3 research outputs found

    Improving Inertial Pedestrian Dead-Reckoning by Detecting Unmodified Switched-on Lamps in Buildings

    Get PDF
    This paper explores how inertial Pedestrian Dead-Reckoning (PDR) location systems can be improved with the use of a light sensor to measure the illumination gradients created when a person walks under ceiling-mounted unmodified indoor lights. The process of updating the inertial PDR estimates with the information provided by light detections is a new concept that we have named Light-matching (LM). The displacement and orientation change of a person obtained by inertial PDR is used by the LM method to accurately propagate the location hypothesis, and vice versa; the LM approach benefits the PDR approach by obtaining an absolute localization and reducing the PDR-alone drift. Even from an initially unknown location and orientation, whenever the person passes below a switched-on light spot, the location likelihood is iteratively updated until it potentially converges to a unimodal probability density function. The time to converge to a unimodal position hypothesis depends on the number of lights detected and the asymmetries/irregularities of the spatial distribution of lights. The proposed LM method does not require any intensity illumination calibration, just the pre-storage of the position and size of all lights in a building, irrespective of their current on/off state. This paper presents a detailed description of the light-matching concept, the implementation details of the LM-assisted PDR fusion scheme using a particle filter, and several simulated and experimental tests, using a light sensor-equipped Galaxy S3 smartphone and an external foot-mounted inertial sensor. The evaluation includes the LM-assisted PDR approach as well as the fusion with other signals of opportunity (WiFi, RFID, Magnetometers or Map-matching) in order to compare their contribution in obtaining high accuracy indoor localization. The integrated solution achieves a localization error lower than 1 m in most of the cases

    Localización de personas mediante sensores inerciales y su fusión con otras tecnologías

    Get PDF
    En el presente trabajo de Tesis se aborda el problema de la localización en entornos interiores utilizando sensores inerciales y su fusión con otras medidas para mejorar la estimación y limitar posibles derivas. Para ello, el algoritmo de localización propuesto se divide en tres partes: Una etapa de estimación del movimiento usando Pedestrian Dead Reckoning (PDR), un esquema de fusión de información que permite integrar múltiples tipos de medidas, aunque tengan relaciones no lineales, y la utilización de medidas externas (como la potencia de la señal de puntos de acceso WiFi, rangos a balizas UWB, GNSS, etc.) para limitar la deriva, proponiendo mejoras a cada una de ellas. Para mejorar el algoritmo PDR se propone la modificación del detector de apoyo utilizando un filtro de media sobre una ventana retardada. Para la estimación y corrección de errores se propone la utilización del filtro de Kalman Unscented (UKF) que simplifica los cálculos necesarios para la estimación y mejora la aproximación no lineal. Debido a la falta de información de la guiñada, una estimación PDR pura divergirá con el tiempo. Para aportar información de la orientación a la estimación se propone medir la rotación del campo magnético de acuerdo a las velocidades angulares observadas en el giróscopo. Se comprueba en varios experimentos que las mejoras evitan errores en la fase de apoyo, mejoran la estimación y disminuyen el efecto de la deriva de la orientación. Para fusionar la información del PDR con medidas externas se propone la utilización de dos esquemas: el primero, un filtro de límites que establece una distancia máxima entre 2 estimaciones, y el segundo un esquema basado en un filtro de partículas a dos etapas. El filtro de límites modifica la pdf (función de densidad de probabilidad) para evitar estimaciones muy distantes entre sí. Se comprueba que, al utilizar este método, se logra evitar la deriva un sistema PDR utilizando medidas UWB en otra parte del cuerpo. El esquema basado en un filtro de partículas utiliza la información de PDR para propagar las partículas y las medidas externas para actualizar los pesos de éstas. Se propone agregar el bias de la velocidad angular a los estados de las partículas para modelar el efecto del bias random walk (sesgo de camino aleatorio) del giróscopo. El filtro de partículas permite utilizar cualquier medida con una función de observación y una distribución de error, por lo que se estudian varios casos de estimaciones PDR fusionadas con medidas de sistemas WiFi, RFID, UWB y ZigBee. Los sistemas RF utilizados tienen un error de posicionamiento de 5 m (90 % de los casos) y la estimación PDR tiene un error creciente, pero al fusionar las estimaciones se logra un error inferior a 2 m (90 % de los casos). Por último, se utiliza el mapa del edificio para corregir las estimaciones y encauzarlas en las áreas caminables del edificio. Para ello se utiliza un método de eliminación de hipótesis (partículas) que atraviesan paredes. Este algoritmo se optimiza utilizando solo las paredes de la habitación en que se encuentra la partícula y se propone una sectorización de las operaciones para poder ser utilizada en MATLAB a tiempo real. Se demostró con señales reales que el algoritmo es capaz de auto localizar a una persona si el recorrido es no simétrico, obteniendo un nivel de error que dependerá del edificio, en nuestro caso cercano a 1 m. Si se utilizan medidas RF y el mapa, la estimación converge significativamente más rápido, y el nivel de error y el número de partículas necesarias (por ende, el tiempo de cómputo) disminuyen
    corecore