132 research outputs found

    Supporting Source Code Search with Context-Aware and Semantics-Driven Query Reformulation

    Get PDF
    Software bugs and failures cost trillions of dollars every year, and could even lead to deadly accidents (e.g., Therac-25 accident). During maintenance, software developers fix numerous bugs and implement hundreds of new features by making necessary changes to the existing software code. Once an issue report (e.g., bug report, change request) is assigned to a developer, she chooses a few important keywords from the report as a search query, and then attempts to find out the exact locations in the software code that need to be either repaired or enhanced. As a part of this maintenance, developers also often select ad hoc queries on the fly, and attempt to locate the reusable code from the Internet that could assist them either in bug fixing or in feature implementation. Unfortunately, even the experienced developers often fail to construct the right search queries. Even if the developers come up with a few ad hoc queries, most of them require frequent modifications which cost significant development time and efforts. Thus, construction of an appropriate query for localizing the software bugs, programming concepts or even the reusable code is a major challenge. In this thesis, we overcome this query construction challenge with six studies, and develop a novel, effective code search solution (BugDoctor) that assists the developers in localizing the software code of interest (e.g., bugs, concepts and reusable code) during software maintenance. In particular, we reformulate a given search query (1) by designing novel keyword selection algorithms (e.g., CodeRank) that outperform the traditional alternatives (e.g., TF-IDF), (2) by leveraging the bug report quality paradigm and source document structures which were previously overlooked and (3) by exploiting the crowd knowledge and word semantics derived from Stack Overflow Q&A site, which were previously untapped. Our experiment using 5000+ search queries (bug reports, change requests, and ad hoc queries) suggests that our proposed approach can improve the given queries significantly through automated query reformulations. Comparison with 10+ existing studies on bug localization, concept location and Internet-scale code search suggests that our approach can outperform the state-of-the-art approaches with a significant margin

    A Systematic Review of Automated Query Reformulations in Source Code Search

    Full text link
    Fixing software bugs and adding new features are two of the major maintenance tasks. Software bugs and features are reported as change requests. Developers consult these requests and often choose a few keywords from them as an ad hoc query. Then they execute the query with a search engine to find the exact locations within software code that need to be changed. Unfortunately, even experienced developers often fail to choose appropriate queries, which leads to costly trials and errors during a code search. Over the years, many studies attempt to reformulate the ad hoc queries from developers to support them. In this systematic literature review, we carefully select 70 primary studies on query reformulations from 2,970 candidate studies, perform an in-depth qualitative analysis (e.g., Grounded Theory), and then answer seven research questions with major findings. First, to date, eight major methodologies (e.g., term weighting, term co-occurrence analysis, thesaurus lookup) have been adopted to reformulate queries. Second, the existing studies suffer from several major limitations (e.g., lack of generalizability, vocabulary mismatch problem, subjective bias) that might prevent their wide adoption. Finally, we discuss the best practices and future opportunities to advance the state of research in search query reformulations.Comment: 81 pages, accepted at TOSE

    Source Code Retrieval from Large Software Libraries for Automatic Bug Localization

    Get PDF
    This dissertation advances the state-of-the-art in information retrieval (IR) based approaches to automatic bug localization in software. In an IR-based approach, one first creates a search engine using a probabilistic or a deterministic model for the files in a software library. Subsequently, a bug report is treated as a query to the search engine for retrieving the files relevant to the bug. With regard to the new work presented, we first demonstrate the importance of taking version histories of the files into account for achieving significant improvements in the precision with which the files related to a bug are located. This is motivated by the realization that the files that have not changed in a long time are likely to have ``stabilized and are therefore less likely to contain bugs. Subsequently, we look at the difficulties created by the fact that developers frequently use abbreviations and concatenations that are not likely to be familiar to someone trying to locate the files related to a bug. We show how an initial query can be automatically reformulated to include the relevant actual terms in the files by an analysis of the files retrieved in response to the original query for terms that are proximal to the original query terms. The last part of this dissertation generalizes our term-proximity based work by using Markov Random Fields (MRF) to model the inter-term dependencies in a query vis-a-vis the files. Our MRF work redresses one of the major defects of the most commonly used modeling approaches in IR, which is the loss of all inter-term relationships in the documents

    Changeset-based Retrieval of Source Code Artifacts for Bug Localization

    Get PDF
    Modern software development is extremely collaborative and agile, with unprecedented speed and scale of activity. Popular trends like continuous delivery and continuous deployment aim at building, fixing, and releasing software with greater speed and frequency. Bug localization, which aims to automatically localize bug reports to relevant software artifacts, has the potential to improve software developer efficiency by reducing the time spent on debugging and examining code. To date, this problem has been primarily addressed by applying information retrieval techniques based on static code elements, which are intrinsically unable to reflect how software evolves over time. Furthermore, as prior approaches frequently rely on exact term matching to measure relatedness between a bug report and a software artifact, they are prone to be affected by the lexical gap that exists between natural and programming language. This thesis explores using software changes (i.e., changesets), instead of static code elements, as the primary data unit to construct an information retrieval model toward bug localization. Changesets, which represent the differences between two consecutive versions of the source code, provide a natural representation of a software change, and allow to capture both the semantics of the source code, and the semantics of the code modification. To bridge the lexical gap between source code and natural language, this thesis investigates using topic modeling and deep learning architectures that enable creating semantically rich data representation with the goal of identifying latent connection between bug reports and source code. To show the feasibility of the proposed approaches, this thesis also investigates practical aspects related to using a bug localization tool, such retrieval delay and training data availability. The results indicate that the proposed techniques effectively leverage historical data about bugs and their related source code components to improve retrieval accuracy, especially for bug reports that are expressed in natural language, with little to no explicit code references. Further improvement in accuracy is observed when the size of the training dataset is increased through data augmentation and data balancing strategies proposed in this thesis, although depending on the model architecture the magnitude of the improvement varies. In terms of retrieval delay, the results indicate that the proposed deep learning architecture significantly outperforms prior work, and scales up with respect to search space size

    RLocator: Reinforcement Learning for Bug Localization

    Full text link
    Software developers spend a significant portion of time fixing bugs in their projects. To streamline this process, bug localization approaches have been proposed to identify the source code files that are likely responsible for a particular bug. Prior work proposed several similarity-based machine-learning techniques for bug localization. Despite significant advances in these techniques, they do not directly optimize the evaluation measures. We argue that directly optimizing evaluation measures can positively contribute to the performance of bug localization approaches. Therefore, In this paper, we utilize Reinforcement Learning (RL) techniques to directly optimize the ranking metrics. We propose RLocator, a Reinforcement Learning-based bug localization approach. We formulate RLocator using a Markov Decision Process (MDP) to optimize the evaluation measures directly. We present the technique and experimentally evaluate it based on a benchmark dataset of 8,316 bug reports from six highly popular Apache projects. The results of our evaluation reveal that RLocator achieves a Mean Reciprocal Rank (MRR) of 0.62, a Mean Average Precision (MAP) of 0.59, and a Top 1 score of 0.46. We compare RLocator with two state-of-the-art bug localization tools, FLIM and BugLocator. Our evaluation reveals that RLocator outperforms both approaches by a substantial margin, with improvements of 38.3% in MAP, 36.73% in MRR, and 23.68% in the Top K metric. These findings highlight that directly optimizing evaluation measures considerably contributes to performance improvement of the bug localization problem

    Improving Developer Profiling and Ranking to Enhance Bug Report Assignment

    Get PDF
    Bug assignment plays a critical role in the bug fixing process. However, bug assignment can be a burden for projects receiving a large number of bug reports. If a bug is assigned to a developer who lacks sufficient expertise to appropriately address it, the software project can be adversely impacted in terms of quality, developer hours, and aggregate cost. An automated strategy that provides a list of developers ranked by suitability based on their development history and the development history of the project can help teams more quickly and more accurately identify the appropriate developer for a bug report, potentially resulting in an increase in productivity. To automate the process of assigning bug reports to the appropriate developer, several studies have employed an approach that combines natural language processing and information retrieval techniques to extract two categories of features: one targeting developers who have fixed similar bugs before and one targeting developers who have worked on source files similar to the description of the bug. As developers document their changes through their commit messages it represents another rich resource for profiling their expertise, as the language used in commit messages typically more closely matches the language used in bug reports. In this study, we have replicated the approach presented in [32] that applies a learning-to-rank technique to rank appropriate developers for each bug report. Additionally, we have extended the study by proposing an additional set of features to better profile a developer through their commit logs and through the API project descriptions referenced in their code changes. Furthermore, we explore the appropriateness of a joint recommendation approach employing a learning-to-rank technique and an ordinal regression technique. To evaluate our model, we have considered more than 10,000 bug reports with their appropriate assignees. The experimental results demonstrate the efficiency of our model in comparison with the state-of-the-art methods in recommending developers for open bug reports
    • …
    corecore