposed ensemble techniques for Coverage.

However, we note that the difference is marginal.

AvgPrec ↑ Coverage ↓ RankLoss ↓ OneError ↓
CLR 0.7276 4.1210 0.0872 0.3052
IBLR 0.6719 4.9301 0.1144 0.3977
MLKNN 0.7134 4.4022 0.0957 0.2916
RAkEL 0.6572 7.2234 0.1725 0.3275
HOMER 0.6341 8.1062 0.1988 0.3527
EMLMax 0.6892 4.2461 0.0939 0.3834
EMLMin 0.6506 8.7422 0.2130 0.2994
EMLMean 0.7388 4.1885 0.0872 0.2658
EMLTopk 0.7369 4.1936 0.0882 0.2576

Table 5.9: Comparison of score-based ensembles for DAl using rank-based measures.
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5.5 Discussions

In summary, the ensemble techniques proposed not only offer additional performance im-

provements for multi-label genre classification, but also overcome limitations of individual

multi-label classification algorithms, as aforementioned.

The results in our experiments show the merits of combining multi-label classification

algorithms for music genre classification. For all three datasets, we observe improvements

to classification performance when using heterogeneous ensemble techniques. However, this

performance gain is at the expense of inherent computational cost as individual classifiers

need to be trained and combined. Additionally, some of the proposed ensemble techniques

provide no improvement and it would be interesting to further explore them. It is important

to note that all of the processing and experiments performed in this work are conducted

off-line. Therefore, we are not primarily concerned with the inherent computational cost

incurred. In the following, we discuss some other related issues.

k AvgPrec ↑ Coverage ↓ RankLoss ↓ OneError ↓
2 0.8118 3.2420 0.0575 0.1950
3 0.8195 3.1690 0.0550 0.1820
4 0.8194 3.2000 0.0559 0.1760
5 0.8190 3.1690 0.0553 0.1900

Table 5.10: Classification performance of EMLTopk for different k.

Top-k rule: The Top-k rule (EMLTopk) selects the top k largest scores and averages

them, where k is a user-selected parameter. To determine this value, we perform a series

of experiments on DRa and examine the performance as we adjust k. Table 5.10 shows the

classification performance of EMLTopk where k ∈ {2, 3, 4, 5} using the evaluation measures

AvpPrec, Coverage, RankLoss, and OneError. We observe that EMLTopk demonstrates

good achievement on DRa when k = 3 for the majority of evaluation measures. We note

that when k is set to the number of classifiers in the ensemble, the result will be the same

as the one obtained using the Mean rule.
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HamLoss ↓ Accu. ↑ Recall ↑ F1 ↑ Prec. ↑
n=3, k=2 0.0603 0.6255 0.6725 0.7799 0.7380
n=4, k=2 0.0674 0.5799 0.6366 0.7422 0.6990
n=5, k=2 0.0681 0.5786 0.6328 0.7484 0.6950
n=5, k=3 0.0820 0.5339 0.7825 0.7034 0.5790
n=5, k=5 0.1483 0.3902 0.8934 0.5611 0.4016
n=10, k=3 0.1398 0.3006 0.4876 0.5230 0.3670

Table 5.11: Classification performance of EMLCnLk
for different n and k.

Score-based Label Selection: Similar to the Top-k rule, we perform a series of exper-

iments on DRa to determine the values of n and k for EMLCnLk
. Recall that in this

ensemble, we first select the top n scores and then select the top k class labels accordingly.

Table 5.11 shows the classification performance of EMLCnLk
using the evaluation measures

HamLoss, Accu., Recall, F1, and Prec. We observe that as both values of n and k increase,

classification performance tends to decrease for the evaluation measures. We can see that

EMLCnLk
performs best when n = 3 and k = 2. This could be plausibly explained by

the label cardinality which is between 2 and 3 for each instance in our datasets, as shown

in Table 4.1. It is important to note that we examine a wide range of values for n and k.

However, due to space limitations, we only report a subset of the results.

Hierarchical Label Substitution: From the results presented above, we observe that Hi-

erarchical Label Substitution (HLS) outperforms the other bipartition-based ensemble tech-

niques for a majority of the evaluation measures. Moreover, significant performance gains

are observed for all of the dataset when HLS is used with one of the proposed bipartition-

based ensemble techniques. For example, there is a 14.51% increase in Prec. for DRa when

compared to CLR. These results are attributed to the simplification of the label space by

reducing the number of possible “overlapping” genres. We believe this ensemble produces

a common set of high-level genres which is closer to the human experience.
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5.6 Summary

To the best of our knowledge, this is the first study that aims to combine heterogeneous

multi-label classification algorithms for music genre classification. Toward this end, we

propose a set of ensemble techniques that not only improve upon individual multi-label

classification algorithms, but also overcomes their limitations as aforementioned. In all of

the datasets, we observe significant improvements to classification performance when using

ensemble techniques. Specifically, we observe that HLS(EMLI) and HLS(EMLMV ) per-

forms the best out of the proposed bipartition-based ensemble techniques for a selection of

evaluation measures. Furthermore, EMLMean and EMLTopk demonstrate good performance

from the proposed score-based ensemble techniques. However, we note that CLR consis-

tently outperforms the other score-based ensembles for measures of Coverage and Ranking

Loss.

In our future work, we plan to consider more multi-label classification algorithms and

further investigate other ensemble techniques. From our study, we observe that some of

the proposed ensemble techniques provide no improvements and it would be interesting to

further explore them. A wealth of work exists surrounding the area of ensemble methods

and may offer some insight. Furthermore, alternative segmentation and feature extraction

algorithms need to be explored in the hope of further increasing multi-label classification

performance.
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Chapter 6

Conclusion

6.1 Summary

Music genre classification is a high-level task in Musical Information Retrieval (MIR). It

has wide applications in managing music repositories, including music categorization, orga-

nization, and browsing. However, music genre classification is a subjective and ambiguous

process, due to its inherent nature, historical background, cultural diversity, and personal

experience. This not only shows that traditional single-label genre classification is inade-

quate but also asserts that multi-label music classification is needed, since a music piece

can be assigned different genres, depending on the stand of individuals. In this thesis, we

study multi-label music genre classification from perceptual and algorithmic perspectives.

In Chapter 2 we review previous related works. First, we introduce some discussions per-

taining to music genres and human categorization. Relevant information is then presented

on content-based audio analysis, such as feature extraction and segmentation techniques.

After this, we dedicate our discussions to single-label classification algorithms common in

MIR and previous works on the automatic classification of music. Additionally, multi-label

classification algorithms are reviewed along with a set of evaluation measures for determin-

ing their predictive performance. Finally, previous work on the multi-label categorization

of music, including tagging, emotion, etc., is presented.
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In Chapter 3 we describe a series of perceptual experiments to explore the multi-genre-

labeling behavior of individuals. Given a set of excerpts from a music piece, participants are

asked to classify each excerpt and assign it to a single genre class. From this experiment we

have found that participants consistently indicate that different portions of a music piece

can be categorized into different genres. For this reason, we assert that genre classification

approaches should consider multiple and compound genre labels. While previous studies

explore the genre-labeling behavior of individuals, to the best of our knowledge, there have

been no studies investigating perceptual multi-genre labeling.

Previous genre classification approaches are concerned with learning from a set of in-

stances that are associated with a single label. However, as seen in Chapter 3, a music

piece may belong to an unrestricted set of musical genres, making single-label classification

problematic. In Chapter 4 we design a series of experiments to evaluate a set of multi-label

classification algorithms. Moreover, issues pertaining to the creation of a multi-label dataset

are explored. Experiment results are presented for a selection of feature extraction param-

eters. They not only support our speculation of employing multi-label learning algorithms

for music genre classification but also demonstrate which algorithms are more suitable for

this task.

In Chapter 5 we propose an ensemble of classifiers to further improve multi-label music

genre classification. Our approach is to combine the predictive power of multiple clas-

sification algorithms to demonstrate performance gains. The results show the merits of

combining multi-label classification algorithms. We believe that this is the first study that

aims to combine multi-label approaches for music genre classification.

In summary, we address issues pertaining to the task of multi-label genre classification.

We show through a series of perceptual experiments that there is a strong need for genre

classification approaches to consider multiple compound genre labels. More efforts are

needed to help deal with the ambiguity associated with classifying music using a single

genre descriptor. Toward this end, we design a set of computation experiments investigating

multi-label genre classification. In doing so, we identify a set of multi-label classification
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algorithms suitable for this task. Moreover, we propose a set of ensemble techniques for

further improving multi-label genre classification.

6.2 Limitations

There are several limitations to the work presented in this thesis. The first is the limited size

of the dataset used in the perceptual experiment in Chapter 3; some genres are represented

with few examples. Although this is within the same range of other similar works’, it is by

no means statistically representative of all music.

A second limitation is that, to the best of our knowledge, no datasets exist specifically

for multi-label genre classification. This makes it difficult to compare classification results.

In addition, classification in Chapters 4 and 5 is performed on short excerpts of music.

Although this is a standard approach in the MIR community, there are limitations to using

short excepts of audio for classification as described in Chapter 3.

A third identified limitation is the set of measures used to evaluate classification perfor-

mance in Chapters 4 and 5. No standardized set of measures exist in the literature. It is

important to note that we use the most common set of evaluation measures for comparing

multi-label genre classification performance.

Perhaps the most obvious limitation of this thesis is the assumption that music genre is

an intrinsic attribute of a particular music piece. Although debate surrounds this issue, we

believe that the members of a particular genre share certain characteristics, such as timbre,

tempo, rhythm, etc., that can be used for categorization. However, this does not imply

that genre is solely an intrinsic attribute of music. That is, they may also be founded on

cultural extrinsic habits.

A final limitation is the set of features used to parameterize the audio. Several studies

have shown a relationship between features and classification performance. That is, clas-

sification performance can be improved by using a set of “optimal” features. However, no

standardized set of features exist, which makes it difficult to select a set which are best
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suited for classification.

6.3 Future Work

In the future we plan to further explore and analyze our results from the perceptual exper-

iment. We hope to determine if an individual’s predisposition to a given genre influences

her/his classification result. In addition, we plan to experimentally analyze the influence of

music expertise on the genre-labeling behavior of individuals.

Further investigation is needed into multi-label classification algorithms and parameters

for music genre classification. Recall from Chapter 4 that each algorithm was trained

using default parameters, e.g., the number of neighbors was set to 10 for ML-kNN and

IBLR. It would be interesting to explore the influence of these parameters on classification

performance. In addition, alternative segmentation and feature extraction algorithms need

to be explored in the hope of further increasing multi-label classification performance.

We observe that classification performance can be influenced by the use of a texture

window. Specifically, performance dramatically decreases for two of the datasets when a

texture window of any size is applied. This is contrary to what is commonly reported in

other studies. We plan to further investigate along this direction.

A great deal of additional research needs to be conducted with respect to combining

multi-label classification algorithms. Alternative ensemble techniques for combining classi-

fiers are needed. From our study, we observe that some of the proposed ensemble techniques

provide no improvements. A wealth of work exists surrounding the area of ensemble meth-

ods and may offer some insight into this. Furthermore, we plan to conduct a series of

experiments comparing the performance of ensemble techniques, presented in Chapter 5,

on larger music datasets.
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