1,817 research outputs found

    Combining Static and Dynamic Contract Checking for Curry

    Full text link
    Static type systems are usually not sufficient to express all requirements on function calls. Hence, contracts with pre- and postconditions can be used to express more complex constraints on operations. Contracts can be checked at run time to ensure that operations are only invoked with reasonable arguments and return intended results. Although such dynamic contract checking provides more reliable program execution, it requires execution time and could lead to program crashes that might be detected with more advanced methods at compile time. To improve this situation for declarative languages, we present an approach to combine static and dynamic contract checking for the functional logic language Curry. Based on a formal model of contract checking for functional logic programming, we propose an automatic method to verify contracts at compile time. If a contract is successfully verified, dynamic checking of it can be omitted. This method decreases execution time without degrading reliable program execution. In the best case, when all contracts are statically verified, it provides trust in the software since crashes due to contract violations cannot occur during program execution.Comment: Pre-proceedings paper presented at the 27th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur, Belgium, 10-12 October 2017 (arXiv:1708.07854

    Singular and Plural Functions for Functional Logic Programming

    Full text link
    Functional logic programming (FLP) languages use non-terminating and non-confluent constructor systems (CS's) as programs in order to define non-strict non-determi-nistic functions. Two semantic alternatives have been usually considered for parameter passing with this kind of functions: call-time choice and run-time choice. While the former is the standard choice of modern FLP languages, the latter lacks some properties---mainly compositionality---that have prevented its use in practical FLP systems. Traditionally it has been considered that call-time choice induces a singular denotational semantics, while run-time choice induces a plural semantics. We have discovered that this latter identification is wrong when pattern matching is involved, and thus we propose two novel compositional plural semantics for CS's that are different from run-time choice. We study the basic properties of our plural semantics---compositionality, polarity, monotonicity for substitutions, and a restricted form of the bubbling property for constructor systems---and the relation between them and to previous proposals, concluding that these semantics form a hierarchy in the sense of set inclusion of the set of computed values. We have also identified a class of programs characterized by a syntactic criterion for which the proposed plural semantics behave the same, and a program transformation that can be used to simulate one of them by term rewriting. At the practical level, we study how to use the expressive capabilities of these semantics for improving the declarative flavour of programs. We also propose a language which combines call-time choice and our plural semantics, that we have implemented in Maude. The resulting interpreter is employed to test several significant examples showing the capabilities of the combined semantics. To appear in Theory and Practice of Logic Programming (TPLP)Comment: 53 pages, 5 figure

    Lazy Evaluation and Delimited Control

    Full text link
    The call-by-need lambda calculus provides an equational framework for reasoning syntactically about lazy evaluation. This paper examines its operational characteristics. By a series of reasoning steps, we systematically unpack the standard-order reduction relation of the calculus and discover a novel abstract machine definition which, like the calculus, goes "under lambdas." We prove that machine evaluation is equivalent to standard-order evaluation. Unlike traditional abstract machines, delimited control plays a significant role in the machine's behavior. In particular, the machine replaces the manipulation of a heap using store-based effects with disciplined management of the evaluation stack using control-based effects. In short, state is replaced with control. To further articulate this observation, we present a simulation of call-by-need in a call-by-value language using delimited control operations

    The Interactive Curry Observation Debugger iCODE

    Get PDF
    AbstractDebugging by observing the evaluation of expressions and functions is a useful approach for finding bugs in lazy functional and functional logic programs. However, adding and removing observation annotations to a program is an effort making the use of this debugging technique in practice uncomfortable. Having tool support for managing observations is desirable. We developed a tool that provides this ability for programmers. Without annotating expressions in a program, the evaluation of functions, data structures and arbitrary subexpressions can be observed by selecting them from a tree-structure representing the whole program. Furthermore, the tool provides a step by step performing of observations where each observation is shown in a separated viewer. Beside searching bugs, the tool can be used to assist beginners in learning the non-deterministic behavior of lazy functional logic programs. To find a surrounding area that contains the failure, the tool can furthermore show the executed part of the program by marking the expressions that are activated during program execution

    Introduction to the 28th International Conference on Logic Programming Special Issue

    Full text link
    We are proud to introduce this special issue of the Journal of Theory and Practice of Logic Programming (TPLP), dedicated to the full papers accepted for the 28th International Conference on Logic Programming (ICLP). The ICLP meetings started in Marseille in 1982 and since then constitute the main venue for presenting and discussing work in the area of logic programming

    Machine Learning at Microsoft with ML .NET

    Full text link
    Machine Learning is transitioning from an art and science into a technology available to every developer. In the near future, every application on every platform will incorporate trained models to encode data-based decisions that would be impossible for developers to author. This presents a significant engineering challenge, since currently data science and modeling are largely decoupled from standard software development processes. This separation makes incorporating machine learning capabilities inside applications unnecessarily costly and difficult, and furthermore discourage developers from embracing ML in first place. In this paper we present ML .NET, a framework developed at Microsoft over the last decade in response to the challenge of making it easy to ship machine learning models in large software applications. We present its architecture, and illuminate the application demands that shaped it. Specifically, we introduce DataView, the core data abstraction of ML .NET which allows it to capture full predictive pipelines efficiently and consistently across training and inference lifecycles. We close the paper with a surprisingly favorable performance study of ML .NET compared to more recent entrants, and a discussion of some lessons learned

    Applications and extensions of context-sensitive rewriting

    Full text link
    [EN] Context-sensitive rewriting is a restriction of term rewriting which is obtained by imposing replacement restrictions on the arguments of function symbols. It has proven useful to analyze computational properties of programs written in sophisticated rewriting-based programming languages such asCafeOBJ, Haskell, Maude, OBJ*, etc. Also, a number of extensions(e.g., to conditional rewritingor constrained equational systems) and generalizations(e.g., controlled rewritingor forbidden patterns) of context-sensitive rewriting have been proposed. In this paper, we provide an overview of these applications and related issues. (C) 2021 Elsevier Inc. All rights reserved.Partially supported by the EU (FEDER), and projects RTI2018-094403-B-C32 and PROMETEO/2019/098.Lucas Alba, S. (2021). Applications and extensions of context-sensitive rewriting. Journal of Logical and Algebraic Methods in Programming. 121:1-33. https://doi.org/10.1016/j.jlamp.2021.10068013312
    corecore