
Towards Collaborative Scientific Workflow

Management System

A Thesis Submitted to the

College of Graduate and Postdoctoral Studies

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

Golam Mostaeen

c©Golam Mostaeen, December/2018. All rights reserved.

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the

University of Saskatchewan, I agree that the Libraries of this University may make it freely available for

inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for

scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their

absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is

understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not

be allowed without my written permission. It is also understood that due recognition shall be given to me

and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or part should

be addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5C9

Or

Dean

College of Graduate and Postdoctoral Studies

University of Saskatchewan

116 Thorvaldson Building, 110 Science Place

Saskatoon, Saskatchewan S7N 5C9

Canada

i

Abstract

The big data explosion phenomenon has impacted several domains, starting from research areas to diver-

gent of business models in recent years. As this intensive amount of data opens up the possibilities of several

interesting knowledge discoveries, over the past few years divergent of research domains have undergone

the shift of trend towards analyzing those massive amount data. Scientific Workflow Management System

(SWfMS) has gained much popularity in recent years in accelerating those data-intensive analyses, visualiza-

tion, and discoveries of important information. Data-intensive tasks are often significantly time-consuming

and complex in nature and hence SWfMSs are designed to efficiently support the specification, modification,

execution, failure handling, and monitoring of the tasks in a scientific workflow. As far as the complexity, di-

mension, and volume of data are concerned, their effective analysis or management often become challenging

for an individual and requires collaboration of multiple scientists instead. Hence, the notion of Collaborative

SWfMS was coined which gained significant interest among researchers in recent years as none of the

existing SWfMSs directly support real-time collaboration among scientists.

In terms of collaborative SWfMSs, consistency management in the face of conflicting concurrent opera-

tions of the collaborators is a major challenge for its highly interconnected document structure among the

computational modules where any minor change in a part of the workflow can highly impact the other

part of the collaborative workflow for the datalink relation among them. In addition to the consistency

management, studies show several other challenges that need to be addressed towards a successful design of

collaborative SWfMSs, such as sub-workflow composition and execution by different sub-groups, relationship

between scientific workflows and collaboration models, sub-workflow monitoring, seamless integration and

access control of the workflow components among collaborators and so on.

In this thesis, we propose a locking scheme to facilitate consistency management in collaborative SWfMSs.

The proposed method works by locking workflow components at a granular attribute level in addition to sup-

porting locks on a targeted part of the collaborative workflow. We conducted several experiments to analyze

the performance of the proposed method in comparison to related existing methods. Our studies show that

the proposed method can reduce the average waiting time of a collaborator by up to 36% while increasing

the average workflow update rate by up to 15% in comparison to existing descendent modular level locking

techniques for collaborative SWfMSs. We also propose a role-based access control technique for the manage-

ment of collaborative SWfMSs. We leverage the Collaborative Interactive Application Methodology (CIAM)

for the investigation of role-based access control in the context of collaborative SWfMSs. We present our

proposed method with a use-case of Plant Phenotyping and Genotyping research domain.

Recent study shows that the collaborative SWfMSs often different sets of opportunities and challenges.

From our investigations on existing research works towards collaborative SWfMSs and findings of our prior

two studies, we propose an architecture of collaborative SWfMSs. We propose SciWorCS a Collabora-

tive Scientific Workflow Management System as a proof of concept of the proposed architecture; which is the

ii

first of its kind to the best of our knowledge. We present several real-world use-cases of scientific workflows

using SciWorCS. Finally, we conduct several user studies using SciWorCS comprising different real-world

scientific workflows (i.e., from myExperiment) to understand the user behavior and styles of work in the con-

text of collaborative SWfMSs. In addition to evaluating SciWorCS, the user studies reveal several interesting

facts which can significantly contribute in the research domain, as none of the existing methods considered

such empirical studies, and rather relied only on computer generated simulated studies for evaluation.

iii

Acknowledgements

First of all, I would like to acknowledge my indebtedness and render my warmest thanks to my respected

supervisor Dr. Chanchal K. Roy for his constant guidance, advice, motivation and extraordinary patience

during my thesis works. I express my heartiest gratitude to Dr. Banani Roy who made this work possible.

Her valuable time, constant guidance and encouragement have been invaluable throughout all stages of my

thesis. In addition to their expert guidance in conducting my research works, I got both of them beside me

in all my difficult stages of my life during the entire time span. Both of them have done so much for me than

I could ever give them the thanks for.

I would like to express my special appreciation and thanks to Dr. Kevin A. Schneider. He has been

extremely helpful and supportive to me along with providing his invaluable advice throughout the entire

period of my thesis.

I thank the anonymous reviewers for their valuable comments and suggestions in improving the papers

produced from this thesis. I would like to thank Dr. Debajyoti Mondal, Dr. Khan A. Wahid and Dr. Derek

Eager, for their willingness to take part in the advisement and evaluation of my thesis work.

Special thanks to all of the members of the Software Research Lab for their extreme support and important

feedback on my work. In particular, I would like to thank Rayhan Ferdous, Muhammad Asaduzzaman,

Kawser Wazed Nafi, Amit Kumar Mondal, Masud Rahman, Debasish Chakroborti, CM Khaled Saifullah,

Shamima Yeasmin and Judith Islam.

I am grateful to the Department of Computer Science of the University of Saskatchewan for their generous

financial support through scholarships, awards, and bursaries that helped me to concentrate more deeply on

my thesis work. I would like to render my warmest thanks to all the staffs of the Department for their

constant support. In particular, I would like to thank Gwen Lancaster, Findlay Sophie, and Heather Webb.

I would especially like to thank all my friends and seniors who have been extremely helpful and encouraging

throughout the period of my thesis work. In particular, I would like to thank Monzurul Arash, Nazmul Arnob,

Md. Sami Uddin and Md. Aminul Islam.

I am extremely grateful to my family my father MD. Ismail Dewan, my mother MOST. Mosfiqa Begum,

my elder brother Golam Mostofa, my sister-in-law Anika Zaman and my beloved nephew Absi for their

unconditional support, encouragement, inspiration, and love at every stage of my life. Without their endless

sacrifice, I would not have come this far.

iv

I dedicate this to my family; my father MD. Ismail Dewan, my mother MOST. Mosfiqa Begum, my elder

brother Golam Mostofa, my sister-in-law Anika Zaman and my beloved nephew Absi.

v

Contents

Permission to Use i

Abstract ii

Acknowledgements iv

Contents vi

List of Tables ix

List of Figures x

List of Abbreviations xii

1 INTRODUCTION 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Our Contribution . 4

1.3.1 Fine Grained Locking Scheme for Consistency Management 4
1.3.2 Role Based Access Control for Collaborative SWfMSs 4
1.3.3 SciWorCS: Towards a Collaborative SWfMS . 5
1.3.4 Usability Study . 5

1.4 Publications . 5
1.5 Thesis Outline . 6

2 BACKGROUND 7
2.1 Scientific Workflows . 7

2.1.1 Life Cycle of A Scientific Workflow . 8
2.2 Scientific Workflow Management Systems . 8

3 GRANULAR ATTRIBUTE LEVEL LOCKING FOR CONSISTENCY MANAGE-
MENT IN COLLABORATIVE SCIENTIFIC WORKFLOW COMPOSITION 10
3.1 Motivation . 10
3.2 Background: Consistency Management in Collaborative SWfMSs 12
3.3 Empirical Study on Modern Scientific Workflow Collaboration: From the Perspective of Ex-

isting Locking Schemes . 15
3.3.1 Study on Modern Workflow Dependency Degree, φ and its Impacts on Collaboration . 15
3.3.2 Study on Modern Workflow Module Structure . 15
3.3.3 Impacts of Module Attributes on Collaboration . 18

3.4 Proposed Method . 18
3.4.1 Fine-Grained Workflow Component Locking for Workflow Collaboration 18
3.4.2 Lock Management Algorithms . 21

3.5 Experiments and Evaluations . 25
3.5.1 Implementation Details . 25
3.5.2 Experimental Setup . 25
3.5.3 Study on Average Waiting Time and Throughput . 27
3.5.4 Study on Workflow Composition Time and Efficiency 28
3.5.5 Performance Study on Varying Node Access Requests Topology 29
3.5.6 Analysis Study in terms of Varying Workflow Tree Structures 30

3.6 Threats to the Validity . 31

vi

3.7 Related Works . 32
3.8 Conclusion . 34

4 MODELING A COLLABORATIVE SCIENTIFIC WORKFLOW MANAGEMENT
SYSTEM USING CIAM: A CASE-STUDY WITH PLANT PHENOTYPING AND
GENOTYPING 35
4.1 Motivation . 35
4.2 Related Works . 37

4.2.1 Frameworks or Tools Supporting Pipeline Compositions 38
4.2.2 Tools Supporting API Testing Environment . 38

4.3 A Motivating Example Scenario . 39
4.4 Proposed Approach . 40

4.4.1 User Roles and Sociogram . 40
4.4.2 Responsibilities and Process Modeling . 42
4.4.3 Tool Design . 45
4.4.4 Pipeline Composition . 48

4.5 Evaluation . 50
4.5.1 Case Study: Collaborative Development and Management of a Pipeline 50
4.5.2 User Study . 54

4.6 Conclusion . 55

5 SCIWORCS- TOWARDS A COLLABORATIVE SCIENTIFIC WORKFLOW MAN-
AGEMENT SYSTEM 56
5.1 Motivation . 56
5.2 Related Works . 57
5.3 SciWorCS Architecture . 59

5.3.1 Toolbox: Set of Reusable Computational Steps . 60
5.3.2 DAG Formulation for a Data Analysis Workflow . 61
5.3.3 Collaborative Composition . 62
5.3.4 Job Management and Execution . 63

5.4 Implementation Details . 63
5.5 SciWorCS Task Specific User Interfaces . 64

5.5.1 Plugging in New Tools to SciWorCS Toolbox . 64
5.5.2 Collaborative Workflow Composition . 68
5.5.3 Tools for Aiding Collaborative Workflow Composition 68
5.5.4 Data Visualization . 69

5.6 SciWorCS Usage Examples . 70
5.6.1 QC Report of FastQ File with FastQC (Bioinformatics) 70
5.6.2 Machine Learning Based Clone Validation (Software Repository Analysis) 71
5.6.3 Machine Learning Based Clone Validation Approach 74
5.6.4 Code Clone Detection (Software Repository Analysis) 86

5.7 Conclusion . 87

6 UNDERSTANDING THE USER BEHAVIOR FOR COLLABORATIVE DATA ANAL-
YSIS 89
6.1 Motivation . 89
6.2 Related Works . 92

6.2.1 CSCW in Aiding Scientific Experiments . 92
6.2.2 Towards Collaborative Data Analysis . 92

6.3 Implementation Details . 93
6.4 Experimental Studies and Results . 95

6.4.1 Experimental Setups . 95
6.4.2 Study 1: Collaborative Composition Patterns . 95
6.4.3 Study 2: Collaborative Dataflow Problem Solving and Convergence on a Plan 100

6.5 Result Discussion . 104

vii

6.6 Conclusion . 105

7 CONCLUSION 107
7.1 Summary . 107

7.1.1 Fine Grained Attribute Level Locking Scheme . 108
7.1.2 Role Based Access Control for Collaborative SWfMSs 108
7.1.3 SciWorCS: Proposed Architecture Towards a Collaborative SWfMS 108
7.1.4 Usability Study . 109

7.2 Future Work . 109
7.2.1 Collaborative Provenance Models . 109
7.2.2 Studying More CSCW Techniques . 110
7.2.3 Deadlock Awareness among Collaborators . 110
7.2.4 Studying Collaborative Task Scheduling . 110
7.2.5 Adaptation of SciWorCS in Source Code Repository Analysis 111

References 112

Appendix A CONSISTENCY MANAGEMENT SIMULATION STUDY 124
A.1 Code Snippets . 124

Appendix B USER STUDY: USER MANUAL AND STUDY DESIGN 128
B.1 SciWorCS . 128
B.2 Introduction to SciWorCS Editor . 128
B.3 SciWorCS Workflow Composition . 128

B.3.1 Prerequisites . 128
B.3.2 Task Description . 128
B.3.3 Toolbox . 129

B.4 Collaborative Problem Solving . 130
B.4.1 Prerequisites . 130
B.4.2 Task Description . 130
B.4.3 Toolbox . 131

B.5 Collaborative Data Analysis using Machine Learning Classifiers and Statistical Tools 132
B.5.1 Task Description . 132
B.5.2 Dataset . 132
B.5.3 Toolbox . 132

B.6 NASA-TLX Questionnaires . 133
B.7 Log Snippet . 134

viii

List of Tables

3.1 Information of some arbitrary scientific workflows from myExperiment [44] 1 17
3.2 Some of the Galaxy Tools with their Attributes Count . 17
3.3 Considered Primitive Workflow Operations. 26
3.4 Primitive Operations For Component Access in Collaborative Workflow Composition Environ-

ment. 27

5.1 Selected Features Based on Distribution Analysis . 84
5.2 Classification Accuracy Comparison for different Machine Learning Models. 85

6.1 Dataflow Structure Updates Operations. 95
6.2 Primitive Operations For Component Access and User Interaction in Collaborative Data Anal-

ysis. 96
6.3 Considered Arbitrary Scientific Workflows from myExperiments [44] for the Study. 97
6.4 Publicly Available Dataset - ‘Titanic: Machine Learning from Disaster’ as Collected from

Kaggle [95]. 102

B.1 First Math Task (1 of 2) . 132
B.2 Second Math Task (2 of 2) . 132
B.3 Publicly Available Dataset - ‘Titanic: Machine Learning from Disaster’ as Collected from

Kaggle. 133

ix

List of Figures

3.1 Workflow Version Conflict . 14
3.2 Collaborative Workflow Consistency Management via Turn Based Floor Control Technique . 14
3.3 Part of a shared workflow in myExperiment [44] for collaboration (workflow id=4921, as noted

in June, 2018) . 16
3.4 Collaborative Workflow Consistency Management via attribute level granular concurrency con-

trol Technique . 20
3.5 Sub-workflow Locks in Collaborative Workflow Composition 26
3.6 Average Waiting Time and Throughput Comparison of Locking Algorithms for Collaborative

Workflow Composition. 28
3.7 Comparative Study on Collaborative Workflow Composition Time and Efficiency of Locking

Schemes. 29
3.8 Algorithm Efficiency on ‘Best’ and ‘Worst’ Case Scenario of Collaborative Node Access

Request Topology. 30
3.9 Performance Analysis in Terms of Varying Workflow Tree Structures 32

4.1 Sociogram for the proposed Collaborative Plant Phenotyping and Genotyping. 43
4.2 Participation Table for the Proposed Collaborative System. 43
4.3 Responsibilities Model for Admin. 44
4.4 Responsibilities Model for Data Specialist. 44
4.5 Responsibilities Model for Tool Developer. 45
4.6 Responsibilities Model for Pipeline Composer. 46
4.7 Responsibilities Model for Plant Scientist. 46
4.8 Process Model for collaborative plant Phenotyping and Genotyping. 47
4.9 Abstraction Layer on modular Tools for collaborative use. 49
4.10 Collaborative Pipeline Design using modularized tools. 49
4.11 Collaborative Task Modeling for Pipeline Composition. 50
4.12 Collaborative Task Modeling for Tool Development. 51
4.13 Usage example for collaborative work by the proposed method for Phenotyping. 51
4.14 Process Model for collaborative plant Phenotyping and Genotyping. 53

5.1 High-Level Architecture of SciWorCS. 59
5.2 SciWorCS DAG Formulation for Workflows. 61
5.3 User Interface Overview of SciWorCS. 64
5.4 SciWorCS tool plugin interface. 67
5.5 Locking Schemes for Consistency Management in Collaborative Composition (A subset of the

workflow nodes with corresponding Lock states). 68
5.6 Example collaborative tools for aiding collaborative data analysis process. 69
5.7 Dataset Feature Distribution - An Example Visualization for the Classification. 70
5.8 FastQC quality measures on example sequence file. 72
5.9 High-level Workflow for Machine Learning based Code Clone Validation 74
5.10 Sample feature extraction workflow for machine leaning based code clone validation. 80
5.11 Histogram of Code Fragment Line Differences. 81
5.12 Histogram of Syntactical Similarity by Token (Type 1 Norm.) 82
5.13 SciWorCS workflow for clone classification with different machine learning classifiers. 85
5.14 Code Clone Detection Workflow in SciWorCS. 88

6.1 High-level Architecture of SciWorCS (e.g., as details presented in Chapter 5) 91
6.2 Prototype Implementation of Collaborative Data Analysis Framework 94
6.3 Collaboration Process for Consistency Management Handling Concurrent Conflicting Operations 94
6.4 Collaborative Composition Work Patterns . 99

x

6.5 NASA-TLX workload for collaborative composition in terms of different locking schemes . . . 100
6.6 Collaborators’ Engagement and Contribution in Collaborative Data Analysis. 104

B.1 SciWorCS Editor for Collaborative Scientific Workflow Composition 129
B.2 Sample workflow for collaborative composition practice . 129
B.3 Paired-end reads assembly after FastQ groomer using a Migale modified version of Velvet tool. 130
B.4 Workflow used when applying the CPB2012 Basic Protocol 3; Peaks for ChIP-seq data using

MACS14. 131
B.5 Reference Workflow for the Task . 131

xi

List of Abbreviations

LOF List of Figures
LOT List of Tables
SWfMS Scientific Workflow Management System
NASA-TLX The NASA Task Load Index
SVN Subversion
CVS Concurrent Versions System
CSCW Computer-Supported Cooperative Work
CAD Computer Aided Design
SAM Sequence Alignment Map
BAM Binary Alignment Map
DAG Directed Acyclic Graph
mLOCK Descendant Module Lock
aLock Attribute Level Lock
VRE Virtual Research Environment
VL Virtual Laboratory
CVW Collaborative Virtual Whiteboard
CIAN Collaborative Interactive Applications Notation
CIAM Collaborative Interactive Application Methodology

xii

1 Introduction

We provide a short introduction of the thesis in this chapter. First, in Section 1.1 we present a general

motivation of the thesis. We then state problems and our contributions to the problems in Section 1.2 and

Section 1.3 respectively. In Section 1.4, we list the published and prepared papers for submissions from this

thesis. Finally, in Section 1.5 we provide an outline of the remaining chapters of the thesis.

1.1 Motivation

A Scientific Workf low Management System (SWfMS) (e.g., as discussed in details in Chapter 2) automates

the process of life cycle phases composition, deployment, execution and analysis of a scientific workflow

[115, 111]. The generation of the sheer amount of heterogeneous data on a daily basis by different areas

of modern science has influenced many of the disciplines in moving towards data and information driven

analysis and discoveries [115]. SWfMSs have gained much popularity in the recent years in accelerating

those data-intensive analysis, visualization, and discoveries of important information. Data-intensive tasks

are often significantly time-consuming and complex in nature and hence SWfMSs are designed to efficiently

support the specification, modification, execution, failure handling, and monitoring of the tasks in a scientific

workflow [111]. As far as the complexity, dimension, and volume of data are concerned, their effective

analysis or management often become challenging for an individual and require collaboration of multiple

scientists instead [201]. For example, in a similar study Zhang et al. [201] referred the Large Synoptic Survey

Telescope (LSST) [113] experiment that demands a collaboration of around 1800 scientists and engineers

for a complete analysis process. Besides, some scientific domains essentially require collaboration as they

are highly correlated among multiple research disciplines [201, 199]. For example, Plant Genotyping and

Phenotyping is one of such emerging research areas that requires significant collaboration among scientists of

multiple domains and expertise, such as Image Processing for Phenotyping, Bioinformatics for Genotyping,

Plant Science for the investigation of any interesting correlation between Phenotyping and Genotyping and

so on.

Although a number of SWfMSs have been developed and proposed over the last decade, such as Taverna

[140], Galaxy [66], Kepler [115], Pegasus [47], VisTrails [31], Triana [181], VIEW [109], none of them directly

support collaborative works among multiple users; hence for any collaboration, users need to follow several

time consuming manual steps [199, 201]. For example, for a collaborative design of a scientific workflow, a

user first composes a part of a workflow (e.g., a sub-workflow), exports it from the local workflow engine and

1

shares it with a collaborator for possible updates on the sub-workflow. This manual back and forth process

for collaboration is often very time consuming, does not support real-time editing and often impractical as

the collaborating group size increases in size over time [199, 164, 165, 201, 56].

Recent studies show that the scientific experiments can be significantly accelerated with the aid of virtual

environments for collaborative research, also commonly referred to as Virtual Research Environment (VRE)

or Virtual Laboratory (VL) [41, 91, 68, 201]. Several recent studies on scientific collaboration, reveals the

increasingly global, multipolar and networked nature of modern scientific researches [194, 32] that demand

towards collaborative virtual research environment [91, 68]. For example, in this context Candela et al. [32]

reported that - ‘... this trend calls for innovative, dynamic, and ubiquitous research supporting environments

where scattered scientists can seamlessly access data, software, and processing resources ...’.

Adapting the similar concepts of collaboration in terms of SWfMS, hence have gained significant focus in

recent years among the researchers [199, 167]. Several studies present the motivations and possibilities that

the collaborative SWfMSs can open up for scientific data analysis [114, 151, 200, 199, 165, 164, 201, 167, 166,

56, 78].

1.2 Problem Statement

• Problem Statement #1 (Consistency Management in Collaborative Workflow Composition): One

of the most important challenges for any real-time collaborative system is the consistency management

of the shared objects in the face of conflicting operations by the collaborators [173, 174]. Because, in a

collaborative editing system, the concurrent operations on the same shared object might create several

conflicting states at any given time frame. Generally, different version controlling techniques, such as

SVN - Subversion, CVS - Concurrent Versions System and so on are widely used for conflict resolution

of the unstructured document collaborative systems, such as, collaborative Text Document Editing

[144], collaborative Computer Aided Design (CAD) [37], object-based collaborative Graphics Editing

systems [173], collaborative bitmap editing system [60] and so on. Unlike these documents, the scientific

workflows are more structured where one module can be highly dependent on another due to dataflow

relation in between them [201]. Even any minor changes in any part of a workflow, can significantly

impact the other part of the collaborative workflow in execution and data manipulation [56, 55, 201, 199,

78]- which often make the problem notably different than that of unstructured document collaborative

systems, such as text or graphics editing systems [130, 201, 165]. Hence, consistency management in

the face of conflicting concurrent operations in collaborative workflow composition has been one of the

important research problems in this domain. The design of a ‘locking scheme’ for facilitating workflow

consistency need to answer several questions, such as How does the locking scheme can ensure least

redundant locks on workflow components?, How does the request topology affect the performance of the

locking scheme?, What is the effect of the locking scheme on overall average waiting time?, How different

2

workflow DAG affects the performance of the locking scheme?.

• Problem Statement #2 (Collaboration Modeling with Varying User Roles): Studies show that the

successful design of collaborative or groupware systems can often be more challenging than that of the

single-user oriented systems for different requirements such as, modeling cooperative procedures, roles

of multidisciplinary users, spaces for sharing information and so on which need to be addressed

[122, 196]. The similar requirements for varying roles of users have also been presented in the context

of collaborative SWfMSs [17, 36, 117]. A scientific workflow is comprised of and linked with different

components, such as workflow module ports, executable, datalink, data products, provenance infor-

mation and so on [17, 201, 56]. Managing the usability and accessibility of the workflow components

among the collaborating parties are important to guarantee their security and easier access [17]. How to

manage access to the workflow components while enabling collaboration among individuals or research

groups?, How data products, workflow modules or provenance information are shared among collaborat-

ing groups?, How different interfaces for such varying user roles are modeled? are critical questions

that need to be addressed in terms of collaborative SWfMSs design.

• Problem Statement #3 (Addressing Collaborative Requirements in SWfMSs): Zhang [199, 201] pre-

sented that, often there can have several sub-groups working collaboratively on different sub-workflows

of an entire scientific workflows. A collaborative SWfMS needs to handle such independent sub-workflow

execution and backdoor communication among the sub-group collaborators [201]. Lu et al. investigated

the possible challenges towards a collaborative SWfMSs, such as maintaining a collaborative provenance

model, the relationship between scientific workflows and collaboration models [114]. Hence, from these

existing studies a collaborative SWfMSs need to consider: How to schedule the sub-workflow execution

by different collaborating individuals or groups?, How to facilitate the collaborative data analysis with

the aid of CSCW technologies?.

• Problem Statement #4 (User Behavior in Collaborative SWfMSs Setups): In the context of CSCW,

understanding the user behavior, styles of work and so on is important towards designing effective and

efficient system collaborative systems [142]. Several locking schemes have been proposed in recent

years towards collaborative SWfMSs [56, 199, 201, 165, 164, 167]. For the evaluation, these studies, in

general, conducted several computer-generated simulation experiments. While these simulation results

depict the performance of the proposed methods; however, to the best of our knowledge none of them

considered the usability analysis of their methods in terms of real-world setups. What are styles of

works collaborators adapt while data analysis with SWfMSs?, How the data analysis task affects the

collaborative data analysis process?, What confounding factors influence the styles of works for collabo-

rative workflow composition? are some interesting findings that can significantly contribute towards

the research domain.

3

1.3 Our Contribution

Focusing on the above research problems in terms of collaborative SWfMSs, our studies make four major

contributions. Here in this section we briefly present our contribution of the study.

1.3.1 Fine Grained Locking Scheme for Consistency Management

With an attempt to facilitating the consistency management, researchers have proposed different locking

techniques of the workflow components. The locking techniques - where only a single collaborator gets exclu-

sive Write access to a part of the workflow to facilitate the consistency management [165, 201] by preventing

concurrent conflicting operations on the same workflow component. These locking schemes hence allow col-

laborators to concurrently work on different sub-workflows of the shared workflow. For example, some related

studies are: the entire workflow object locking in turns [199], descendant modules locking [56, 201], multiple

variants of module locking [165, 164] and so on (details in Chapter 3). However, as all of these existing lock-

ing methods work on workflow modular levels, the collaboration concurrency [173] is dropped significantly

as the workflow complexity grows over time with an increased number of modules and complicated datalink

relations among them [56, 201, 166, 199].

In order to improve the collaboration concurrency in terms of collaborative SWfMSs, we propose a novel

approach by further extending the workflow module locking to a more fine-grained attribute level. A large

amount of redundant descendent workflow module locks imposed by the existing methods can be significantly

avoided or minimized by the proposed method. We conducted several experimental studies to evaluate the

proposed method against existing locking schemes in terms of collaborative SWfMSs. Our studies show that

the proposed method can reduce the average waiting time of a collaborator by up to 36% while increasing

the average workflow update rate by up to 15% in comparison to existing descendent modular level locking

techniques. We also conduct several evaluation studies on varying request topologies, workflow DAG struc-

tures and so on, to answer the research questions presented in Problem Statement #1 of Section 1.2. Our

proposed fine-grained locking scheme, in such setups, demonstrates promising results in comparison to the

existing locking schemes. We present the details of our studies in Chapter 3.

1.3.2 Role Based Access Control for Collaborative SWfMSs

While the consistency management is one of the primary requirements of a collaborative system [173], such

collaborative systems involving multiple disciplines often need to consider the role-based access controls to

manage or orchestrate the entire process of collaboration [72, 124, 202]. As facilitating the collaboration

among multiple research disciplines is one of the important motivations of collaborative SWfMSs [201, 114,

199, 78], we studied the concept of role-based access control in the context of collaborative SWfMSs. We

followed the Collaborative Interactive Application Methodology (CIAM) [124] for the investigation of role-

based access control in the context of collaborative SWfMSs. We used Collaborative Interactive Application

4

Notation (CIAN) [123] for the study of role-based access control in terms of collaborative SWfMSs. We present

our study on role-based access control with a use-case of collaborative Plant Phenotyping and Genotyping

research domain to answer the research questions presented in Problem Statement #2 of Section 1.2. Chapter

4 presents the details of the studies.

1.3.3 SciWorCS: Towards a Collaborative SWfMS

From our findings and investigations of the prior two studies, we propose an architecture for collaborative

SWfMSs. Studies show that Collaborative SWfMSs often have a different set of challenges and requirements

in contrast to the single user based SWfMSs [114, 199]. For example, Zhang [199, 201] presented that,

often there can have several sub-groups working collaboratively on different sub-workflows of entire scientific

workflows. A collaborative SWfMS needs to handle such independent sub-workflow execution and backdoor

communication among the sub-group collaborators [199]. Lu et. al investigated the possible challenges

towards a collaborative SWfMSs, such as maintaining a collaborative provenance model, the relationship

between scientific workflows and collaboration models, and so on [114]. For our proposed architecture we

tried to address such studied challenges in the context of collaborative SWfMSs. As a proof of concept

of the proposed architecture, we developed- SciWorCS -a Collaborative Scientific Workflow Management

System. We present different experimental use-cases for the evaluation of the proposed architecture. We

present several use-case studies to answer the research questions regarding the sub-workflow execution, usage

of CSCW technologies, data analysis and so on (e.g., as presented in Problem Statement #3 of Section 1.2)

in the context of collaborative SWfMSs. We present the details of the studies in Chapter 5.

1.3.4 Usability Study

We conducted several user studies to understand the user behavior and styles of work in the context of

collaborative SWfMSs. In our studies, we considered different recent existing proposed method for consistency

management and collaboration in SWfMSs. We leverage SciWorCS for the empirical studies on collaborative

data analysis in terms of SWfMSs. In our study, participants were asked for some data analysis tasks, such

as real-world workflows from myExperiment [44], building machine learning classification models for a given

dataset and so on collaboratively. Our studies reveal several interesting findings and answer different research

questions as presented in Problem Statement #4 of Section 1.2 which have a significant contribution

towards a better design of collaborative SWfMSs. We present the details of the our conducted studies in

Chapter 6.

1.4 Publications

Following is a list of published and prepared papers for submission (e.g., with co-authors) from the thesis

works:

5

• Golam Mostaeen, Banani Roy, Chanchal K. Roy, and Kevin A. Schneider. Fine-grained attribute level

locking scheme for collaborative scientific workflow development. In Services Computing (SCC), 2018

IEEE International Conference on, pages 273-277. IEEE, 2018.

• Golam Mostaeen, Jeffrey Svajlenko, Banani Roy, Chanchal K. Roy, and Kevin A. Schneider. On the use

of machine learning techniques towards the design of cloud based automatic code clone validation tools.

In Source Code Analysis and Manipulation, 2018. SCAM 2018. 18th IEEE International Working

Conference on, pages 155-164. IEEE, 2018.

• Golam Mostaeen, Banani Roy, Chanchal K. Roy, and Kevin A. Schneider. Collaborative Data Analysis

With Scientific Workflow Management Systems in Theory vs Reality. IEEE International Conference

on Services Computing, 2019 (to be submitted).

• Golam Mostaeen, Banani Roy, Chanchal K. Roy, and Kevin A. Schneider. Consistency Management In

Real-Time Collaborative Scientific Workflow Composition By Granular Attribute Level Locking. IEEE

Journal - Transactions on Services Computing (to be submitted).

• Golam Mostaeen, Banani Roy, Chanchal K. Roy, and Kevin A. Schneider. SciWorCS: Towards Collabo-

rative Scientific Workflow Management Systems. IEEE Jounrnal - Transactions on Services Computing

(to be submitted).

• Debasish Chakroborti, Banani Roy, Amit Mondal, Golam Mostaeen, Ralph Deters, Chanchal K. Roy,

Kevin A. Schneider. A Data Management Scheme for Micro-Level Modular Computation-intensive

Programs in Big Data Platforms. In International Symposium on Big Data Management and Analytics,

2018 (accepted in the Conference, the extended book chapter has also been reviewed and notified as

accepted).

1.5 Thesis Outline

In Chapter 2 we discuss some background on the concepts of Scientific Workflows and Scientific Workflow

Management Systems (SWfMSs). We present our proposed locking scheme for consistency management in

Chapter 3. Chapter 4 focuses and presents discussion on the role based access control techniques in the

context of collaborative SWfMSs. In Chapter 5 we present our proposed method for collaborative SWfMSs

and demonstrate the developed tool SciWorCS in terms of several use-cases as a proof of concept. To

understand the real world impact of collaborative SWfMSs in terms of data analysis, we considered different

user studies. We present the details of the study in Chapter 6. Finally, in Chapter 7, we conclude with

overall summary of the thesis and discussion of some future research directions.

6

2 Background

In this chapter, we provide a short discussion of background and technical preliminaries of the thesis.

In Section 2.1 of the chapter, we first discuss on Scientific Workflows with their general life cycle. We

then present a general overview of Scientific Workflow Management Systems (SWfMSs) in Section 2.2 of the

chapter.

2.1 Scientific Workflows

A workflow is a facilitation or automation of a process as a part or whole [83, 12] during which the targeted

data are passed from one participant (e.g., human or computer) to another for certain actions or processing as

per some set of rules [111, 83, 12]. Workflows were initially adopted by the business community to accelerate

the overall of a business process [111, 83]. Human and computer both are common participants for a busi-

ness workflow step which are linked together forming the whole workflow. Business workflows usually take

advantage of traditional procedural programming language for the computer-based workflow steps [111]. The

workflows mainly follow two types of architectural approaches: Service Orchestration and Service Choreogra-

phy [12]. Several process modeling languages and techniques thus have been proposed and developed by the

community [12], such as: Business Process Execution Language (BPEL) [6], Yet Another Workflow Language

(YAML) [187], WfMOpen [110] - an open source workflow engine, Web Service Choreography Description

Language (WS-CDL) [100] and so on.

Scientific workflows, on the other hand, operate on a more abstract level, and used for modeling and

performing scientific experiments on a dataset [111, 12]. Unlike the business workflows, the workflow steps

for different data processing are entirely carried out by machines [111]. In terms of scientific workflows, the

workflow steps are more commonly referred to Computational Modules. A computational module is responsi-

ble for some independent tasks of data manipulation and processing. The modules define the associated input

data format, the data processing methods and the corresponding output data format [111]. The execution

behavior of the modules can also be configured as per the given data analysis task. Computational modules

are linked with one another forming Directed Acyclic Graph (DAG) of the modules representing the dataflow

relations among the modules [164, 56, 111, 12]. Based on the functionalists of a set of computational mod-

ules, the whole DAG can often be categorized into multiple sub-graphs, -which are also commonly referred as

sub-workflows. Scientific workflows generally follow data flow oriented architecture for its execution [111, 12].

That is, a workflow module starts its execution only when its corresponding required input datasets are

7

available.

2.1.1 Life Cycle of A Scientific Workflow

From composition to the analysis the life cycle of a scientific workflow can be broadly categorized into four

phases [46, 111, 69]:

1. Composition Phase [111, 46, 120]: In this phase, the creation of the workflow comprising the modular

abstraction is done. The workflow modules are configured as per the requirement of the data analysis

task, which is then linked with one another forming the complete workflow. Such workflow DAG

composition can be done both from textual or Graphical User Interface (GUI) [111]. However, the GUI

is more common for the task, as they provide more intuitive interfaces with a visual representation of

the workflow steps [3]. The composition is facilitated by one or more toolbox(es) [3]. A toolbox, T is a

set of different computational modules, m, i.e., m1,m2, · · ·mn ∈ T . For a given data analysis problem,

the workflow composition reuses the modules from the toolboxes. For example, w = m2 → m1 → m4,

is a simple linear workflow definition of abstract level- comprising of modules from the toolbox.

2. Deployment Phase [111, 46]: While the composition phase defines the abstract level of the workflow, in

the deployment phase the composed workflow is prepared for the execution with required setups. The

preparation includes the association of corresponding source codes with the abstract modules, setting

up a data source, configuring the execution environment (e.g., cluster or local instance setups) and so

on [111, 3].

3. Execution Phase: The deployed workflow is executed with associated input data in this phase to produce

the corresponding output of the workflow [111, 46, 120].

4. Analysis Phase: Finally, the output data is analyzed as per some research hypotheses in this phase.

Workflow data provenance, output data visualization and so on are some examples of the Analysis

phase [111].

2.2 Scientific Workflow Management Systems

A Scientific Workflow Management System (SWfMS) automates the process of life cycle phases- composition,

deployment, execution and analysis (e.g., as discussed in Section 2.1.1) of a scientific workflow [115, 111].

That is, a SWfMS handles and manages the overall execution of scientific workflows. They provide GUI or

command line based interfaces for the composition of the workflow in abstract level [186, 3]. SWfMSs pro-

vides some automatic facilities for associating the corresponding codes against those high-level representation

of workflow [111] for the deployment phase. SWfMSs also provide supports for several other configurations

in the deployment phase, such as input data source selection, execution environment setup (e.g., cluster or

8

local instance) and so on. SWfMSs also provides the workflow runner for the execution phase. Typically, for

running the tasks or jobs of the workflows, SWfMSs contain a job manager that is responsible for workflow

task scheduling, running and monitoring [3, 66, 111]. For the analysis phase, SWfMSs provides visualization

functionality and different meta data information, such as workflow provenance data [111, 59]. The prove-

nance data captures the different histories of the workflow execution, such as the origin of data, completion

status of the workflow modules, intermediate states of the dataset and so on [59, 111]. The examples of

some popular modern scientific workflow management systems are: Taverna [141], Galaxy [66], Kepler [115],

Pegasus [47], VisTrails [31], Triana [181], VIEW [109], DiscoveryNet [152], Chiron [138], GridNexus [24].

We present discussion on the major functionalities and focuses of these SWfMSs in Chapter 5.

9

3 Granular Attribute Level Locking for

Consistency Management in Collaborative

Scientific Workflow Composition

Scientific Workflow Management Systems are being widely used in recent years for data-intensive analysis

tasks or domain-specific discoveries. It often becomes challenging for an individual to effectively analyze

the large-scale scientific data of relatively higher complexity and dimensions and requires a collaboration of

multiple members of different disciplines. Hence, researchers have focused on designing collaborative workflow

management systems. However, consistency management in the face of conflicting concurrent operations of

the collaborators is a major challenge in such systems. In this chapter, we propose a locking scheme (e.g.,

collaborator gets write access to non-conflicting components of the workflow at a given time) to facilitate

consistency management in collaborative scientific workflow management systems. The proposed method

allows locking workflow components at a granular level in addition to supporting locks on a targeted part of

the collaborative workflow. We conducted several experiments to analyze the performance of the proposed

method in comparison to related existing methods. Our studies show that the proposed method can reduce

the average waiting time of a collaborator by up to 36% while increasing the average workflow update rate by

up to 15% in comparison to existing descendent modular level locking techniques for collaborative scientific

workflow management systems.

In Section 3.1 of this chapter, we first discuss the motivation and importance of consistency management

in terms of collaborative SWfMSs. Section 3.2 outlines technical preliminaries and challenges for consistency

management in a collaborative workflow development environment. We present our empirical study on

modern scientific workflows from the perspective of collaboration and existing methods in Section 3.3. We

then present our proposed method in Section 3.4. Section 3.5 contains several experimental evaluations of

the proposed method. We discuss possible threats to the validity of our work in Section 3.6. Section 3.7

presents the related research works. Finally, Section 3.8 reports our future works and draws the conclusion.

3.1 Motivation

Although a number of SWfMSs have been developed and proposed over the last decade (i.e., Taverna [140],

Galaxy [66], Kepler [115], Pegasus [47], VisTrails [31], Triana [181], VIEW [109] and so on), none of them

directly support collaborative works among multiple users; hence for any collaboration, users need to follow

10

several time consuming manual steps [199, 201]. For example, for a collaborative design of a scientific work-

flow, a user first builds a part of a workflow (e.g., a sub-workflow), exports it from the local workflow engine

and shares it with a collaborator for possible updates on the sub-workflow. Around 3910 such scientific

workflows has been shared among 10665 members (as last noted in June 2018) for collaboration in myExperi-

ment [44] - a shared social space for scientific artifacts. The manual collaboration process is repeated a number

of times to complete building the whole workflow comprising of several sub-workflows [201, 199]. This manual

back and forth process for collaboration is often very time consuming, does not support real-time editing and

often impractical as the collaborating group size increases in size over time [199, 164, 165, 201, 56].

Realizing the necessity of collaboration in workflow composition, several methods have been proposed

and developed in recent years [199, 165, 164, 201, 167, 166, 56]. One of the most important challenges for

any real-time collaborative system is the consistency management of the shared objects in the face of con-

flicting operations by the collaborators [173, 174]. Because, in a collaborative editing system, the concurrent

operations on the same shared object might create several conflicting states at any given time frame. Gener-

ally, different version controlling techniques (e.g. SVN - Subversion, CVS - Concurrent Versions System and

so on) are widely used for conflict resolution of the unstructured document collaborative systems, such as,

collaborative Text Document Editing [144], collaborative Computer Aided Design (CAD) [37], object-based

collaborative Graphics Editing systems [173], collaborative bitmap editing system [60] and so on. Unlike

these documents, the scientific workflows are more structured where one module can be highly dependent on

another due to dataflow relation in between them.

Modern scientific workflows are usually complex and data-intensive in nature such as, in the research

fields of Astronomy [47], High Energy Physics [115], Bioinformatics [66, 141] and so on, scientists need to

analyze terabytes of data requiring a significant amount of execution time [12]. As the workflow modular

tasks and their corresponding configurations vary significantly from domain to domain, defining a unified

rule for conflict resolution can often be very challenging in case of collaborative SWfMSs [164, 165, 56]. The

existing research works for collaborative SWfMS has hence adapted several locking techniques of the work-

flow modules and datalinks to facilitate the consistency management. The locking techniques allow only a

single user to get exclusive Write access to a component of the collaborative object to facilitate consistency

management via preventing conflicting concurrent operations by the collaborators [173, 174]. Some of the

recent proposed locking schemes for collaborative SWfMSs are: entire workflow object locking in turns [199],

descendant modules locking [56, 201], multiple variants of module locking [165, 164] and so on (as discussed

in details in Section 3.7). While those existing modular level locking techniques facilitate consistency, their

usability reduces significantly as the number of collaborators or the complexity of the workflow grows over

time (i.e., increased number of modules with complex datalink relation among them) [199, 201]. We have

presented an empirical study on the limitations based on several recent real-world workflows from myExper-

iment in Section 3.3.

In an attempt to address those limitations of the existing methods, in this chapter of the thesis we propose

11

a novel approach for consistency management in collaborative SWfMSs. Our method works by extending

the modular locks to a more granular attribute level. As the proposed method imposes locks on granular

attributes level, it can minimize the significant amount of redundant locks in comparison to existing methods

that generally operate on modular levels. We developed a prototype system as a proof of concept of the pro-

posed method. We got promising results from our several simulated experimental studies. The experimental

results show that the proposed locking scheme can reduce the average waiting time of a collaborator by up

to 36%.

Our work makes three main contributions to the research domain. First, we present several insights

from our investigation on modern scientific workflow systems from the perspective of collaborative workflow

development system (Section 3.3). Our study includes recent real-world scientific workflows from collabo-

rative shared space (e.g., myExperiment [44]). Second, we propose attribute level locking scheme based on

our investigation study, which is the first of its kind to the best of our knowledge that works on a finer

level beyond module locking for collaborative workflow development environment (Section 3.4). Third, we

introduce two different aspects in the simulated experimental study of collaborative workflow development

systems which have not been considered by any of the previous related studies: i) impact on performance for

varying complex workflow tree structures (in addition to simple VLinear, HLinear and HBinary workflow

trees used in an experimental study by Fei et al. [56]) and ii) performance analysis for varying topology of

node access requests (Section 3.5).

3.2 Background: Consistency Management in Collaborative SWfMSs

With the increase of heterogeneous data and the complexity of problems, researchers have focused on Com-

puter Supported Cooperative Work (CSCW) fields to exploit the advantages of a collaborative team works

[137]. Real-time collaborative systems allow geographically distributed users to work concurrently and syn-

chronously [173] on a shared text, image, graphics or multimedia document such as, collaborative Computer

Aided Design (CAD) [37, 38], collaborative Text Document Editing [144, 20, 174], collaborative Graphics

Editing systems [173], collaborative SWfMSs [199, 201, 56] and so on. Sun and Chen [173] mentioned the

following two primary important requirements for any collaborative system to be successful:

1. High Responsiveness: This property demands that a collaborative system should be light-weight and

user’s action must be quick provided the condition of non-deterministic communication latency. Non-

responsiveness and a significant delay between an action intention and its corresponding effect creates

confusion and reduces the overall effectiveness of a collaborative system.

2. High Concurrency : The system should be able to handle concurrent edit operations on the shared

object from multiple collaborators. As the number of users increases in a collaborative system, the

probability of user’s action conflict on a shared object also increases. The collaborative system must

12

be able to handle the stream of user actions while maintaining the consistency of the shared objects

among the users.

While existing research works adopted simple replicated architecture for maintaining High Responsiveness

(i.e., keeping a local copy of the system to every client ends and using light-weight message passing for re-

quired collaboration information), ensuring High Concurrency is comparatively more challenging in the face

of current conflicting operations.

If two concurrent workflow operations O1 and O2 (for example, changing module settings, updating

datalink and so on) by the two users targets completely independent workflow components, then any exe-

cution order of the operations can ensure the consistency of the workflow objects. However, two concurrent

operations O1 = changeV alue(c,X) and O2 = changeV alue(c, Y) raise conflict in case they target the same

workflow component c but with different values i.e., where X 6= Y . For example, Fig. 3.1 demonstrates a use-

case for workflow collaboration between two geographically separated collaborators. The targeted workflow

for collaboration has been replicated to both the local workflow engines for ensuring High Responsiveness.

We assume a consistent existence of the shared workflow object as version 0 (i.e., illustrated as 1.0 and 2.0

to represent the corresponding users) at any given time. At this state, we assume two concurrent operations

- O1 = uDLink(mm,mi) and O2 = uDLink(mm,mk) are executed independently at user ends 1 and 2

respectively. However, the two operations raise conflict (i.e., on message passing its information to the other

end), as they target the same workflow module mm but with different values - mk and mi, (i.e., where

mk 6= mi).

To facilitate the consistency management, the related works in workflow collaboration adopted several

locking schemes, where collaborators are given exclusive Write access to different workflow components in

turns to prevent concurrent conflicting operations. For example, Fig. 3.2 illustrates a locking schemes that

imposes lock on the entire workflow object for a collaborator [199]. A central server maintains the lock

requests and grants Write in turns. As at best only a single collaborator gets the Write at any given time,

the above discussed conflicting cases can be avoided. Other recent locking schemes for workflow collabora-

tion includes: descendant modules locking [56, 201], locking for dangling datalink prevention [165], multiple

variants of module locking [165, 164] and so on (details on the related works in Section 3.7).

While the existing methods can facilitate consistency management, their usage for collaboration can often

be impractical as the collaborating group sizes or workflow complexity grows over time. We have presented

the findings on the limitation of the existing locking schemes from our empirical study on several modern

real-world workflows of varying workflow management systems in Section 3.3.

13

Figure 3.1: Workflow Version Conflict

Figure 3.2: Collaborative Workflow Consistency Management via Turn Based Floor Control Tech-
nique

14

3.3 Empirical Study on Modern Scientific Workflow Collabora-

tion: From the Perspective of Existing Locking Schemes

The existing locking schemes [199, 201, 56, 165, 164] might reduce collaboration concurrency in comparison

to the proposed method significantly as the scientific workflow gets complicated with several dependency

relations over time [56]. In this context, Fei et al. [56] defined the dependency degree of workflow modules in

order to evaluate the concurrency level for collaborative workflow composition. The dependency degree of a

workflow module md, denoted as φ(md), is defined as the cardinality of the set: {mx|mx ∈M ∧D(md,mx)},

e.g., the total number of distinct descendant modules. In this section, we present a comparative analysis of

the proposed method in terms of existing methods from our empirical study on modern scientific workflow

collaboration.

3.3.1 Study on Modern Workflow Dependency Degree, φ and its Impacts on

Collaboration

The modern data-intensive scientific workflows that require collaboration the most, often contain a significant

number of modules with a relatively higher number of dependency relation among them [56, 201, 199, 165].

For example, Table 3.1 shows the information of some publicly shared arbitrary workflows in myExperi-

ment [44]. The number of modules comprising the workflows for different workflow engines indicates their

growth in size and complexity over time. In the context of collaboration, allowing only strict sub-workflow

locks by existing methods [56, 201] on a module with higher dependency degree φ, might result on a higher

probability of reduction in the collaboration concurrency which is not expected for any collaborative sys-

tem [173]. The average number of dependency degree (e.g., Avg. φ, in Table 3.1) for different workflows

illustrates the average pruning of modules per hierarchical locking on a module from unlocked sub-workflow

graph wU (e.g., as noticeable from average lock % in the table). This average strict locks can be significantly

reduced by the proposed locking scheme, as it operates on a more granular level avoiding possible redundant

sub-workflow lock conflicts. Usually, the workflow graph modules contain an arbitrary number of dependency

degree based on the particular task it solves. For example, Table 3.1, shows the top three modules in terms

of dependency degree (e.g., Avg. φ) for the corresponding workflow from myExperiment [44]. It is noticeable

from the numbers that the strict locking on such modules, in turn, locks the majority of the workflow modules

(e.g., Lock %), resulting in a significantly lower collaboration concurrency.

3.3.2 Study on Modern Workflow Module Structure

Modern scientific workflow modules also contain a large set of compulsory and optional attributes or param-

eter settings (i.e., ci ∈ Cl, (1 ≤ i ≤ PCl
) of a module ml) for configuring as per the requirement of varieties

15

Figure 3.3: Part of a shared workflow in myExperiment [44] for collaboration (workflow id=4921, as
noted in June, 2018)

16

Table 3.1: Information of some arbitrary scientific workflows from myExperiment [44] 1

W. ID Workflow Summary W. Engine #Mod Avg. φ Lock%
#Descendants

#1 #2

1198 Construction of skeleton

SBML model using subsys-

tem term

Taverna 2 133 16.8 12.6% 104 103

3599 Detrprok Workflow - detects

candidates of 3 kinds of

non coding RNA: 5’UTRs,

antisense RNAs, and small

RNAs.

Galaxy 43 8.6 20% 24 23

10 Human Microarray CEL file

to candidate pathways

Taverna 1 80 17.8 22.1% 75 73

1 As per the data collected in June, 2018

of heterogeneous data-intensive tasks [111]. For example, Table 3.2 shows the attribute counts for some

arbitrary modules of Galaxy [66] workflow engine. The higher number of attribute counts per module in the

table indicates a higher amount of time requirement for configuring it accordingly. The concurrency scope

gets even reduced if that particular module contains a higher dependency degree, φ [56, 201, 199]. Because,

in that case the hierarchical strict module lock in turns will be applied to its descendant modules for a longer

period of time as well [165]. So, configuring any such module with higher attribute counts, sets lock to it

and all its descendants for relatively longer amount of time. The concurrency scope gets even reduced if that

particular module contains a higher dependency degree and causes strict locks in turn to all its descendants

for a longer amount of time. In such cases, managing or waiting for the corresponding request lock grants

and concurrent work on the workflow by the collaborator can be often difficult and impractical.

Table 3.2: Some of the Galaxy Tools with their Attributes Count

Tool Tool Group Version # Attributes

HISAT2 NGS: RNA Analysis 2.0.5.2 19

FastqToSam NGS: Picard 2.7.1.0 18

ValidateSamFile NGS: Picard 2.7.1.0 65

Prokka NGS: Assembly 1.12.0 33

Chimera.uchime NGS: Mothur 1.36.1.0 19

17

From our investigation on the modules of popular scientific workflow management systems, such as Ke-

pler [115], Taverna [141], Galaxy [66] and so on, we found that out of a number of attributes per module,

a few of the attributes value changes significantly affects the execution behavior of the descendant modules,

like: incoming data link change, output format change, threshold value of some filtering modules and so on.

Any changes to such attribute values must be done via strict locking of the descendant modules, in order to

preserve valid workflow execution path by inter-compatible attribute settings among the workflow modules.

3.3.3 Impacts of Module Attributes on Collaboration

Some of the attribute settings of the modules are often for further tuning its own execution behaviour without

strictly affecting the execution path or behaviour of other modules in that workflow [186, 66]. For example,

FastQC [54] - a quality control tool for high-throughput sequence data, accepts a Fastq, Fastq.gz, Sequence

Alignment/Map (SAM) or Binary Alignment/Map (BAM) file as input to do a quality check analysis. As

output, it produces a quality summary text file which can be used by descendant modules. However, the mod-

ule can be configured to produce additional outputs, such as HTML based permanent report or compressed

file with different quality graphs and so on. These additional outputs are not directly used by descendant

modules, but rather later used for manual analysis [54]. ValidateSamFile - is a Galaxy [66] modular tool,

that reads a SAM/BAM dataset and report on its validity. Out of its 65 attribute configurations (as shown

in Table 3.2), 57 of them are about setting optional validation type to ignore. Setting strict lock to all

the descendant modules in such cases can often be a much strong restriction for a practical and successful

concurrent collaboration of workflow.

For example, Figure 3.3 shows a sub-workflow structure of a publicly shared workflow in myExperi-

ment [44] for Galaxy [66] Workflow Management System (e.g., as noted in June 2018, workflow id=4921,

title=Retrieve from NCBI and reduce redundancy in the viral database). The complete workflow consists of

total 19 modules. As a use-case of the collaborative development of the workflow, we assume a collabora-

tor intends for an optional configuration [66, 186] update of the workflow module - “FASTA to Tabular”.

With dependency degree, φ = 10, a strict lock on the module, in turn, locks around half of the workflow

modules (e.g., 11 ∗ 100/19 = 57.89%) - which is often impractical in the context of even medium-sized group

collaboration and can be mitigated significantly by our proposed locking scheme.

3.4 Proposed Method

3.4.1 Fine-Grained Workflow Component Locking for Workflow Collaboration

A valid scientific workflow is composed of n finite number of workflow tasks or modules, mi, (1 ≤ i ≤ n) which

are responsible for performing some specific data oriented tasks [62]. The used set of workflow modules varies

depending on the analysis or manipulation tasks on a given dataset. Besides, SWfMSs allow the configuration

18

of the individual workflow module via the corresponding parameter or setting changes to tune the execution

behaviour for different tasks. While the configured modules are responsible for the given data oriented tasks,

the datalink relation among them defines their execution order in the designed scientific workflow [55].

Based on these dataflow dependency relation among the modules, the scientific workflows are often repre-

sented as Directed Acyclic Graph (DAG), W = (M,E) [56, 62, 61, 183], where M is a set of n different work-

flow modules mi ∈M, (1 ≤ i ≤ n) and E is a set of directed edges eij = (mi,mj), (1 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j)

representing dataflow link from module mi to module mj [62]. The dataflow links create an execution de-

pendency relation among the workflow modules. A module mj can have zero to multiple predecessor module

mi, where mj is dependent on mi and the module, mj can start its execution if and only if, all of its such

predecessor modules finish their executions. We define the modular dependency relation as follows:

Definition 3.4.1 (Module Dependency Relation). For a workflow W = (M,E), a workflow module,

mt ∈ M is dependent on the workflow module, ms ∈ M , if there exists a sequence of workflow modules

m0 = ms,m1,m2, · · · ,mk = mt, such that datalink (mi−1,mi) ∈ E, for all, 1 ≤ i ≤ k. Here, the workflow

module, mt is a descendant of workflow module ms, represented as relation D(ms,mt), and cannot begin its

execution until all of its such ancestor modules finish their executions.

The workflow module in turns can be generalized as a tuple, m =< id,C, S >, where id is a unique

identifier (which is used for monitoring task execution, modular task scheduling, provenance management

and so on) of the module in a designed workflow, C is a set of P different configurations or parameter settings,

ci ∈ C, (1 ≤ i ≤ P) to tune the module execution and S is the executable modular source code.

Consistency Management via Sub-workflow Locks for Collaborative Workflow Composition

Definition 3.4.2 (Hierarchical Descendant Module Lock). For a workflow W = (M,E), a hierar-

chical descendant module lock, mLOCK(ml) on any module ml ∈ M , grants Write access to ml and any

other module mx ∈ M , where the relation D(ml,mx) holds. The lock recursively applies on any datalink

(mi−1,mi) ∈ E, in the module sequence m0 = ml,m1,m2, · · · ,mk = mx, (1 ≤ i ≤ k) for the dependency

relation D(ml,mx).

A hierarchical descendant module lock on any module ml =< idl, Cl, Sl >, mLOCK(ml), thus allows

Write access to any parameter settings or configuration, ci ∈ Cl, (1 ≤ i ≤ PCl
), where PCl

is the number of

parameter settings or configuration available in workflow module, ml.

Definition 3.4.2 for descendant module locking is applicable for any simpler linear workflows to any

hierarchical scientific workflows where a workflow is generally composed of several branched (e.g., dataflow

dependency) smaller sub-workflows recursively. Based on the definition, a central locking algorithm can

be designed for managing the concurrent sub-workflow lock/unlock requests by different collaborators (as

presented in Section 3.4.2). For a collaborative workflow W , the central locking algorithm keeps track of

currently locked and unlocked sub-workflows, such that, W = wL +wU , where wL = w1 +w2 +w3 + · · ·+wn,

19

Figure 3.4: Collaborative Workflow Consistency Management via attribute level granular concur-
rency control Technique

a list comprising of sub-workflow wi, (1 ≤ i ≤ n), that is currently locked by different collaborators and wU

represents the remaining unlocked sub-workflow that is currently not being accessed by any collaborators.

For a new lock request for sub-workflow wr, with root module node mr, the lock manager first checks

for both locked and unlocked sub-workflow list, wL and wU respectively. The requested lock is granted if

all of the descendant modules mx, of requested root module mr (e.g., D(mr,mx)) belong to the unlocked

sub-workflow wU , otherwise, the request is pushed to a waiting list. wU and wL are updated accordingly for

any lock/unlock state changes of the workflow.

Figure 3.4, shows a hierarchical descendant module lock, mLOCK(mh) by User 1 with root module mh.

Any update operation by only User 1 on this locked sub-workflow facilitate maintaining causal orders [173] on

notifying other collaborating users. This hierarchical descendant module locks are useful when users intend

to work on any sub-workflow explicitly.

Lock Extension to Granular Attribute Level

The hierarchical descendant module locking as presented above can alone facilitate the consistency manage-

ment in the face of concurrent conflicting workflow operations. However, allowing only hierarchical descendant

module locking can often be too restrictive in terms of modern collaborative workflow development (as dis-

20

cussed in Section 3.3). From these considerations, we further extend the lock to a more granular level as

defined in the following:

Definition 3.4.3 (Granular Attribute Locking). For a workflow module, ml =< idl, Cl, Sl >∈ M of a

workflow, W = (M,E), an attribute lock, aLOCK(ml, ci), grants Write access to attribute, ci ∈ Cl of the

workflow module ml.

This granular locking allows additional controls in conjunction to hierarchical descendant module locking

for explicit sub-workflow locking (e.g., Definition 3.4.2). Attaining an attribute level lock by a user ensures

only single operation execution on the modular attribute at any given time to facilitate consistency man-

agement. This adds the scope for higher concurrency as it does not necessarily impose possible redundant

locks to all its descendant modules (presented in details in our empirical study in Section 3.3). Besides, by

Definition 3.4.3, the granular lock can be expanded to include any workflow module, mx ∈ wU by iteratively

imposing locks to all its attributes, ci ∈ Cx, (1 ≤ i ≤ PCx
).

Figure 3.4, illustrates an example use case, where User 2 attains concurrent lock on any attribute,

cx ∈ Ck ∈ mk, while another user (e.g., User N), attains module lock on the workflow module, mg by

expanding the granular attribute lock to its corresponding attribute set, Cg.

3.4.2 Lock Management Algorithms

Based on the above definitions and proposed locking scheme, we developed six algorithms (e.g., Algorithms

1-6) for managing the workflow component lock and unlock requests from collaborators. A central server

keeps track of incoming lock requests for workflow components (i.e., sub-workflows, attributes or datalinks).

The lock management algorithms grant an incoming lock request if it is compatible with the current locked

workflow components, otherwise the lock request is pushed back to a waiting queue. On any workflow

component unlock, the entire request waiting queue is traversed for any possible lock grants.

Algorithm 1 handles any incoming sub-workflow lock requests. The algorithm also applies for any single

module locking, i.e., a sub-workflow such that, there is no other dependency relation with any other modules

of the workflow. Lines 1-8, checks compatibility of the requested sub-workflow lock from the information

present in wU and wL. For a sub-workflow lock request with root module, ml the algorithm first check its

own lock state for compatibility in lines 1-3 (i.e., lock state of the module and its corresponding attributes).

Note that the straightforward extraneous details have not been shown (such as, initialization of the lists) to

keep the pseudocode shorter while maintaining its preciseness. Similarly, the compatibility of the descendent

workflow component for the root module ml is checked in Lines 4-8. In case of the lock compatibility, the

lock state of the sub-workflow root module and its corresponding attributes are first changed in lines 9-12.

Finally, in lines 13-16, the lock state of the descendent workflow component is updated recursively. It also

uses Algorithm 3 (i.e., in line 14) to lock the datalink from a source to destination relation.

On the contrary, Algorithm 2 is responsible for unlocking of a sub-workflow with root node module, ml.

21

Algorithm 1: Lock Sub-Workflow

Result: Locks ml and its descendants ∈W = (M,E)

1 if ml ∈ ListOfLockedModules or ci ∈ Cl, (1 ≤ i ≤ PCl
) ∈ ListOfLockedAttr. then

2 add ml to RequestQueue

3 return false

4 end

5 foreach mx such that relation, D(ml,mx) holds do

6 if ci ∈ Cx, (1 ≤ i ≤ PCx
) ∈ ListOfLockedAttr. then

7 add ml to RequestQueue

8 return false

9 end

10 end

11 Add ml To ListOfLockedModules

12 foreach ci ∈ Cl do

13 call Lock Module Attribute, (ml, ci)

14 end

15 foreach mx such that datalink, (ml,mx) ∈ E do

16 call Lock Data Link, (ml,mx)

17 call Lock Workflow Module, mx

18 end

19 return true

22

Algorithm 2: Unlock Sub-Workflow

Result: Unlocks ml and its descendants ∈W = (M,E)

1 if ml 6∈ ListOfLockedModules then

2 return false

3 end

4 foreach mx such that relation, D(mx,ml) holds do

5 if mx ∈ ListOfLockedModules then

6 return false

7 end

8 end

9 Remove ml From ListOfLockedModules

10 foreach ci ∈ Cl do

11 call Unlock Module Attribute, (ml, ci)

12 end

13 foreach mx such that datalink, (ml,mx) ∈ E do

14 call Unlock Data Link, (ml,mx)

15 call Unlock Workflow Module, mx

16 end

17 return true

Algorithm 3: Lock Data Link

Result: Locks (ml,mx) ∈ E, of Workflow W = (M,E)

1 if (ml,mx) ∈ ListOfLockedDatalinks then

2 add (ml,mx) to RequestQueue

3 return false

4 end

5 Add (ml,mx) To ListOfLockedDatalinks

6 (ml,mx)← Read & Write Access

7 return true

23

Algorithm 4: Lock Module Attribute

Result: Locks attr., ci ∈ Cl, of workflow module, ml

1 if (ml, ci) ∈ ListOfLockedAttr. then

2 add (ml, ci) to RequestQueue

3 return false

4 end

5 Add (ml, ci) To ListOfLockedAttr.

6 (ml, ci)← Read & Write Access

7 return true

Algorithm 5: Unlock Data Link

Result: Locks (ml,mx) ∈ E, of Workflow W = (M,E)

1 if (ml,mx) 6∈ ListOfLockedDatalinks then

2 return false

3 end

4 Remove (ml,mx) From ListOfLockedDatalinks

5 (ml,mx)← Read Access Only

6 return true

Algorithm 6: Unlock Module Attribute

Result: Locks attr., ci ∈ Cl, of workflow module, ml

1 if (ml, ci) 6∈ ListOfLockedAttr. then

2 return false

3 end

4 Remove (ml, ci) From ListOfLockedAttr.

5 (ml, ci)← Read Access

6 return true

24

Lines 1-2 first checks the unlock state of the root module. The unlock request is aborted in case the sub-

workflow root itself is not in the locked state, i.e., ml 6∈ wL. A hierarchical sub-workflow lock ensures that

all the descendent workflow components maintain a similar lock state as indicated in Definition 3.4.2. To

maintain this property the states of parent modules ofml are checked in lines 4-8. On a successful condition for

the unlock of the sub-workflow, the requested root module (i.e., lines 9-12) and its corresponding descendent

workflow components (i.e., lines 13-16) are recursively released from their locked state.

Algorithms 3 and 4 operate on the granular data link and attribute levels respectively. In addition to their

invocation by Algorithm 1 for a given sub-workflow lock, the algorithms are also responsible for handling

the lock imposition on granular workflow components (i.e., module attribute and datalink relation between

a source and a destination module).

3.5 Experiments and Evaluations

3.5.1 Implementation Details

We implemented a prototype of the proposed method as a proof of concept. The prototype implementation

is a cloud-based system hosted in a Linux Server. We used Python 2.7 as the server side language. On

the other hand HTML5, CSS and JavaScript were used for client-side programming. We also used Ajax for

asynchronous server communications.

Fig. 3.5 shows a screenshot of the collaborative workflow composition panel. We adapted the proposed

locking scheme for consistency management while collaborative workflow composition. The module and at-

tributes are color-coded to represent their corresponding lock states to the collaborators. For example, the

green color-coded sub-workflow (i.e., comprising of Modules 3, 4 and 5) denotes the locked sub-workflow

by this collaborator, the red color coded sub-workflow (i.e., comprising of Modules 1 and 2) shows the

sub-workflow currently locked by other remote collaborators and the remaining white colored workflow com-

ponents (i.e., Module 6 and 7) represent no collaborators currently hold locks on those corresponding com-

ponents. Collaborators can request, release or see the current lock status of any corresponding workflow

components. For example, the similar options has been invoked (i.e., with right-click on the mouse) in the

sub-workflow with root node - Module 6. We also implemented other existing locking schemes [199, 201, 56]

for our experimentation on comparative study. The details on the corresponding experiments are presented

later in this section.

3.5.2 Experimental Setup

For our experiments, we considered six basic workflow operations as presented in Table 3.3. Majority of the

complex workflow operations are composed of sets of such basic workflow operations. Workflow collaborators

were simulated using independent threads. To simulate short-read, long-thinking pattern [201, 199], as

25

Figure 3.5: Sub-workflow Locks in Collaborative Workflow Composition

adopted by related works [201, 56], we considered random thinking time [201] interval ranging from 10

ms to 15 ms in between any basic workflow operation execution by a collaborator. If the next thinking

time is relatively longer (e.g., considered, >10 ms), the corresponding collaborator releases any accessed

object, making it available for other collaborators of the group. The relatively shorter interval time results

in the possibility of generating relatively more conflicting operations, and hence has been used for testing

the performances of the algorithms in extreme conditions [199, 201] (e.g., while the shorter interval time is

good for the performance testing of the algorithms in simulated environment and adapted by related studies

[199, 201], the human thinking time can often be relatively longer or non-deterministic in real-world setups.

We also present our study on such real-world setups in Chapter 6). The considered access request or release

controls have been presented in Table 3.4. To mitigate any possible biases from the results, the experiments

were repeated three times, and their average values were used for convergence.

Table 3.3: Considered Primitive Workflow Operations.

Index Workflow Operation

1 Adding a New Module to the Workflow

2 Adding a New Datalink Relation From a Module

3 Adding a New Datalink Relation To a Module

4 Updating a Configuration Attribute of a Module

5 Updating the Source of an Existing Datalink Relation

6 Updating the Destination of an Existing Datalink Relation

26

Table 3.4: Primitive Operations For Component Access in Collaborative Workflow Composition
Environment.

Operation Type Collaborative Operation

Component Access/Update

Sub-workflow Access Request

Sub-workflow Access Release

Module Attribute Access Request

Module Attribute Access Release

Module Attribute Update

DAG Layout & Views
DAG Node Location Update

DAG Datalink Location Update

3.5.3 Study on Average Waiting Time and Throughput

Fig. 3.6 illustrates the experimental results on average waiting time and throughput for varying number of

group sizes for collaboration.

The waiting time, δji of a user, Uj for a lock request Rj
i ∈ Rj (i.e., where Rj is a set of all requests from

the collaborating user Uj), in a collaborative workflow composition environment is calculated as the total

amount of time delay between the access request and its corresponding access grant [201, 199]. So, for a

group of n collaborators the average waiting time, α is calculated as, α = 1
n

∑n
j=1

∑|Rj|
i=1 δ

j
i . A lower value of

average waiting time denotes higher responsiveness of the system resulting in better overall productivity of

the collaborating group. As noticeable from the graph, all the locking schemes show around a similar waiting

time when the group size is relatively smaller (i.e., maximum of two collaborators). However, as the group

size increases significant differences are noticeable among the locking schemes. The graph depicts that the

turn-based locking scheme is comparatively more sensitive to the group size, as it steadily increases with

the number of collaborators. The difference between strict module and proposed locking schemes are also

noticeable as the group size increases beyond six. For example, the average waiting time for the proposed

attribute level locking scheme with 18 collaborators is around 165 ms in comparison to 2495 ms and 433 ms

for turn-based [199] and strict descendant module locking schemes [56, 201, 165] respectively.

While the average waiting time is somewhat correlated with the responsiveness, the throughput or work-

flow updates count per unit time hints the overall concurrency support of the collaborative system. So, we

were also interested to investigate the throughput of the corresponding locking schemes (as illustrated in

Fig. 3.6). Up to a group size of two, the turn based locking scheme shows a better average throughput in

comparison to the other locking schemes. A possible reason for this behavior is the turnaround time between

the request and its access grant on smaller components, in comparison to a fewer number of access requests

in case of turn based locking scheme (i.e., access request on the whole workflow object). However, as the

27

group size increases the throughput for the turn based locking scheme decreases noticeably. The proposed

locking scheme shows significant improvement in the throughput in comparison to other locking schemes with

the increase of group size. For example, the proposed method shows consistent better performance when the

group contains more than five collaborators. The workflow update count per minute for turn based, strict

and attribute level locking schemes are around 4886, 12880 and 20143 respectively for a collaborative group

size of 18. The graphs also show a similar trend for a higher number of collaborators, which is promising.

Figure 3.6: Average Waiting Time and Throughput Comparison of Locking Algorithms for Collab-
orative Workflow Composition.

3.5.4 Study on Workflow Composition Time and Efficiency

The workflow composition time is considered as the total required time to complete the execution of all

the intended updates from the collaborators towards finalizing a workflow composition collaboratively. To

evaluate the composition time of the locking schemes, every collaborator were assigned to execute a specific

number of updates operations at random from Table 3.3. For our experiments, we assigned 25 such workflow

update operations at random to each of the collaborator in a group. The total workflow composition time

is then calculated as the total required time to finish the update execution from all the collaborators (i.e.,

for a group size of n, the total number of updates operation to execute are 25 ∗ n). Fig. 3.7 illustrates the

obtained results from the experiments on the locking schemes. As noticeable from the graphs, the turn based

locking scheme is very sensitive to the group size for the workflow composition time. As an inclusion of a

collaborator to the group, adds extra waiting time to all the other collaborators in addition to an extra set

of update operations, the effect is clearly noticeable from the graph of turn based locking scheme.

Zhang et al. [201] used efficiency value for a similar comparative study that denotes the ratio of task

28

occupancy in a given time frame and calculated as following Eq.:

E =
throughput ∗ unitT ime∑numOfTasks

i=1 unitT ime ∗ numOfTasks
(3.1)

The figure also illustrates that the efficiency values (i.e., Eq. 3.1) for the existing locking schemes decreases

significantly in comparison to the proposed method with the increase in collaborative group size (e.g., espe-

cially the behavior is noticeable in the graph when the group size is more than 3).

Figure 3.7: Comparative Study on Collaborative Workflow Composition Time and Efficiency of
Locking Schemes.

3.5.5 Performance Study on Varying Node Access Requests Topology

The locking algorithms follow different techniques for serving the sub-workflows on the requests by the

collaborators. For a given collaborative workflow, W = (M,E) and a sequence of collaboration locking

requests RS , a locking algorithm, L partitions W into wL and wU , i.e. locked and unlocked sub-workflows

respectively, i.e., L(W,RS) → W = w1, w2, · · · , wn ∈ wL ∪ wU [164]. The topology of the granted requests

can vary for different locking algorithms. In addition to the differences in locking approaches by different

algorithms, the topology of the granted requests also depends on several other factors. For example, Sipos et

al. [165, 164] mentioned three factors that determine the decision (i.e. granting/denying of a collaboration

request) of a locking algorithm:

(i) The current state of the workflow graph W , comprising of different modular tasks and corresponding

datalink relation among them

(ii) The topology of already locked n sub-workflows, w1, w2, w3 · · ·wn ∈ wL

(iii) The topology of l lock requests, R1, R2, R3, · · ·Rl ∈ RS

29

Figure 3.8: Algorithm Efficiency on ‘Best’ and ‘Worst’ Case Scenario of Collaborative Node Access
Request Topology.

So, we were interested to investigate the algorithms performances on varying access request topologies.

To test the performance in extreme cases, two types of request topologies were considered - a new access

request always targets the available: i) node with lowest dependency degree, and ii) Oppositely, node with

highest dependency degree, φ (e.g., as defined in Section 3.3). Figure 3.8 illustrates the obtained results by

the algorithms.

As it is noticeable from the graph of higher dependency node requests topology, that they do not show

any recognizable patterns in their differences. As the proposed method also allows explicit lock on any entire

sub-workflow as per the requirement of a collaborator, in principle both the locking schemes follows somewhat

similar patterns for their lock access grants in this case; which is a possible reason for such behavior by the

algorithms. Similarly, although the proposed method shows a better result in case of lower dependency node

requests topology, the difference is lesser prominent, unlike the comparisons of the algorithms in all other

dimensions.

The above results suggest that the proposed locking scheme can adapt to both the extreme case scenarios

as per the requests from collaborators. For example, for a workflow collaboration with relatively larger group

size, collaborators might prefer working on different sub-workflows of varying size independently [201]. The

proposed locking scheme can also adapt to such cases in addition to the finer component level locking of the

workflow object.

3.5.6 Analysis Study in terms of Varying Workflow Tree Structures

In Section 3.4, we suggested a hypothesis that the lock on a module with a higher dependency degree φ,

can largely impact the overall collaboration scope of the workflow. We thus conducted several experimental

studies with varying workflow tree structures to test the hypothesis. We considered six different dependency

30

relations of the workflow trees as presented in Figure 3.9.

The 2, 3 or 4 regular workflow trees in the figure represent three different structures, where every non-leaf

workflow module has exactly 2, 3 or 4 child module respectively. The 2, 3 or 4 all connected workflow trees on

the other hand, represent some-what similar structures, but with higher dependency degree considerations

where, any workflow module of level l, is dependent on all of the modules of level (l − 1) by direct incoming

dataflow relation among them (i.e., except for the root workflow module). The experimental results as

illustrated in the figure, show a significant increase in average waiting time with the increase of overall

dependency relation in case of strict module locking scheme.

For example, in case of strict locking, for 2 all connected workflow tree the average waiting time raises

up to around 1520 ms in comparison to proposed attribute level locking scheme, which is approximately 958

ms. That is, the average ratio of reducing the overall waiting time by the proposed method is around 0.63

(i.e., 958∗100/1520 = 63%) in case of 2 all connected workflow tree structures. Similarly, in case of 2 regular

workflow tree structures, the average waiting time with 29 collaborators raises up to around 1243 ms and 726

ms for strict module locking and proposed locking schemes respectively (i.e., approximately 58% reduction

by the proposed locking scheme). It is also noticeable from the graphs that, the difference in average waiting

time between the locking schemes increases significantly with the increase of collaborating group size. For

example, both the locking schemes show more or less similar average waiting time when the group contains

five or less number of collaborators, however, the average waiting time increases noticeably with the increase

of group size for strict locking scheme in comparison to the proposed locking scheme. These results suggest

higher concurrency of the proposed locking scheme.

3.6 Threats to the Validity

In our simulated experimental studies, we adopted short-read, long-thinking pattern [201, 199] with a pre-

defined thinking time range to imitate the human collaborators’ working behavior. However, the human

working pattern can be more diverse in nature (e.g., longer thinking time, inter-collaborator communications

and so on) and thus it can be often challenging to exactly imitate in a simulation study. While this is a

common threat for any simulation studies, the existing state of the art simulation based related techniques

[199, 201, 56] used this approach for evaluating their studies with success which gave us confidence on our

evaluation as well. Furthermore, in order to mitigate any biases in the results, the exact experimental settings

were applied to all of the locking schemes, the experiments were conducted on the same machine and also

repeated a number of times to use their average values for convergence. We also conducted the experiments

in several dimensions (as presented in Section 3.5) to validate the performance comparison studies.

31

Figure 3.9: Performance Analysis in Terms of Varying Workflow Tree Structures

3.7 Related Works

Scientific workflow management systems have gained much popularity for data intensive analysis and has been

adopted by different research domains [47, 159, 115, 66, 141]. Several workflow management systems have

been proposed and developed over the last decade focusing on specific research branches. As the scientific data

complexity, dimension and volume increase significantly in recent time, researchers of different domains try

to exploit the Computer Supported Cooperative Work (CSCW) to accelerate the analysis process efficiently.

These real-time collaborative techniques have also been extended to scientific workflow management systems

in recent years.

SWfMSs have gained much popularity in the past few years and are widely used for data-intensive analysis,

simulation, visualization and so on [12, 111]. Some of the popular modern SWfMSs are: Taverna [141], Galaxy

[66], Kepler [115], Pegasus [47], VisTrails [31], Triana [181], VIEW [109], DiscoveryNet [152], GridNexus

[24] and so on. However, none of the existing SWfMSs support collaborative workflow composition.

Lu et al. [114] studied several motivations and opportunities for collaborative SWfMSs from the perspective

of large-scale and multidisciplinary research projects. In recent years, several methods have been proposed

for consistency management of the shared workflow in a collaborative environment. Floor control or turn

based locking schemes (e.g., the entire collaborative object is locked in turns by collaborators) are widely used

for consistency management in a collaborative work environment. Zhang et al. [199] studied the concept in

32

the context of collaborative workflow management systems. While such turn based approach better matches

with human communication protocol (e.g., Robert’s Rules of Order (RRO) [118]), it has several issues such

as only a single collaborator can work on workflow update at any given time (e.g., the concurrency count is

significantly low), longer average waiting time even for a medium-sized collaborative group and so on.

Each collaborator generally has only the Read access to the shared workflow. Collaborators request and

compete for the floor for carrying out any update or transaction on the workflow (e.g., Read & Write

access). The collaborative workflow management system server maintains a request queue for handling the

floor control requests. If the floor is not currently occupied, the system pops out and grants the floor

access to the appropriate collaborator (e.g. following some request dispatching protocols: first come first

serve or collaborator priority based on requester roles and so on) from the request queue. Any workflow

update operation information by the floor owner is sent to all other collaborators by simple message passing

techniques. As only a single collaborator works on workflow update at any given time, the consistency

maintenance for all the collaborators is much simplified in this case. However, the concurrency count is

significantly low in this method. So, the average waiting time for getting floor access can often be much

higher, even in case of a medium-sized team.

Fei et al. [56] and Zhang et al. [201] presented locking schemes by allowing only descendent module

locks (e.g., descendent nodes of the workflow DAG [111]) instead of imposing the lock on the entire workflow.

Though the collaboration concurrency is increased in this case in comparison to turn based locking [199], these

modular locking schemes show a significant reduction in the concurrency count as the workflow complexity

grows over time with an increased number of modules and complicated datalink dependency relation among

them (Section 3.3). Because a modular lock in these cases, in turn, locks major portions of the collaborative

workflow. In an attempt to lower the redundant sub-workflow locks (e.g., any intended update on a module,

strictly locks all of its descendants modules due to the extension of the locking set [164]), using multiple

modes of sub-workflow locks have also been proposed. Sipos et al. [164] used two lock modes - User and

System locks. User locks are applied to only the module where a collaborator intends for any update, while

System locks are applied recursively to all its descendants. As two ‘System Locks’ are considered compatible

in this proposed method, it can provide slightly better concurrency than strict descendant modules locking

at some conditions.

Fei et al. [56] proposed a lock compatibility matrix for a set of six pre-defined modes of locks. While

multiple modular locks can avoid a few of the redundant locks depending on the defined compatibility relation,

the improvement is almost negligible for a larger collaborative group due to their several lock conflicts.

Techniques have also been studied for extending the single-user Grid portals to a collaborative environment

[168, 165]. Dou et al. [49] studied context and role-driven scientific workflow development pattern in a

collaborative environment. However, the extension or generalization of the method is challenging as defining

non-conflicting roles can often be much complex in terms of consistency and depends largely on the given

collaboration domain. The contention and releasing phases are much similar to request and release of locks

33

respectively of turn based collaboration. The workflow update operations after the contention phases are

synchronized for all the collaborators in the editing phase. The corresponding sub-workflow phases are

managed by maintaining a copy of the collaborative workflow to a server as a global workflow [168].

As a valid scientific workflow is usually a DAG [111, 12, 164], several methods have been proposed for

maintaining different DAG properties in a collaborative environment. Kavitha et al. [101] proposed a method

for identifying loops in a complex workflow involving multiple organizations or departments. The proposed

method uses Petri Nets for the cycle or loop detection in the workflow graphs. Sipos et al. [167] proposed a

locking scheme for avoiding cycles or invalid edges in the workflow graph in any concurrent workflow update

operations.

However, the existing locking schemes operate in the modular level and thus often result in significantly

low concurrency count in modern scientific workflow collaborations (Section 3.4). To mitigate the similar

problems, collaborative research works on other domains such as text or graphics editing systems have

considered locking on finest component levels. For example, Sun et al. [172] studied fine-grain locking scheme

in the character sequence levels for collaborative text editing systems as previous studies [131] show that finer

grained locking allows higher concurrency in collaborative environments. To the best of our knowledge, our

work is the first in the context of collaborative SWfMSs to consider finer attribute level locking in comparison

to workflow module level locking.

3.8 Conclusion

In this chapter, we presented our investigation results of existing locking schemes in terms of consistency

management of modern scientific workflow collaboration in the face of concurrent conflicting operations.

From our study, we found that considering module level workflow locks can often be a strong assumption

resulting significantly low concurrency. We proposed a fine-grained locking scheme by further extending the

modular locks to attribute level. The proposed attribute level locking scheme attempts to accelerate the

collaborative workflow development process by lessening redundant sub-workflow locks. We got promising

results from our simulation studies on multiple collaboration scenarios with a reduction of average waiting

time by up to 36% while an increase of average workflow update rate by up to 15% in comparison to existing

descendent modular level locking techniques.

While the locking scheme ensures the consistent workflow composition in the face of conflicting concurrent

update operations, a collaborative SWfMS also requires access control technique to efficiently manage the

access of the workflow components among different collaborators [17, 114]. Hence, we propose a role based

access control technique in addition to the locking scheme towards efficient design of a collaborative SWfMS.

We present our proposed role based access control technique in the next chapter.

34

4 Modeling a Collaborative Scientific Workflow

Management System using CIAM: A case-study with

Plant Phenotyping and Genotyping

While the consistency management is one of the primary requirements of a collaborative system [173]

(e.g., as discussed in Chapter 3), collaborative SWfMSs involving multiple disciplines often need to consider

access control technique to manage or orchestrate the entire process of collaboration [72, 124, 202]. In other

word, collaborative SWfMSs need to provide some ways of managing the access controls of different workflow

components among collaborators, while still allowing the collaboration on the shared scientific workflow

and its components [17, 114]. We adapt Collaborative Interactive Application Methodology (CIAM)[122]

for efficient design of access control techniques in terms of in collaborative SWfMSs. We show an use-case

scenario using Plant Phenotyping and Genotyping research domain as an evaluation of the proposed access

control technique.

In this chapter, we first discuss the motivation and importance of access control techniques in terms of

collaborative SWfMSs in Section 4.1. We then present related existing works on this research domain in

Section 4.2. In Section 4.3, we provide an example scenario of collaboration in terms of data analysis and

then we discuss our proposed method of role-based access controlling of the workflow components in Section

4.4. Section 4.5 presents the evaluation of the proposed method. We finally draw conclusion of the chapter

in Section 4.6.

4.1 Motivation

Several recent studies demonstrate the necessity of collaborative systems towards conducting complex scien-

tific experiments involving multiple researchers of varying domains [41, 91, 68, 201]. The studies envisioning

the collaborative SWfMSs similarly, have gained significant focus among researchers over the past few years

[114, 200, 78, 201, 199, 165, 164]. However, the design of such collaborative or groupware systems comprising

multiple users of varying roles is often progressively extended in comparison to single-user oriented systems

[122, 196]. The design of such collaborative systems often raises added issues such as modeling cooperative

procedures, roles of multidisciplinary users and spaces for sharing information [122]. We adapt Collaborative

Interactive Application Methodology (CIAM) [124] towards addressing and analysis of these requirements

set from collaborative SWfMSs perspective. CIAM leverages Collaborative Interactive Applications Notation

35

(CIAN) for considering Software Engineering designing methodologies while taking into account the require-

ments from Computer Human Interaction perspective [124]. We present our studies of collaborative SWfMSs

with a use-case of Plant Phenotyping and Genotyping research domain.

With the rapid increase of the world population every year, ensuring the required amount of food con-

sumption rate worldwide has been a challenge in recent years. Tilman et al. [182] studied on predicting the

future consumption demand. Their study shows that agricultural production must have to be doubled to

fulfill the consumption demand of a rapidly increasing population by the year 2050. The situation even gets

worse with unfavorable climate changes and the overall reduction of agricultural lands for the accommodation

of the increased human population worldwide [182]. So this has been a huge challenge in the recent years

and researchers are trying to come up with solutions that can accelerate agricultural production in compara-

tively smaller agricultural lands and that can better adapt with those unfavorable climate changes and other

environmental impacts [57]. Thus, plant Genotyping and Phenotyping are important for meeting the future

consumption demand. The research on plant Phenotyping and Genotyping involve researchers from multiple

disciplines. For example, research on Plant Phenotyping relies increasingly on image processing to organize

the observations of different behaviors of the plants and to quantify those observations in pursuit of better

understandings of different factors that correlate with several plant diseases or hampers the healthy life cycle

of plants. Plant Genotyping on the other hand largely involves research works on bioinformatics to extract

important information from plant gene sequences that possibly correlates with Plant Phenotyping or other

important factors that affect a healthy plant life cycle [80]. Besides, to get a successful result, the research

requires constant monitoring of the plants and thus generates huge amounts of gene sequences or image data

to analyze [57, 7]. So, the research area also involves Big Data, High Throughput, Distributed computing

[52]. A collaborative research involving all those multidisciplinary researchers to develop and improve an

automatic system for a given scenario often becomes a challenging work. For example, image processing

researchers often lack the time and resources to engineer their code for robustness and compatibility, while

plant scientists feel the need to try new developed technologies or algorithms but this whole process is slowed

down for the lack of well designed and tested user interfaces to make practical use of them by plant scientist.

Managing a common free time for all the researchers for arranging some physical meetings often become

difficult. On the other hand, even if the communication is done via such physical meetings or some electronic

medium it lacks sharing and testing of works across multidisciplinary researchers in addition to just commu-

nication or discussion about the work progress. Oppositely on the fly collaboration among researchers for

sharing and testing of works in addition to just communication can help to monitor the overall work progress

and more importantly finding any potential problems or opportunities available in any of the modules in

earlier phases of the research and development.

Various frameworks (e.g., Galaxy [3], iPlant Collaborative [121], GenAp [105] and LemnaTec [1]) have

been developed to automate the scientific workflows management and support the computational needs of this

domain. One of the challenges of these frameworks is that associated stakeholders (e.g., agronomists, data

36

specialists, image analysts and tool developers) work in isolation to perform their tasks towards developing

a workflow or pipeline. As a result, it is often difficult for stakeholders to perform their tasks effectively.

For example, if an agronomist wants to compose and execute an image processing pipeline, they encounter

various problems such as the difficulty of accessing an appropriate set of data, difficulty to execute a tool

comprising of several configuration parameters or unavailability of tools that he wants to add in his pipeline

after analyzing its output. On the other hand, a tool developer encounters difficulty to define appropriate

input parameters and output of a tool. These kinds of problems of the stakeholders could be solved if they

could communicate and collaborate with each other effectively while working towards building a workflow.

In order to address these shortcomings of the existing frameworks, we propose a cloud-based collaborative

SWfMS where various stakeholders can compose pipelines on-the-fly by getting help from each other. For

example, an agronomist should be able to send a message to a tool developer along with sharing the pipeline

in order to integrate a tool (e.g., a data transformation tool) that they wish to add in the platform after

analyzing their pipeline. Using the framework the tool developer should be able to add their tool on-the-fly

without even recompiling the system. Moreover, the platform should allow users testing different algorithms

and techniques via simple and intuitive user interfaces collaboratively. For example, plant scientists can

customize different algorithms from the user interface by changing different parameters instead of dealing

directly with source codes to analyze and give feedback about the result to the image researchers right on.

The proposed method thus works as a communication layer among multi-disciplinary researchers and thus

rapidly and efficiently handling the research growth in collaborative setups.

While we present the underlying architecture of our proposed collaborative SWfMS in Chapter 5, we first

present our studies leveraging CIAM to identify different roles and to model the responsibilities and processes

in the context of collaborative SWfMS. The platform thus allows specific role-based users integration, e.g.,

plant Phenotyping researchers will log in with a plant researcher role, whereas image analysis tool developer

will log in with an image researcher role and so on with some functions of access controls on the workflow

components. As a result, using the platform image researchers should be able to get real-time feedback from

the plant researchers for their developed algorithms.

We evaluated our framework by getting feedback from three different stakeholders such as, bio-informatician,

a tool developer and an agronomist which were promising. Although we present a comprehensive evalua-

tion of our proposed collaborative SWfMS in Chapter 5 and 6 for the detailed architecture and user-studies

respectively, here we focus our presentation on the high-level collaboration methodologies using CIAM on

the SWfMSs perspective.

4.2 Related Works

We propose a framework using which users can compose pipelines for plant Phenotyping and Genotyping. In

addition, users should be able to test a developed tool for understanding its usage. Considering these two use

37

cases of our developed tool, we divide the related work into two areas: (i) frameworks or tools that support

scientific pipeline composition, and (ii) frameworks or tools that support rapid API testing.

4.2.1 Frameworks or Tools Supporting Pipeline Compositions

Plant Genotyping and Phenotyping analyses involve numerous steps including physical plant sample col-

lections, data curation, data conversion into different steps for generating users’ expected end results, and

making analysis results available to researchers and practitioners if needed [76]. There are a number of

challenges involved in automating the process of plant Genotyping and Phenotyping, e.g. reproducibility

of experiments, high throughput processing of large amounts of data in various formats (e.g. structured,

semi-structured and unstructured), identification of appropriate meta-data for the diverse uses of the data,

collecting, abstracting, and loading data into easily accessible structures. Several frameworks such as, GenAp

[105], iPlant Collaborative (or iPlant) [121], Galaxy [186, 3], and LemnaTec [1] targets different aspects of

plant Phenotyping and Genotyping. These technologies also attempt to tackle other problems, such as secu-

rity, workflow management and accessibility of public datasets. These frameworks offer a visual interface for

composing pipelines. iPlant offers both genomic and image processing pipelines. However, iPlant offers less

interactive workflow composition interface than Galaxy. GenAP is an integrated architecture for supporting

genomic pipelines which basically runs Galaxy in their high-performance computing environment. LemnaTec

is a desktop-based commercial application that supports a high throughput image processing pipeline called

HTPheno. Our proposed framework mitigates the issues of workflow component access and management of

the existing systems on collaborative SWfMSs, which we evaluate on a cloud-based plant Genotyping and

Phenotyping collaborative SWfMS.

There are some command line based tools available for composing bioinformatic pipelines such as Mothur,

QIIME, and Phonix 2 [169]. However, these tools do not support collaboration among different groups of

researchers. Google Dataflow [5] offers a programming model for composing pipelines. However, the target

users need to have a deep knowledge about the language to make pipelines. Users without any experience

of working with programming languages will find much difficulty in grabbing the programming style and

syntax for developing pipelines for their own jobs. Confucius [201] is a tool for supporting collaborative

scientific workflow composition. However, in this work, two different perspectives were particularly focused

on provenance and reproducibility. Techniques that can help collaborate those two features were discussed.

A service-oriented model is also proposed. It was finally applied upon effective concurrency support control.

4.2.2 Tools Supporting API Testing Environment

Hoffman et al. [82], in their work on Java API testing, identified three kinds of commonly used API testing

techniques: in the first category, automatic input test cases are generated analyzing the program execution

path of the supplied source code, in the next category, formal specifications (for example mathematical

expression, algebraic functions and so on) are used for testing output for the corresponding input and in

38

the third category, tester’s knowledge is given to automatically generate test cases. Whittaker et al. [193],

proposed a method for statistical testing of software components using Markov chain model. In their proposed

method, several test cases are developed using multiple probability distributions, which can generate diverse

input sets for testing. de Souza et al. [45], on their study, showed the importance of knowing more about

how an API works instead of just using it as a black box. From their field study, they identified several

problems that a collaborative organization might face by treating APIs as some black box structure instead

of knowing much about it. The similar problems can also be found for plant Phenotyping or Genotyping

research organization. The problem can even be worse in case of collaborative plant Phenotyping research

as it is difficult to do API testing that involves images. Because in the case of images, it is challenging to

define the exact output in comparison to some text-based input-output systems.

4.3 A Motivating Example Scenario

Sally, an MSc student of computer science department started her research in developing a new microbial

pipeline called Phoenix2 [169]. The pipeline works on post-processed DNA sequencing data in order to

determine highly prioritized OTUs (Operational Taxonomic Units). Her research is important for determining

bacterial impacts on plants growth. She has two co-supervisors, one is from computer science department

and the other one from soil science department. She implemented the pipeline in Python. She used PyCharm

IDE to write and execute her programs. She basically used Anaconda 3 in order to install the python 3.5

interpreter, the Jupyter notebook and other commonly used python packages such as Panda and Numpy.

After implementing the pipeline, she informed her soil science supervisor about the pipeline and the supervisor

wanted to test the pipeline with the data available in his local machine. As a non-computer scientist, the

supervisor could not install all the necessary tools to execute the pipeline. On the other hand, Sally’s

computer science professor wanted to determine the performance of her algorithm on different data sets.

He basically wanted to run the pipeline for three different amplicons (such as bacteria, archaea, and fungi).

However, he did not have the data to run the pipeline. So he contacted the soil science professor for the

data. However, the data was not available to him as well. He contacted with Genome Quebec to get the raw

sequencing data for the three amplicons. After collecting the data, he was not sure how to create OTUs. The

Soil Science Professor got to learn about two bio-informatic tools, such as QIIME and Mothur for calculating

OTUs. Again, those were command line based tools and he found it difficult to install and use them. He

contacted with University’s cloud research group to install QIIME in a virtual machine. He also requested

to install Anaconda and PyCharm in the VM so that he can execute Sally’s pipeline. Finally. he was able to

provide the data to Sally and the computer science professor. However, in order to get feedback on different

sets of data, Sally was having different physical meetings for demonstrating the tool. They were also chatting

in Slack to exchange different information.

In the above scenario, we see that Sally and the two supervisors face various problems (e.g. installing

39

software, contacting with data specialist, finding a suitable time for a meeting, running tools with unintuitive

parameter setting) for executing the custom pipeline. If a web-based collaborative available were available,

it would have been really easier to compose and execute the pipeline on-the-fly.

4.4 Proposed Approach

We propose a cloud-based framework for building and managing scientific pipelines for plant Phenotyping

and Genotyping research. As we have discussed earlier that a multidisciplinary research area like this often

faces different challenges in collaboration among different user groups. For example, an organization working

on this area might encounter difficulties on creating a clear team vision, defining or assigning specific problem

statements to solve for some of the research groups, identifying possible threats or opportunities in earlier

stages, merging or monitoring the overall teamwork progress and so on. Considering those issues, in our

proposed framework we have tried to take advantages of collaborative works from different research groups for

enhancing the effectiveness and efficiency in building and managing scientific pipelines on plant Phenotyping

or Genotyping. However, the roles played by different research groups can be an important factor for ensuring

a successful and time-efficient solution to a given problem. So we have identified different user roles for the

proposed framework that helps to understand the exact problem statements to solve for the different users.

In addition to the collaborative support, the framework should be able to handle other different technical

facilities in maintaining the pipelines. For example flexibility in inter-operability of different image processing

or bio-informatics tools, monitoring pipeline failure or progress, contributing on the same pipeline building

by multiple researchers and so on.

The Collaborative Interactive Application Methodology (CIAM) [124] that we have followed for the effec-

tive collaborative system design undergoes the following main steps: Sociogram development, Responsibilities

modeling, Process modeling and then Collaborative task modeling. Sociogram creates a higher level network

showing the interaction and collaboration among the identified user roles in a system. Responsibilities mod-

eling can be divided again into two steps: firstly participation table is created showing the interaction and

collaboration for solving a particular task and secondly responsibilities modeling are created for each of the

identified roles for detailing all their identified tasks and interaction among different roles. On basis of those

responsibilities modeling, Processing modeling then creates a transition graph showing the data flows and

condition of collaboration among different user roles. Finally, the Collaborative task modeling, using the

UML class diagram shows the access control of different object by different collaborative users in detail while

performing some collaborative tasks that have been identified in the previous phases.

4.4.1 User Roles and Sociogram

Collaborative works involving different researchers or stakeholders face different challenges in its development

phases. For example, creating a clear team vision or specifying the problems to solve by any particular

40

research groups can often be confusing and thus reducing the overall team potential. This problem with

role conflict, ambiguous problem statements to solve or overlapping of works by different researchers cost

significant amounts of time and money [22]. This type of ambiguity and unclear definition of problem

statements to the worse create stress and dissatisfaction among the research team slowing down the whole

process [202]. So creating several distinguishable roles and assigning some specific tasks to each of them

might show many possibilities in the improvement of productivity of the whole research team. From the

perspective of plant Phenotyping and Genotyping research, we identified five different roles in the proposed

collaborative system. The roles with their corresponding tasks can be listed in the following ways:

1. Data Specialists: The users of this role are responsible for collecting and uploading the required data

for plant Phenotyping, and Genotyping research. The users of this group can be of two types:

(a) Phenotyping Data Specialists: They provides Phenotyping data required for the research. For

plant Phenotyping those are mainly raw image data captured by different mechanisms like via

drones, stand-alone cameras and so on. In addition to just raw images, it might include sev-

eral other metadata (i.e. geographic, weather information etc.) and may vary according to the

requirements of the research groups.

(b) Genotyping Data Specialists: Similarly they are responsible for providing data related to bioin-

formatics or Genotyping. The Genotyping data might include DNA, RNA, Peptide sequences and

so on as per the necessity of the research groups.

2. Tool Developers: The responsibility of this user group is to write image processing and bio-informatics

tools for performing different tasks on the provided data sets. This particular user role includes:

(a) Image Processing Tool Developers: For plant Phenotyping, most of the work are done via auto-

matic image processing and usually done by image processing researchers. For example, image

processing tools might include tasks like image registration, stitching, segmentation, clustering

and also several other feature extractions out of those processed images (e.g. plant growth mea-

surement, flower counting and so on).

(b) Bio-informatics Tool Developers: The users of this role develop tools for plant Genotyping which

are different Bio-informatics scripts in most of the cases, for example, Bowtie2, BWA, nvBIo,

Fasta, Fastq and so on.

3. Pipeline Composers: The role of this user groups are developing pipelines by combining different

image processing tools. Building pipeline with optimal settings can be very important for better outputs

out of the provided data sets. The users of this group can be of two types:

(a) Image Analysts: They compose pipelines out of the written image processing tools from another

research groups. These pipelines will usually extract important information for analysis. For

41

example identifying plants with possible lower growth, detecting any possible plant disease via

automatic image processing and so on.

(b) Bio-computation Analysts: Similarly they are responsible for developing pipelines for plant Geno-

typing from available Bio-informatics tools written by other research groups.

4. Plant Scientists: Plant scientists apply the complete developed pipelines for analysis purpose on the

data sets as end users of the system. The user group includes:

(a) Geno and Pheno Mapper: They work on analyzing any possible correlation between Phenotyping

and Genotyping of certain plants.

(b) Agronomist: Agronomists uses the developed pipelines by other research groups for automating

different tasks and analysis to improve the overall production of agriculture. For example effect

of particular fertilizers on certain plant growth, factors affecting good flowering of the plants and

so on.

5. Admin: The users of this role are responsible for maintaining the whole research team. For example

assigning the appropriate role to different team members of the research group, arranging some events

and so on.

After the identification of the user roles, we developed the Sociogram for the proposed method as shown

in Figure 4.1.

4.4.2 Responsibilities and Process Modeling

After defining the possible user roles for collaborative Phenotyping and Genotyping, we then identify the

possible interaction and collaboration among the user. We used CIAM (Collaborative Interactive Application

Methodology) [124], to design the process model for the collaborative system of the proposed method. For

process modeling, we chose to use CIAM, because of its support for collaborative system design. However,

a successful process modeling for ensuring all the important interaction and collaboration among the users

requires detail information about the user’s responsibilities. So before designing the process model, we first

investigated detail individual or collaborative responsibilities of different identified user roles using ’Partici-

pation Table’ and ’Responsibilities Modeling’. Participation table helps to get a higher level of abstraction

about the individual and collaborative responsibilities. We then used Responsibilities Modeling for detailing

the responsibilities on the basis of different user roles.

Figure 4.2, shows the designed participation table for the proposed method. A mark in the table cell

(Ti, Rj) denotes the participation of role Rj for completing the task Ti. Marking the entire table for each of

the tasks and roles helps us identifying the work type (i.e. individual or collaborative). The last column of

the table shows the identified work type for the corresponding tasks. We identified seven higher level abstract

tasks from the participation table in sequence. At first, Admin assigns appropriate roles to different users of

42

Figure 4.1: Sociogram for the proposed Collaborative Plant Phenotyping and Genotyping.

Figure 4.2: Participation Table for the Proposed Collaborative System.

43

Figure 4.3: Responsibilities Model for Admin.

Figure 4.4: Responsibilities Model for Data Specialist.

the team. Admin also creates different event as per the team requirements. The work type of both of the tasks

is ’individual’. Once an event is created, the whole team collaboratively decides on the next tasks to solve

by the team. The event might undergo several iterations to clearly define the problem definition or deciding

different other factors to consider by the team members including nature and formats of data or metadata

for the research team. According to the requirement Data specialist then does the task of data management

as an individual work type. On completion of problem definition and availability of data set in the right

format, the next two phases are collaborative works for developing tools and pipelines respectively. Once

the pipeline is ready for testing, plant scientist uses them to analyze or map result in between Phenotyping

and Genotyping results. Pipeline composer collaboratively helps plant scientist in the last phase for pipeline

management aiming towards getting the expected results and summarizing the feedback for next events.

From the participation table, we got a higher level of abstraction of the tasks for users of different roles

and necessary collaboration among. From the participation table entry, we now map the tasks to all the

corresponding roles to help to detail the role basis responsibilities using responsibility modeling. In addition

44

Figure 4.5: Responsibilities Model for Tool Developer.

to investigating detail responsibilities for a particular role, their access control (R, Reading; W, Writing;

C, Creation) for different objects and any prerequisites tasks or data are also identified for analyzing the

collaborative dependency among different user roles. For example Figure 4.3 shows the responsibility model

for Admin. From responsibility model of Admin, we first one listed is ’Assigning User Roles’. The task type

is individual and Admin gets Read and Write (i.e. R/W) access on the ’User’ object. The task also has

prerequisite task (i.e. ’User Registration’) that needed to be performed by other users and a prerequisite data

about corresponding User to work on. The second task on the list from Admin responsibility model is ’Event

Creation’. This is also an individual work for Admin role. The task has ’Creation’ (i.e. C) access control

that enables him to create a new object of type ’Event’. Similarly, the next task (i.e. ’Event Management’)

is about event management and of the previously created ’Event’ object. Finally the last task from Admin

responsibility model - ’Defining the problems to solve by the team’ - is a collaborative task that has a

prerequisite task (i.e. ’Event Creation’) and data (i.e. ’Event’ object). Admin has both the read and write

access control on the ’Event’ object for collaborating with the team on some decision making. Similarly, we

identified responsibilities for all the other user roles and have been shown in their corresponding responsibility

model in Figure 4.4, 4.5, 4.6 and 4.7.

4.4.3 Tool Design

After we identified different user roles and designed the system model for their necessary collaborative support,

we now focus on designing the tools to ensure the shareability, usability or execution of newly created tool

on-the-fly by different user roles. As the different research groups of Phenotyping and Genotyping are inter-

dependent, each of the groups likes to take advantages from use-able codes or resources from other groups for

45

Figure 4.6: Responsibilities Model for Pipeline Composer.

Figure 4.7: Responsibilities Model for Plant Scientist.

46

Figure 4.8: Process Model for collaborative plant Phenotyping and Genotyping.

47

testing their works on real data instead of using some dummy data. However different scattered development

and varying code structure makes it much challenging for such support on-the-fly among the groups. It

also becomes difficult to visualize the overall work progress by merging all the scattered works done by

different research groups. So on-the-fly shareability or providing some easy ways of using and testing of

inter-groups’ works and the corresponding feedback might open up several opportunities for exploiting the

advantages of collaborative work more efficiently and effectively. In our proposed method we used a common

framework for each of the Phenotyping or Genotyping tools so that they become easier to integrate, share

or use by different groups on the development phase. As each of the Phenotyping or Genotyping tools are

targeted to perform some particular tasks it gives us the opportunity to modularize them abstracting their

implementation details. For example, image processing tools for plant Phenotyping might include different

tasks like pre-processing (i.e. noise removal, extraction of some particular color channels, image registration,

image segmentation etc.), feature extraction (i.e. key point extraction, edge detection, flower counting etc.

) and so on. On the other hand, plant Genotyping tools might target finding different information from

the supplied sequences. For example like ’BLAST’ (Basic Local Alignment Search Tool) are some set of

tools for comparing sequences against a protein or DNA sequence database, ’COPIA’ (COnsensus Pattern

Identification and Analysis) works on discovering motifs from given protein sequences and so on. These task-

specific nature of the tools make them easier to modularize and test the corresponding outputs for given some

inputs. Besides to ensure the inter-usability of the tools we applied a common layer on top of the individual

tools. Hiding all the implementation details of a tool, the applied layer takes two types of information:

input/output destination and different settings that are required throughout that particular tool. Depending

on the tool task specification the input/output can be some file systems (i.e. raw image, files with DNA

sequences etc.), entire directories with all different contents or from/to other tools. On the other hand, the

settings are different parameters required throughout the implementation of that particular tool. Figure 4.9

shows this abstraction layer of the main modular implementation. This common layer gives the support for

collaborative usage of the developed tools among users of different roles and helps in developing pipelines by

connecting tools in different orders.

4.4.4 Pipeline Composition

As shown in the process model (Figure 4.8), on the availability of research tools in the system, pipeline

composer in collaboration of the tool developer composes pipeline aiming to solve some predefined problems

for plant Phenotyping or Genotyping research. As the tools were abstracted hiding main implementation

detail in the previous phase, customized pipeline development becomes straight forward and easy in this steps.

Pipeline composer chooses the required tools from the library of already developed tools, defines streaming

or execution sequences and tunes settings for expected output to develop the required pipelines as shown

in Figure 4.10. As this step is collaborative, pipeline composer and tool developer exchange their feedback

for possible modification of any of the tools or pipelines. On getting the expected result, pipeline composer

48

Figure 4.9: Abstraction Layer on modular Tools for collaborative use.

Figure 4.10: Collaborative Pipeline Design using modularized tools.

49

Figure 4.11: Collaborative Task Modeling for Pipeline Composition.

shares the saved pipeline with plant scientist.

4.5 Evaluation

We evaluated the framework in two different ways. First, we demonstrated the usage of the framework in

terms of an example case study where showed collaborative development and management of a pipeline.

Second, we involved real users in the usage of the framework.

4.5.1 Case Study: Collaborative Development and Management of a Pipeline

In this section, we show an example case study for the development and management of a pipeline that

involves the participation and collaboration of different roles of users using the proposed method. We choose

the example with a very simple Phenotyping pipeline for keeping focus on the proposed method but the same

method can be applied for developing more complex pipeline both for Phenotyping and Genotyping. We

then demonstrate our prototype implementation of the proposed method.

50

Figure 4.12: Collaborative Task Modeling for Tool Development.

Figure 4.13: Usage example for collaborative work by the proposed method for Phenotyping.

51

From system to system plant Phenotyping might follow different methodologies for image acquisition of

the plants. For example, Hartmann et al. [76], in there work on plant Phenotyping considered two different

views for capturing plant images for extracting some of the plant phenotype information (e.g. plant height,

width and so on) via image processing. Each of the plants under experimentation is placed on top of a

conveyor belt. As the conveyor belt moves, two standalone cameras: one situated at the top and other

at a side, capture the images of the plants. In addition to just the plant, the captured image also contains

unnecessary background information (e.g. wall, part of conveyor belt etc.) that we need to remove for further

image processing.

For keeping things simple, we assume that at this point the research team decides to work on the pre-

processing step. As shown in Figure 4.13, the data specialist collects and uploads the similar captured image

to the cloud storage. There are several image processing algorithms available for image background removal

that the team might decide to use. For example, Fahlgren et al. [51], in performing a similar task in their

Phenotyping work first converted the supplied RGB channel image to HSV channel and then extracted only

the saturation channel from it. The resultant image was then binary thresholded to some value and finally

masked with the original image to get the background removed image. Tool developer accordingly develops

different tools which are then collaboratively used by pipeline composer (Figure 4.13) for solving the problem

for the given scenario. The tool development and pipeline composition allow the users for testing the outputs

for each of steps (as the intermediary or final image results shown for pipeline composition in Figure 4.13

were generated using the prototype of the proposed method). Once an initial implementation of the pipeline

is completed, it is shared with Plant Scientist for testing. As seen in the figure, the pipeline is then used

directly on the data set from the cloud storage by plant scientist abstracting all the intermediary phases of

implementation. However, the pipeline can also be edited by plant scientist for the required output by tuning

the available settings of the pipeline. Besides plant scientist also can give feedback on-the-fly to the pipeline

composer for any issues or possible modifications which can then be collaboratively solved by the team.

We have implemented a prototype of the proposed system. It is a cloud-based system hosted in Linux

Server. We used Python 2.7 for the server side coding. On the other hand HTML5, CSS and JavaScript were

used for client-side programming. We also used Ajax for making some asynchronous server communications.

For the use cases, we collected source code from different research student working on plant Phenotyping

or Genotyping. Most of the Phenotyping code was written using OpenCV2 (http://opencv.org/), an open

source library for image processing. On the other hand for Genotyping, the source codes were mainly written

using commonly used python packages such as Panda, Numpy and so on. We used plug-in based architecture

[153] in order to integrate the Phenotyping and Genotyping on-the-fly, i.e. tool developers do not need to

recompile the platform for this purpose.

Figure 4.14, shows a sample interface of the prototype of the proposed method. The prototype has been

tested for integration and execution for both Phenotyping and Genotyping work. In the figure, the panel

which has been labeled as ’A’ contains the listing of all the available tools developed by both Phenotyping

52

and Genotyping. Listing of all the saved and shared pipeline with this particular user is also accessible from

this menu. As the assigned role for this user is ’Phenotyping Tool Developer’ (as can be seen at the top of this

panel), he can collaborate with pipeline composer to compose the pipeline and so the option for composing

pipeline is also available for this user (entitled as ’Design Pipelines’ in panel ’A’). The panel ’B’, gives the

support for developing or customizing pipeline by making use of different available tools (e.g. from panel

’A’). As seen in the panel ’B’, the individual tools come with corresponding documentation, settings and

source code. The settings for any of the tool can be tuned for getting the required output. Besides from

here, one can communicate with the corresponding tool author, edit code and so on as per the role assigned

to the user. The panel ’C’ contains information about all available and uploaded data set by the user of

role ’Data Specialist’. The pipeline can be executed for testing the outputs (we tested with real research

data and pipeline for both Phenotyping and Genotyping as discussed in detail in ’User Study’ section) or

saved from the panel ’D’. The user can communicate with other users of different roles from panel ’E’ for

any collaboration or issues. The online or offline status is shown next to the users of different roles. Users

of different roles can start live chatting (individual or group) to discuss or solve any issue collaboratively as

shown in panel ’G’. Panel ’F’ shows the corresponding notifications of such events.

Figure 4.14: Process Model for collaborative plant Phenotyping and Genotyping.

Now, for example, a tool developer for testing one of his newly developed tools requires some updates

on the data set or might need to include some meta that are currently not available. He can look for the

required data specialist from panel ’E’ and can instantly communicate via live chat or sending messages. On

getting the data the tool outputs are tested on the cloud and if expected output is found the tools are shared

with other users. Pipeline composer on the other hand collaboratively works on a pipeline which can then

53

be shared with Plant scientist. The plant scientist also communicates with the developers, share the outputs

or give feedback to the other users. All the users thus can work on their own area, yet sharing and making

use of others’ work and thus accelerating the work progress collaboratively.

4.5.2 User Study

In our initial version of user study, we involved three kinds of stakeholders such as an image tool developer,

and a bio-informatician and a plant scientist. In the following, we discuss their experience with the tool.

1. Bio-informatician: This user is a professor of soil science. He was using a command line based tool

for running for post-processing of microbial DNA sequencing data. In order to run the pipeline, he was

required to install Anaconda, Pycharm, and Jupyter. However, as he was not that expert in setting up

a programming environment, it became a very difficult task for him. Eventually, he was not able to

install all the necessary tools and ended up corrupting system files and leaving his laptop Python free.

We demoed the tool to the bio-informatician by integrating the command line pipeline tool. He reacted

with overwhelm to see the capability of the pipeline composition tool. He commented that ”What a

fantastic platform you and your team have developed. I think it will fit the bill exactly”.

The bio-inforamtician has experience using QIIME and Galaxy. He liked Galaxy but he mentions

about three problems with Galaxy: one is that it lacks Phenotyping interface, second it does not

provide control over allocating resources, and finally, he has to compose pipelines without having the

collaboration with others. He shared with us that he is not comfortable working with QIIME as it is

a command line based tool and he faces a lot of difficulties using them, as he is not from computer

science background.

2. Agronomist: The involved user for this possible role was a research student working on Canola plant

Phenotyping. She expressed her difficulties on getting and secure storage of lots of data set on her own

local machine. We demoed the prototype of the proposed method and she gave very positive feedback

for having such a common workspace where she can test her works and also make use of others’ work

easily. She also expressed that it can be very helpful for her for dataset management, as she faces

difficulties with getting or secure storage of lots of data for plant Phenotyping. For example, in her

feedback, she wrote - ”I can store my data as a backup in case I lost them in my own system.”

3. Image tool developer: This user, a research associate of image processing group often runs back

and forth to agronomist for demonstrating newly developed tools to get their feedback. He also runs

around for collecting image data from field researchers. He wrote - ”I think it could be useful to test

out algorithms and show the results to the Plant Scientists. It is especially useful for them to be able

to run the algorithms themselves”.

54

4.6 Conclusion

In this chapter, we presented the concept of access control techniques in the context of collaborative SWfMSs

and also proposed a role based method for workflow component access controlling. We adapt the Collabora-

tive Interactive Application Methodology (CIAM) [124] for our proposed method of role-based access control

in collaborative SWfMSs. We evaluate our proposed method with use-cases of Plant Phenotyping and Geno-

typing research domain. We used various Plant Phenotyping tools (e.g., written in PlantCV API [2]) with

varying user-access controls. We collected image processing tools (such as image registration, segmentation,

and flower counting) from an image processing group who closely work with agriculture researchers. We

collected bio-informatic tools from the bio-informatics group in the University. Feedback from different users

in our user study shows promising results with the usage of proposed method of role-based access control

technique in terms of collaborative SWfMS. While locking scheme facilitates consistency management in real-

time collaborative workflow composition (e.g., as we discussed in previous chapter; Chapter 3), the discussed

role-based access control technique discussed in this chapter can be used for overall management of workflow

components among collaborators in a collaborative environment of data analysis. Our study results reveal

that the role-based accessed control on the workflow components are one of the primary requirements for the

management and handling of the workflow components among collaborating groups. The role-based access

control technique also demonstrates its aid towards the locking scheme, e.g., by access permission on workflow

components by different collaborators.

Leveraging the locking scheme for real-time collaboration (e.g., as presented in Chapter 3) and role-based

access control technique (e.g., as presented in this chapter), we propose an architecture of collaborative

SWfMSs, which we discuss in the following chapter (e.g., Chapter 5).

55

5 SciWorCS- Towards A Collaborative Scientific

Workflow Management System

Collaborative SWfMSs often have a different set of challenges and requirements in contrast to the sin-

gle user based SWfMSs [114, 199]. Research studies on this domain show different such challenges and

requirements, for example handling independent sub-workflow execution, backdoor communication among

the sub-group collaborators [199], maintaining relationship between scientific workflows and collaboration

models [114]. In an attempt to address these challenges and requirements, in this chapter we present our

proposed architecture towards a collaborative SWfMS. In our proposed architecture, we leverage our fine-

grained locking scheme and role-based access control (e.g., as presented in Chapter 3 and 4 respectively) for

the management of the collaborative environment. As a proof of concept of the proposed architecture, we

also implement a collaborative SWfMS SciWorCS. We evaluate SciWorCS with different scientific work-

flows of Bioinformatics, Software Repository Analysis and Machine Learning based Classification where it

demonstrates promising results and significant potentials.

In this chapter, we first present the importance and motivation of our proposed architecture of collab-

orative SWfMSs in Section 5.1. In Section 5.2 we present the related works on this research domain. We

then present our proposed architecture in Section 5.3. Based on the proposed architecture of a collaborative

SWfMSs, we implement SciWorCS a collaborative SWfMS. We discuss the implementation details and

technical features of SciWorCS in Section 5.4 and Section 5.5 respectively. We present different use-case

evaluations in Section 5.6 and finally we draw conclusion in Section 5.7.

5.1 Motivation

A number of SWfMSs have been proposed and developed in recent years to facilitate the scientific experiments

[114, 111]. For example some of the popular SWfMSs are: Taverna [140], Galaxy [66], Kepler [115], Pegasus

[47], VisTrails [31], Triana [181], VIEW [109] and so on. The existing SWfMSs support only single user for a

given data analysis process [201, 199, 56], however, modern scientific research projects are often collaborative

in nature involving multiple researchers of diverse domain and expertise [114, 201, 165, 167]. For example,

the Large Synoptic Survey Telescope (LSST) [113] experiment requires a collaboration of around 1,800 scien-

tists and engineers, the Cancer Biomedical Informatics Grid (caBIG) [133] project by the National Cancer

Institute (NIC) aims to accelerate the domain research by collaborating entire research community and so

56

on, as referred by Zhang et. al [201] and Lu et. al [114] respectively in the similar context of collaborative

SWfMSs. Besides, some scientific domains essentially require collaboration as they are highly correlated

among multiple research disciplines [201]. These use-cases hence motivated several research studies towards

collaborative SWfMSs in recent years [114, 165, 167, 168, 166, 199, 200]. Studies show that Collaborative

SWfMSs often have a different set of challenges and requirements in contrast to the single user based SWfMSs

[200, 114]. For example, collaborative SWfMSs raise the challenges of consistency management (e.g., as dis-

cussed in Chapter 3) in the face of concurrent conflicting operations [114, 165, 167, 168, 166, 199, 200]-like

other Computer-Supported Cooperative Work (CSCW) based collaborative systems, such as collaborative

document writing [142, 144], graphics editing systems [37, 60] and so on. In addition to the consistency

management, there are several other aspects and challenges those we need to consider for a successful collab-

orative data analysis environment in the context of SWfMSs. For example, Zhang [199, 201] presented that,

often there can have several sub-groups working collaboratively on different sub-workflows of entire scientific

workflows. A collaborative SWfMS needs to handle such independent sub-workflow execution and back-

door communication among the sub-group collaborators [201]. Lu et. al investigated the possible challenges

towards a collaborative SWfMSs, such as maintaining a collaborative provenance model, the relationship

between scientific workflows and collaboration models, and so on [114].

For our proposed architecture we tried to address such studied challenges in the context of collaborative

SWfMSs. As a proof of concept of the proposed architecture, we developed SciWorCS a Collaborative

Scientific Workflow Management System. We present different experimental use-cases for the evaluation of

the proposed architecture.

5.2 Related Works

Workflow management systems were initially adopted by business community. The workflow management

systems mainly follow two types of architectural approaches: Service Orchestration and Service Choreogra-

phy [12]. Several process modeling languages and techniques thus has been proposed and developed by the

community [12], such as: Business Process Execution Language (BPEL) [6], Yet Another Workflow Language

(YAML) [187], WfMOpen [110] - an open source workflow engine, Web Service Choreography Description

Language (WS-CDL) [100] and so on.

Though the scientific workflow management systems uses the similar concepts, unlike the business work-

flows that works usually at a programming language level, the scientific workflows generally operate on a

higher abstract layer. Scientific workflows are composed of re-usable modular tools (e.g. different analyt-

ical steps) in different combinations to prove a scientific hypothesis and are widely used for data analysis,

simulation, visualization and so on [12, 111]. The examples of some popular modern scientific workflow man-

agement systems are: Taverna [141], Galaxy [66], Kepler [115], Pegasus [47], VisTrails [31], Triana [181],

VIEW [109], DiscoveryNet [152], Chiron [138], GridNexus [24] and so on.

57

Taverna [141] is an open source workflow management system that follows a service oriented architecture.

Each of the component of Taverna is either a task specific Web service or a processor [141, 201]. It uses a high

level XML-based conceptual language called Simple Conceptual Unified Flow Language (SCUFL/XSCUFL)

[139] for defining a scientific workflow comprising of different services and datalink relation among them.

Java Beanshell is used for scripting the corresponding services by this workflow management system.

Galaxy [66] - a web-based workflow management system, designed with a goal to ease the complex data

analysis process with intuitive GUIs for managing the datalink relation among the tasks, which is widely

used for high-throughput DNA sequence analysis in recent time. However, the architecture of the workflow

system allows data analysis of different domains (for example, image processing) with corresponding tool

integration [3]. Galaxy is implemented using Python programming language. It uses simple XML for storing

different tool information, such as: tool configurations, datalink relation, input validation criteria and so on.

Galaxy presents a simple web-based UI to the users by rendering the corresponding tool XML [3].

Kepler [115] workflow engine is built on top of Ptolemy II [28] and uses actor-oriented design. Much like

the services of Taverna, actors of Kepler workflow system are re-usable modular blocks that are responsible

for specific computations [12]. The actors are linked in different combinations for solving a given problem

whereas a director controls and monitors the executions of the such actors.

Similar to Galaxy, Triana [181] workflow management system provides intuitive graphical UI features,

such as: dragging tools, visual datalink connection, zooming functionalities to the workflow components and

so on. Triana supports multiple languages [12], for example: Web Services Flow Language (WSFL), Business

Process Execution Language (BPEL) [6] and so on.

GridNexus [24] workflow management system mainly focuses the workflow execution in Grid environment.

However, the designed workflows can be executed in local environments as well. GridNexus uses proprietary

XML based language - JXPL, for defining a workflow comprising of tasks and datalink relations among them

[12]. GridNexus GUI is built on top of Ptolemy II [28] for sophisticated workflow composition. Askalon

[53] is also another workflow management system that is designed for Grid environment. Askalon supports

Unified Modeling Language (UML) for workflow composition in the presentation layer [111].

Pegasus [47] - uses Artificial Intelligence for mapping and planning the workflow execution in distributed

environments. The artificial agent targets mapping the available resource in the distributed environments,

such as Grid, to the corresponding input port for a successful execution of the workflow. It uses DAX - a

proprietary XML based language for representing directed acyclic graphs [12].

Besides, several scientific workflow management systems has been developed in recent years focusing on

specific domains, features, high-throughput executions and so on. A few examples of such workflow manage-

ment systems are: BioWBI [163], GridBus [30], Magenta [191] and so on. From the above discussion it is

noticeable that, though the modern scientific workflow management systems often targets different specific

research domains, majority of them share the similar architectures and concepts (e.g. library of indepen-

dent re-usable tasks/services, building DAGs of such tasks/services and so on). For accelerating the analysis

58

process, the modern workflow management systems also adopt several techniques, such as: allowing high-

throughput Grid execution, advanced data visualizations, intuitive UIs for workflow composition and so on

[111]. However, to the best of our knowledge, none of the workflow management systems support collaborative

works of the scientists directly. Workflow collaboration is done via manual sharing of the composed workflow

via email or publicly shared spaces, like myExperiment [44] (e.g., myExperiment supports sharing of Galaxy

[66], Kepler [115] or Taverna [141] workflows). Realizing this limitation, several methods has been proposed

in last few years for supporting real-time collaborative workflow management systems [199, 201, 56, 165, 164].

5.3 SciWorCS Architecture

The data analysis is powered by set of reusable computational modules, which are integrated to SciWorCS

as different plugins by the collaborators. The collaboratively designed workflows for the data analysis are

scheduled and executed by the collaborators for further visualizations and analysis. Figure 5.1, illustrates

the high-level architecture for SciWorCS implementation.

T
o

o
lb

o
x

Workflow

Composition Panel

DAG Parser Monitor

Data
Vis.

Coms.
Tools

Data
Access

T
o

o
lb

o
x

Workflow

Composition Panel

DAGParserMonitor

Data
Vis.

Coms.
Tools

Data
Access

Job Manager

Job eue Job Dispatcher Job Runner

Cloud Storage / Distribute File System

Cluste
r

Computatio
n

(e.g., S
park Driv

er)

Local In
sta

nce

Executio
n

Tool
Definition
& Source

Tool
Definition
& Source

Workflow
Models

Cluster Manager

Worker Worker Worker

Workflow
Models

C
lie

n
t

S
e
rv

e
r

WebRTC

Figure 5.1: High-Level Architecture of SciWorCS.

59

5.3.1 Toolbox: Set of Reusable Computational Steps

A workflow for data analysis is often represented as a Directed Acyclic Graph (DAG), W = (M,E), where

M is a set of n finite number of modular tasks, mi, (1 ≤ i ≤ n) and E is a set of directed edges, eij =

(mi,mj), (1 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j) denoting the dependency relations among the modular tasks mi

and mj [148, 62]. A module, m can be responsible for some independent computation tasks, such as any

module, mi can be responsible for some statistical analysis on a given dataset, while another module, mj

can be responsible for applying a machine learning model on the dataset and so on. The computation

of any module, ml is often further customized (e.g., number of nodes, hidden layers in case of a Neural

Network Classifier and so on) by its corresponding configuration sets, Cl - a set of Pl available parameter

configurations, ci ∈ Cl, (1 ≤ i ≤ Pl). Hence, a SciWorCS module is generalized as Definition 5.3.1.

Definition 5.3.1 (SciWorCS Computational Module). A computational task module is generalized as

a tuple, m =< id, I,O,C, S, T > where id is the unique identifier of the module in a workflow, I and O are

the corresponding set of supported input and output data formats respectively by the module, C is a set of

P different parameter settings or configurations, S is the modular source code that executes based on I,O,C

and finally, T is the set of possible states of the module (i.e., ready, running, success, failed, aborted) in an

execution.

The generalized definition of SciWorCS computational modules, allows collaborators to plugin, reuse and

share the set of tools among the collaborators for a given data analysis task. For example, Listing 5.1 and

Listing 5.2 demonstrate a sample computational task module. Listing 5.1 is the module definition containing

the meta data (i.e., I,O and C sets information) in XML format for its corresponding modular source code,

S. The id and T of the module are dynamically generated at the workflow composition and execution phases

respectively.

1 <SciWorCS>

2 <t oo l Inpu t s>

3 <too l Input> . . . </ too l Input>

4 <too l Input> . . . </ too l Input>

5 . . .

6 </ too l Inpu t s>

7

8 <toolOutputs>

9 <toolOutput> . . . </ toolOutput>

10 <toolOutput> . . . </ toolOutput>

11 . . .

12 </ toolOutputs>

13

14 <t o o l C o n f i g u r a t i o n s>

15 . . .

16 </ t o o l C o n f i g u r a t i o n s>

60

17

18 <toolDocumentation>

19 . . .

20 </ toolDocumentation>

21 </SciWorCS>

Listing 5.1: An Example of SciWorCS Module Definition Template.

1 ##imports f o r the modules

2 #. . .

3

4 ##load ing input datase t from r e f e r e n c e s

5 #. . .

6

7 ##c o n f i g u r i n g the module as per the module d e f i n i t i o n

8 #. . .

9

10 ##module implementation

11 #. . .

12

13 ##wr i t i ng out the output to r e f e r e n c e s as per the module d e f i n i t i o n

14 #. . .

Listing 5.2: Sample Module Source Structure and Binding for the Definition in Listing 5.1.

mj=<j,I,O,C,S,T>mi=<i,I,O,C,S,T>

Input Ports Input PortsOutput Ports Output Ports

dj
m

di
m

di
n

dk
p

dl
m

dl
m

Data Dependency Relation

Between mi and mj

Data with Unique Identifier

Figure 5.2: SciWorCS DAG Formulation for Workflows.

5.3.2 DAG Formulation for a Data Analysis Workflow

While a computational module from the toolbox is responsible for a given data analysis or manipulation

task, a set of such modules are combined together forming a workflow towards solving a more complex

data analysis problem. SciWorCS follows a dataflow oriented architecture for the data analysis tasks where

the modules are associated with one another by the dataflow relation among them. Fig. 5.2 illustrates a

dataflow relation of a workflow between two arbitrary computational modules- mi and mj . SciWorCS assigns

unique identifier to each of the modules comprising a given workflow, such as mi =< id : i, I, O,C, S, T >

and mj =< id : j, I, O,C, S, T >. As a module from the toolbox can be used zero to multiple times, the

identifiers are used to uniquely identify all the input-output ports in a given workflow. For example, we

61

consider an arbitrary module- m from the toolbox, that contains two input ports- x, y, and one output port-

z. We assume the module get a unique identifier- i on usage to a workflow. Hence, its input-output ports

are encapsulated with the identifier, such as mi =< id : i, I : [xi, yi], O : [zi], C, S, T > -to uniquely identify

in the workflow. The output dataset generated from an output port of a module is also labeled as the port

identifier, which is used for forming the data dependency relation among the workflow modules. For example,

as illustrated in Fig. 5.2, the module mi is a predecessor of the module mj where, one of its output datasets

with reference- dim from an output port is linked as the input dataset reference for an input port of module,

mj . The dataflow linking is also validated for the matching data format between the input and output ports

of the corresponding modules. For example, we consider dataflow linking from the port- p1 to p2 -of arbitrary

modules- mi and mj respectively. The linking is validated for the matching data format, df(p) of the port

p, such that df(p1) = df(p2). The allowed data format for the ports are obtained from the corresponding

module definition as discussed in Section 5.3.1.

For portability the generated workflow DAG definition is represented and written in a simple XML for-

mat. The workflow definition file is saved and used for later restoring for the corresponding data analysis

task. Besides, the simple XML format for the workflow definition enables easier portability among differ-

ent SciWorCS instances. SciWorCS uses the XML definition file for parsing the module information with

corresponding configurations and data dependency relation among the modules, -which is later used for job

management and execution as discussed in Section 5.3.4.

5.3.3 Collaborative Composition

The data analysis workflow, W = (M,E) is composed by selecting a set of computational modules, M

from the toolbox and by defining the dataflow relation, E among the modules. However, in a collabora-

tive composition of W , the concurrent conflicting operations might results in its inconsistent states across

different collaborators [173, 130, 201]. For example, we consider that at any given version of workflow, Wv

there is a datalink dependency from module mi to mj , - defined by the directed edge, eij = (mi,mj) ∈ E.

With the same workflow version, Wv we assume two collaborators independently execute the operations -

O1 = updateDatalink(mj ,mm) and O2 = updateDatalink(mj ,mk), for updating the incoming data depen-

dency of, mj . Since, the two concurrent operations target the same component (i.e., workflow component,

mj) but with different attribute values (i.e., mm 6= mk), it results in inconsistency of the workflow across

the collaborators [173, 174, 130]. Besides, unlike some unstructured object (such as text documents), the

scientific workflows modules are often highly dependent on other modules for dataflow dependency relations

[130, 201, 165]. Hence, some configurations changes on a module might highly impact the execution behavior

of other modules [164, 130, 56].

Hence, we adopt locking scheme for facilitating the consistency management and access control in a

collaborative workflow composition environment. Fig. ?? illustrate the SciWorCS architecture for collab-

orative workflow composition with Attribute Level Locking [130] of the workflow object components. Any

62

update on the current state of the workflow by a collaborative from corresponding SciWorCS composition

panel is notified to the other collaborators via message passing (such as using WebRTC). The concurrent

update operations are controlled and managed by imposed component locks by collaborators [201, 130, 165].

The collaborative workflow objects are finally merged as SciWorCS workflow model to the server for later

reusability and execution.

5.3.4 Job Management and Execution

SciWorCS job manager is responsible for the scheduling and execution of the job (i.e., representing a modular

task) from the workflow models. It manages the dependencies and execution order of the jobs to maintain

a dataflow oriented execution plan - a job is ready and ordered for execution only if all of its required input

datasets are available (i.e., input dataset or produced without errors from prior jobs). It also maintains a

job queue for managing the multiple execution requests from the collaborators (such as, a sub-workflow of

the entire data analysis steps for which a collaborator is responsible for and so on). The queued jobs are

dispatched for local or cluster executions as per the configurations and implementation of the computational

modular step, m. In case of cluster execution, the dispatched jobs are submitted to a cluster manager (such

as, Apache Spark cluster manager [170]), which in turns are distributed across different worker nodes for

parallel execution. The job manager also sends back the job execution status (e.g., running, success or failed)

to the collaborators for real-time monitoring.

5.4 Implementation Details

We implemented the SciWorCS tool as a proof of concept of the proposed collaborative scientific workflow

management system. The implementation is a cloud-based system. The SciWorCS is implemented in Python

programming language (e.g., Python 2.7). We used Python to leverage the larger number packages and library

supports for different domains of data analysis. For example, a great numbers of bioinformatics [3, 186],

image processing [2, 23], machine learning [143, 171] and so on tools and libraries are recently implemented

in Python for its trending popularity. Besides, the tools those are written in a different programming

language can also be added to SciWorCS toolbox using Python wrapper for the command line access. We

demonstrate a simple use-case of such scenario in Section 5.6.1. Python also supports writing large-scale

cluster computing applications using its PySpark [170] API. We present a use-case for such large-scale cluster

computing workflow from SciWorCS in Section 5.6.

We used HTML5, CSS and JavaScript for the client side programming and creating user interface for

easier accessibility of SciWorCS core. SciWorCS provides an intuitive graphical user interface for defining

the workflow DAG, -where the selected tools from the toolbox can be graphically connected, reorganized,

zoomed in/out, modified and so on. The interactive and intuitive interface allows increased accessibility of

SciWorCS. We used GoJS [67] -a JavaScript library- for implementing interactive diagrams in HTML. We

63

used JavaScript Ajax for asynchronous server communications for obtaining different information from the

server, such as availability of a dataset in the server, job status for a workflow execution and so on.

Figure 5.3: User Interface Overview of SciWorCS.

5.5 SciWorCS Task Specific User Interfaces

Fig. 5.3 demonstrates an overview of the SciWorCS user interface. The panel labeled as- ‘A’, contains

all the workflow components such as, multiple toolboxes categorized as per the general data analysis tasks

of the modular tools, saved workflows and shared workflows with collaborators. The composition of the

workflow is done on panel ‘B’. The selected modular tools from the toolbox appear in this panel where

they can be connected defining the dataflow relation among them. As illustrated in the figure, the workflow

data flow relation is presented in intuitive DAG representation. The modules can be configured using the

corresponding attributes in the popup panel ‘C’, -which appears on Mouse Left Double-Click on any module

from the workflow DAG. Panel ‘D’ shows a list of collaborators and their current online/offline status. The

list of the workflow outputs are presented in panel ‘E’ and the new dataset can be browsed and uploaded to

the server for analysis from the panel ‘F’.

5.5.1 Plugging in New Tools to SciWorCS Toolbox

As presented in Section 5.3.1, SciWorCS architecture provides a plugin based framework for integrating new

computational modules or tools to the toolbox. The integrated tools are independent and easily portable

discrete unit of computation which can be shared among collaborators and used in different steps towards

composing the collaborative workflow as per the requirements. SciWorCS is currently implemented in Python,

64

so any modular computational unit written in Python can be integrated as a tool to it. Besides, any modular

software packages that can be run from command line, can also be integrated to the SciWorCS toolbox making

a Python wrapper for the corresponding software package. An abstract tool definition file comprising the

reference variable for input and output binding with the modular source, allowed set of configurations for

the execution tuning, and documentation is plugged into the SciWorCS along with corresponding source

code of the software package. SciWorCS automatically generates and renders a simple and intuitive interface

from the tool definition. The abstract interface layers enable easier portability and serving the tools among

collaborators of the group. In addition to tuning the tool from the abstract-level configurations, SciWorCS

allow more granular tuning from the source as per the requirements of the specific data analysis task. However,

such granular access to the tool source is controlled by the user role as discussed in Chapter 4.

Listing 5.4 shows an example abstract tool definition for the corresponding modular source as shown

in Listing 5.3. The Listing 5.3 demonstrate a sample implementation of Support Vector Machine (SVM)

Classifier on top of Scikit-Learn [143] a python based machine learning library. Lines 1-7 imports required

Python packages and modules for the tool, Lines 10-15 loads the input dataset, Lines 18-22 are responsible

for setting up the classifier with set of configurations (i.e., process logic) and finally Lines 25-29 writes the

output (i.e., classification accuracy in this case) to the corresponding reference file. Note that, while this is

a simple example representing a high-level template of a modular source, the implementation of SciWorCS

modules can often be far more complex as per the addressed task of the module, such as comprising multiple

input/output data sources, supported configurations and so on.

Listing 5.4 demonstrates the corresponding abstract module definition file. The XML definition file

is enclosed inside a root tag SciWorCS. Lines 2-8 lists the set of input datasets for the tool inside the

tag tooInputs. Though for this particular example, the tool takes only a single input dataset, in cases there

can have multiple input dataset references in SciWorCS tools. The output references also maintain a similar

structure as demonstrated in Lines 10-16. The corresponding reference variables (e.g., Line 5 and Line 13 in

Listing 5.4) are linked with the tool source (e.g., Line 12 and Line 27 respectively in Listing 5.3). The labels for

the input and output dataset references are used for generating and rendering corresponding interfaces of the

tools. The defined data formats are used for discovering the available data source from the repository and data

link compatibility while connecting multiple tools composing SciWorCS workflows. The tool configuration

as depicted in Lines 18-30 in the definition file is also referred and bound with the source codes of the tool.

Finally, the tool documentation (e.g., Lines 32-34 in Listing 5.4) contains the information about the tool

and its usage instructions for others in the collaborative group. Fig. 5.4, illustrates the SciWorCS interface

for plugging-in the tool (e.g., comprising module source and definition file) to the toolbox. The integrated

tools appear in the toolbox which can be used as discrete computational unit or as steps towards workflow

composition (e.g., as presented in Section 5.3.2).

1 ############################### Required Imports ###############################

2 #Imports Required

3 import numpy as np

65

4 import pandas as pd

5 from s k l ea rn . svm import SVC

6 from s k l ea rn . m o d e l s e l e c t i o n import c r o s s v a l s c o r e

7

8

9 ########################## Reference Input Dataset ##########################

10 #load ing r e f e r e n c e datase t

11 datase t = pd . r ead c sv (c sv da ta s e t pa th)

12 #f e a t u r e s e t and corre spond ing t a r g e t v a r i a b l e

13 X = datase t [f e a t u r e S e t]

14 y = datase t [t a r g e t]

15

16

17 ########################## C l a s s i f i e r Con f igurat ion ##########################

18 #c o n f i g u r i n g the c l a s s i f i e r

19 c l a s s i f i e r = SVC(ke rne l = kerne l type , random state = 0)

20 # Applying n−Fold Cross Va l idat i on f o r the c l a s s i f i e r

21 a c c u r a c i e s = c r o s s v a l s c o r e (e s t imator = c l a s s i f i e r , X=X , y=y , cv = n)

22

23

24 ########################## Write to Reference Dataset ##########################

25 #wr i t i ng out some c l a s s i f i c a t i o n s t a t i s t i c s to the module r e f e r e n c e output

26 with open (S V M c l a s s i f i c a t i o n s t a t s , ”w+”) as thisModuleOutput :

27 thisModuleOutput . wr i t e (”SVM:\n = = >\n”)

28 thisModuleOutput . wr i t e (” C l a s s i f i c a t i o n Accuracy : ” + s t r (round (a c c u r a c i e s . mean () ∗100 ,2))

+ ” %”)

Listing 5.3: Source Binding for the Definition in Listing 5.1.

1 <SciWorCS>

2 <t oo l Inpu t s>

3 <too l Input>

4 < l a b e l>Dataset</ l a b e l>

5 <r e f e r e n c e V a r i a b l e>c sv da ta s e t pa th</ r e f e r e n c e V a r i a b l e>

6 <dataFormat>csv</dataFormat>

7 </ too l Input>

8 </ too l Inpu t s>

9

10 <toolOutputs>

11 <toolOutput>

12 < l a b e l>Output Stat s</ l a b e l>

13 <r e f e r e n c e V a r i a b l e>S V M c l a s s i f i c a t i o n s t a t s</ r e f e r e n c e V a r i a b l e>

14 <dataFormat>txt</dataFormat>

15 </ toolOutput>

16 </ toolOutputs>

17

66

18 <t o o l C o n f i g u r a t i o n s>

19 Feature Set f o r Train ing (’ f 1 ’ , ’ f 2 ’ , ’ f n ’) :

20 <input type=” text ” c l a s s=” set t ing param ” value=” f e a t u r e S e t =[’ f 1 ’ , ’ f 2 ’] ”/>

21

22 Target Var iab le (e . g . , c l a s s l a b e l v a r i a b l e) :

23 <input type=” text ” c l a s s=” set t ing param ” value=” t a r g e t =’ c l a b e l ’ ”/>

24

25 Kernel Type (e . g . , to be used in the algor ithm , such as ’ rbf ’ , ’ s igmoid ’) :

26 <input type=” text ” c l a s s=” set t ing param ” value=” k e r n e l t y p e =’ rbf ’ ”/>

27

28 n−f o l d c r o s s v a l i d a t i o n :

29 <input type=” text ” c l a s s=” set t ing param ” value=”n=10” />

30 </ t o o l C o n f i g u r a t i o n s>

31

32 <toolDocumentation>

33 Support vec to r machines (SVMs) are a s e t o f supe rv i s ed l e a r n i n g methods used f o r

c l a s s i f i c a t i o n , r e g r e s s i o n and o u t l i e r s d e t e c t i o n . SVM i s e f f e c t i v e in high dimens iona l

spaces . (Documentation Source : : http :// s c i k i t−l e a r n . org / s t a b l e /modules/svm . html) .

34 </ toolDocumentation>

35 </SciWorCS>

Listing 5.4: An Example of SciWorCS Module Definition.

Figure 5.4: SciWorCS tool plugin interface.

67

5.5.2 Collaborative Workflow Composition

In addition to single user based workflow composition, SciWorCS provides a framework for collaborative work-

flow composition. Fig. 5.5 illustrates the collaborative workflow composition panel. We use our proposed at-

tribute level locking scheme (e.g., as presented in Section 3) for facilitating the consistency management while

collaborative workflow composition. As illustrated from the figure, the workflow modules are color-coded to

represent the locking states of the workflow components. For example, the green colored modules Module

3, 4 and 5 represent the accessible modules for one collaborator, while the red-colored sub-workflow com-

prising the Module 1 and 2 represents the locked workflow components by some other collaborator. On the

other hand, Module 6 and 7 (e.g., no color) represent the currently unlocked workflow components in the

collaboration process. The component lock can be requested on the components, as depicted on Module 6

for the sub-workflow lock request. The SciWorCS lock manager maintains the lock requests and serves the

requested workflow components among the collaborators.

Figure 5.5: Locking Schemes for Consistency Management in Collaborative Composition (A subset
of the workflow nodes with corresponding Lock states).

5.5.3 Tools for Aiding Collaborative Workflow Composition

While the consistency management is one of the primary requirements of a collaborative system [173, 172],

providing different methodologies for group communication towards problem-solving and decision making are

also often very important towards the success of the system [48]. We incorporate different communication

tools for the group discussion and decision making in the process of collaborative data analysis. Fig. 5.6

illustrates the implemented SciWorCS communication tools. The textual communication tools include peer-

to-peer and group chatting system. In addition to the textual communication tools, SciWorCS provide real-

time Audio and Video streaming based communication system among the collaborators. As also illustrated

68

in the figure, a Collaborative Virtual Whiteboard (CVW) also has been implemented in SciWorCS for aiding

the group discussion and problem-solving. The CVW contains different simple tools (such as color selector,

paintbrush size selector and so on) to manage the discussion process among the collaborators. In real-time

groupware systems, telepointers (e.g., multiple cursors) are widely used to increase the group awareness [73].

Studies show that, in the context of CSCW, through the simple movement of telepointers, collaborators often

communicate their focus of attention, gesture over the shared views and so on [70, 73]. For example, in terms

of collaborative SWfMSs, telepointers often might be used by the collaborators to create group awareness

about the individuals’ focus on attention on sub-workflows, tools and so on. Hence, we also implement real-

time telepointer communication systems among the collaborators in SciWorCS.

SciWorCS leverages WebRTC for the implementation of the communication tools. WebRTC provides

real-time peer-to-peer communication along with audio-video streaming from modern browsers without any

further requirements of software packages or tools [112]. Note that, while we have implemented different

communication systems for the collaboration, their selection or usage patterns among collaborators might

often be impacted by several factors, such as the collaborating group itself, the nature of data analysis task

for collaboration and so on. We conducted several user-studies for investigating the usage patterns of the

communication tools or adapted styles of work in terms of collaborative data analysis. We present our findings

from our empirical studies in Chapter 6.

Figure 5.6: Example collaborative tools for aiding collaborative data analysis process.

5.5.4 Data Visualization

Fig. 5.7 demonstrates the SciWorCS data visualization framework. The visualization framework is important

for aiding the collaborative data analysis process. The html report, textual (e.g., XML, text, json and so on)

and image (e.g., png and jpg) input or generated output dataset are rendered in the SciWorCS framework for

69

Figure 5.7: Dataset Feature Distribution - An Example Visualization for the Classification.

visualization. Fig. 5.7 illustrates an example visualization of a dataset for feature distribution and statistical

analysis. Using SciWorCS, diverse number of visualization tools can be plugged into the toolbox. The

visualization tools works on top of some reference input datasets and generates the corresponding visualization

output. The generated visualization outputs in supported data format are then visualized in the framework.

5.6 SciWorCS Usage Examples

In this section we present some usage examples of data analysis using SciWorCS.

5.6.1 QC Report of FastQ File with FastQC (Bioinformatics)

Different Quality Control (QC) tools are widely used in the field of Bioinformatics to investigate any potential

problem or check the quality of the input sequence files [25]. Such quality analysis tools are important to

ensure that there are no hidden problems on the sequence files which might be difficult to detect and recover

from- at some later stages of the analysis of the sequence file [54].

FastQ is a popular sequence file containing Nucleotide sequence data with associated quality scores [25, 54].

FastQC is a widely-used tool for QC report generation and analysis of FastQ sequence files [54]. In addition

to the FastQ sequence files, the tool also accepts inputs as Sequence Alignment Map (SAM) or Binary

Alignment Map (BAM) formats runs a series of tests and generates corresponding QC reports [54]. FastQC

also generates tables, graphs and HTML based permanent report for overall visualization of the QC reports.

70

With this example, we present two use cases of SciWorCS i) plugging-in tools written in languages

other than Python (e.g., for the claim in Section 5.5.1) and ii) plugging-in different visualization tools with

the SciWorCS visualization framework (e.g., for the claim in Section 5.5.4). While SciWorCS is implemented

in Python, the modular FastQC tool is written in Java language. However, like any other Python modular

tools, FastQC is integrated into SciWorCS by writing a Python wrapper. Listing 5.5 presents an overview of

the written Python wrapper script for the FastQC. Line 8 uses the input and output references in the Python

sub-process for the FastQC execution which is referred accordingly in the SciWorCS tool definition file.

The plugged-in FastQC tool can be used in SciWorCS workflows. Fig. 5.5 illustrates a sample workflow

comprising the integrated FastQC. The figure also illustrates the visualization of the generated report from

FastQC. Note that, as FastQC, other visualization tools can be plugged-in to SciWorCS where the generated

outputs are used by the framework for visualization. We present more examples and use-cases on it in Chapter

6.

1 ## Required Imports

2 import subproces s

3 import os

4

5 ## Removed extraneous d e t a i l s . . .

6

7 ## FastQC Wrapper on top o f Java

8 pipe = subproces s . Popen ([” p e r l ” , ”FastQC/ f a s t q c ” , r e f i n p u t f a s t q , ”−−outd i r ” ,

r e f o u t p u t f a s t q c r e p o r t , ”−−e x t r a c t ”]) . communicate ()

9

10 ## Removed extraneous d e t a i l s . . .

Listing 5.5: FastQC Python Wrapper Overview.

5.6.2 Machine Learning Based Clone Validation (Software Repository Analysis)

Background and Motivation: Copying and reusing certain pieces of existing code directly or with al-

teration into another location is a common programming practice in a software development lifecycle [155].

Such copy/paste practice results in similar pieces of code fragments in a system, called Code Clones

[156, 155, 98, 94, 176]. Researchers agree upon four primary clone types [155, 125, 176, 157] : Type 1 clones

are syntactically identical code fragments, regardless of the presentation style, comments, and white spaces.

Type 2 clones are copy and pasted code where identifier names and types have been changed. Type 3 clones

are modified copies of the original code with statement-level changes (e.g., additions of new statements, or

deletions and modifications of existing ones). Syntactically dissimilar code fragments that implement the

same or similar functionality are termed as Type 4 clones. Some of the recent research shows that on average

around 7% to 23% of the total code of a software system is duplicated or cloned from one location to another

[156], [11], [99]. Though code cloning is often done intentionally to accelerate the development process and

also not all code clones are harmful [98], the existence of some of them can inflate software maintenance costs

71

Figure 5.8: FastQC quality measures on example sequence file.

as clones are one of the major causes of creation and propagation of software bugs throughout the system

[94], [64], [16]. For example, it becomes very difficult to carry out a consistent change to all the cloned code

fragments throughout the software system. This inconsistent changes to the corresponding duplicated code

fragments are often responsible for the creation of new software bugs [127], [128]. In addition to the creation

of new bugs code cloning also becomes one of the main reasons for bug propagation when programmers

copy-and-paste a buggy code fragment throughout the software system for implementing similar functional-

ities [126], [94]. Detection of such code clones can therefore accelerate the maintenance task of any software

systems remarkably [94]. Besides, exploiting the similarities of the detected code clones also help one better

understand and improve the overall software design [81].

At least 70 Clone Detection Tools and techniques have been proposed and developed to automate the

clone detection process, as a result of extensive research in this specific area over the last decade [96], [10],

[50], [15], [157], [88], [177]. These tools return a list of possible code clone pairs or classes available in a given

software system. Except Type 1, the other types of code clones (Type 2, 3 and 4) undergo different changes

over time and can get too complicated to be detected with a simple string matching algorithm by a clone

detection tool. For example, the identifiers or functions names may be changed, some code fragments may

be added, modified or removed, a portion of the code clones might undergo several other syntactical changes

or even the complete implementations might be changed for the same functionalities in any other locations

[157, 96]. All these modifications over time make the searching problem much more complicated [157]. In

order to handle those complex source code structures while still detecting all possible code clone pairs, the

tools undergo a lot of generalization of the original source codes like pretty-printing [157], normalization of

72

the identifiers [96], [157], forming syntax tree [104] of the code fragments and so on just to name a few.

As a result of this complex searching problem and necessary generalization or normalization of the source

code, the clone detection algorithms often report false positive clones [90, 197]. These are pairs of code

fragments that are not similar or possibly are only coincidentally similar or are otherwise considered not a

valid clone by the user [90]. Besides, some research shows that the definition of true positive code clones

especially in case of Type 3 and Type 4 clones are subjective and might also be different for different users

or software systems [102], [34], [197]. For example, Yang et. al. [197] conducted a survey where several

users were provided the same clone sets for validation detected by clone detection tools. The study reported

significant variations among the users in validating the same clone sets (e.g. for the same provided clone sets,

the number of decided true positive code clones varied within a range of 4.76% to 23.81% for different users).

For these reasons programmers often need to manually validate if the results of a clone detection are a true

clone or not before using these information for the given specific scenarios like: source code refactoring or

other software maintenance tasks [197]. Such a manual validation process often becomes a hindering factor

even for medium-size software system [197]. Because in that case programmers often find it challenging to

extract the actual true positive clones they are looking for from those large set of reported possible code

clone pairs by clone detection tools. For example, some previous research shows that JDK 1.4.2 contains 204

K LoC reported code clone which is 8% of the total lines of code [90], [178]. 15% of the total lines of code of

the Linux kernel has been reported as code clone which is 122 K LoC [108]. Both of the above scenarios on

the number of reported possible code clones by clone detection tools illustrate the huge amount of manual

validation work necessary before using the code clone information. Besides the clone detection algorithms of

the tools usually work in general irrespective of the specific system requirements or user preferences. Thus,

in the best case, even if a tool returns only true positive clones, many of those clones might not be relevant

to the tasks at hand of the programmers or engineers (e.g., not suitable for refactoring) [90]. Mining those

code clones of interests from the tool generated report is often a time consuming task and thus reduce the

usability of code clone detection tools. The scenario even gets worse with the increase of software project in

size [197].

Here, we present a machine learning based approach or workflow for automating the code clone validation

problem1 using SciWorCS. The proposed method works on top of any code clone detection tools for classifying

the reported clones as per user preferences. The automatic validation process for a user, thus can accelerate

the overall process of code clone management and helps faster acquiring of required information out of the

clones in comparison to the time-consuming manual validation process. We studied performance and result

qualities of different machine learning algorithms in validating the detected clones. We got promising results

from our several studies with different experimental setups for the clone validation.

1The presented workflow for clone validation was published in IEEE 18th International Working Conference on Source Code
Analysis and Manipulation, 2018. We refer the reader to our original paper for details: Mostaeen, Golam, et al. ‘On the Use of
Machine Learning Techniques Towards the Design of Cloud Based Automatic Code Clone Validation Tools.’ 2018 IEEE 18th
International Working Conference on Source Code Analysis and Manipulation (SCAM). IEEE, 2018.

73

Here in this study, we aim to answer the following two research questions using SciWorCS:

• RQ 1: Can the manual code clone validation process be assisted via machine learning?

• RQ 2: Does the proposed machine learning based validation method work across different clone types

and clone detection tools?

We study and investigate two main factors of machine learning based clone classification using SciWorCS.

First, we study the data distribution for the clone classification problem with several extracted features

with SciWorCS workflows. Our findings on these feature sets and data distribution analysis can help better

understand the clone classification problem and thus adds the possibility of result improvement in this

research area. Second, we conduct a comparative study with different machine learning algorithms for the

clone classification, where the classification algorithms are different machine learning based SciWorCS

modules.

5.6.3 Machine Learning Based Clone Validation Approach

In this section, we discuss the SciWorCS workflow for the clone classification problem. The proposed method

uses machine learning models for predicting the user-specific code clone validation. The models are first

trained based on manually validated code clone sets from the corresponding users. The trained models are

then used for improving the reported code clones from clone detection tools, by predicting the user-specific

validation patterns.

Code Clone Validation Workflow

Figure 5.9, shows a high level workflow of the proposed method. The workflow steps can be listed in sequence

as the following:

Figure 5.9: High-level Workflow for Machine Learning based Code Clone Validation

74

1. In Step 1, source codes from Code base are supplied to any of the existing clone detection tools.

2. The detected code clones from corresponding clone detection tools are collected in Step 2. As the

proposed method works with any of the existing clone detection tools, clones from multiple tools can

be combined optionally for further generality of the training set.

3. In Step 3, the reported code clones from clone detection tools are provided to the user for manual

validation.

4. User marks the code clones as true positive or false positive in Step 4. The user-specific manual clone

validation results are stored in a database for using as the training set of machine learning models.

5. In Step 5, several features are extracted from the marked code clone pairs for training the machine

learning models. The existing related research works (i.e., FICA [197]), used only simple token sequences

as features for training the machine learning model and thus failed to predict the validation successfully

beyond Type 2 clones. To improve the classification results and to target clones beyond Type 2, we

considered calculating clone similarity with several levels of structural pre-processing and normalization.

6. The extracted features are used to build the feature vector for clone classification. Feature vectors for

the corresponding manual validation clone classes are used for training machine learning model in Step

6.

7. Next, in Step 7, the trained machine learning model is used for predicting the clone validation pattern

for the unknown or test sets. The machine learning model at this stage returns probability score (of

being true or false positive) for the given corresponding code clone pairs.

8. Finally, in Step 8, the classified result is sent back to the clone detection tools. The classification result

can be tuned based on user preference (of probability score) for the final result. The system can take

user feedback based on the classified clones from user for repeating the cycle of supervised learning,

thus improving the validation result over time and experiences.

Manual Code Clone Validation for Training

The reported code clones from the clone detection tools are provided to the user for manual validation (Step

3, Figure 5.9). The corresponding user validation results are stored in database which is later used for training

the machine learning model. Reported clones from clone detection tools are used to create a clone database,

K. Clones from K, are manually marked as true or false positive by the user. Reported code clones are

thus grouped into two disjoint sets Kt and Kf - representing true positive and false positive clone groups

respectively, such that, K = Kt∪Kf and Kf ∩Kt = ∅. Kt and Kf are used for training the machine learning

models in a later stage of the clone validation workflow.

75

Feature Extraction

As machine learning models learn to map the input feature sets to the corresponding class label, it is

important to select appropriate features for the given classification problem. For example, Yang et al.

[197] targeted Type 2 clones in a similar study of code clone classification problem and hence used simple

token sequences as features for using in the classification algorithm. As we intended to enhance clone the

classification performance (so that it works efficiently with more diverse types of clones and also shows better

prediction score), in addition to improving the whole classification workflow, we also focused on extracting

more informative features. Most of the selected feature extraction undergoes two main steps: i) Pre-processing

and source code transformation and ii) Similarity extraction from the code clone pairs.

Pre-processing like pretty-printing, comment removal and so on ensures consistent structures for matching

and similarity extraction of similar source code pairs (for example Type 1 clones) [157, 40]. Extracting

similarity features between the two code clone fragments after this step (i.e., comment removal followed by

pretty-printing) gives us the information about how a user sees the code clones for validation. Thus at this

point, the extracted features represent mainly Type 1 similarity between the target code clone fragments. In

addition to that, different source transformations like consistent normalization of literals, consistent renaming

of identifiers and so on are applied to consider the possible changes between the code clone pairs (i.e., for

Type 2 and Type 3 clones [157]). For example, Listing 5.6 and Listing 5.7, show the code fragments of one

of the detected clones from Weka [192] software system, that needs to be validated.

1 try {

2 i f (args . l ength == 0) {

3 throw new Exception (

4 ”The f i r s t argument must be the c l a s s name o f a ke rne l ”) ;

5 }

6 St r ing a s s o c i a t o r = args [0] ;

7 args [0] = ”>” ;

8 System . out . p r i n t l n (eva luate (a s s o c i a t o r , a rgs)) ;

9 }

Listing 5.6: Sample Code Clone (Fragment 1)

1 try {

2 i f (args . l ength == 0) {

3 throw new Exception (

4 ”The f i r s t argument must be the name o f a ”

5 + ” c l u s t e r e r ”) ;

6 }

7 args [0] = ”?” ;

8 C l u s t e r e r newClusterer = Abst rac tC lus t e r e r . forName (C lu s t e r e rS t r i ng , n u l l) ; // ob j e c t from

abs t r a c t c l u s t e r e r

9 System . out . p r i n t l n (e v a l u a t e C l u s t e r e r (newClusterer , a rgs)) ;

76

10 }

Listing 5.7: Sample Code Clone (Fragment 2)

Although the code clone pair exhibit much structural similarity, calculating similarity directly based on

original source code pairs have a higher probability of introducing noise (from the perspective of Type 2 or

Type 3 clones) due to strict consideration of the modifications of literals and identifiers. So, we also applied

different source code transformations before calculating clone similarity for extracting possible Type 2 or

Type 3 information.

1 try {

2 i f (X.X == 0) {

3 throw new X(

4 ” s t r i n g ”) ;

5 }

6 X X = X[0] ;

7 X[0] = ” s t r i n g ” ;

8 X.X.X(X(X, X)) ;

9 }

Listing 5.8: Pre-processed and Transformed Code Clone (Fragment 1)

1 try {

2 i f (X.X == 0) {

3 throw new X(

4 ” s t r i n g ”

5 + ” s t r i n g ”) ;

6 }

7 X[0] = ” s t r i n g ” ;

8 X X = X.X(X, n u l l) ;

9 X.X.X(X(X, X)) ;

10 }

Listing 5.9: Pre-processed and Transformed Code Clone (Fragment 2)

For example, Listing 5.8 and Listing 5.9, show the transformed clone fragments from Listing 5.6 and Listing

5.7 respectively, after first blind renaming of identifiers and then applying consistent normalization of literals.

For example, after blind renaming of the identifiers, all different identifiers takes a common name X for

the structural comparison. Similarly, all the different string literals were transformed to ‘string’ after

consistent normalization of the literals as shown in Listing 5.6 and Listing 5.7. These transformations allow

the corresponding modifications of literals and identifiers and thus provides similarity feature information for

Type 2 and Type 3 code clones.

After applying different pre-processing and transformation for different types of features, we then analyze

the differences between the code clone fragments (i.e., output of the previous steps). In prior to calculat-

ing numerical similarity values between the clone fragments, we find out the minimal changes required to

77

transform from one clone fragment to another.

1 4c4 , 5

2 < ” s t r i n g ”) ;

3 −−−

4 > ” s t r i n g ”

5 > + ” s t r i n g ”) ;

6 6d6

7 < X X = X [0] ;

8 7a8

9 > X X = X.X(X, n u l l) ;

10 10 ,12 d10

11 <

12 <

13 <

Listing 5.10: Difference between the code clone fragments

For example, Listing 5.10 shows the minimal changes or operations required for transforming code clone

fragment 1 (i.e., Listing 5.8) to code clone fragment 2 (i.e. Listing 5.9). We use Unix Diff utility for

the purpose, that calculates the minimum set of insert and delete operations required for converting one

file to another. For example, in Listing 5.10, < and > signs represent delete operation, Od and insert

operation Oi respectively, that we need to apply on first clone fragment for the required transformation. For

example, the first conflicts of the transformed clone fragments in Listing 5.8 with Listing 5.9 is at line 4. The

minimum operations needed to resolve the difference is one delete operation, Od of original line at 4, followed

by two insert operations, Oi of line 4 and 5 from Listing 5.9. The corresponding change operations has

been represented as 4c4, 5 in Listing 5.10. We then calculate the similarity value between the two code clone

fragments f1 and f2 as, ξ(f1, f2) = 1−max(C(Od)/|f1|, C(Oi)/|f2|), where C(O) and |f |, represent the count

of the corresponding change operation and length of the corresponding code clone fragment respectively. The

fragment similarity thus falls in the range of [0,1]. As the number of such differences between the two code

clone fragments increases, the code clone fragments similarity measure tends towards zero. On the other

hand, the fragment similarity is calculated as 1, in case the clone fragments are exactly similar with no

further required changes (i.e. C(Od) = C(Oi) = 0).

We also used several other features to get more structural information about the two code clone fragments.

We tried to mimic several manual validation patterns as per our obtained experiences on manual code clone

validation of users. For example, our intuition was, if the code clone fragments are significantly different in

sizes, validator may be more likely to mark them as false positive. The corresponding code clone fragment

sizes α and β, were calculated as respectively. The difference |α − β|, provides the information about the

variation of fragment sizes. The smaller difference value represents more likelihood of being validated as

true positive code clone than that of comparatively higher difference values and thus was considered as one

possible feature for the clone classification problem. However, for a clone that is small versus a clone that is

78

large might have different consideration. For example, for a relatively larger code clone fragment pair, it is

possible to have more variance in difference than that of smaller code clone fragments pair. So, to mitigate

this possible bias we also considered the average size of the code clones (α+β)/2. That average value captures

sort of the size of the clones and difference captures if the code fragments are rather mismatched in size.

Note that some of the popular code clone detection tools use source transformations like the consistent

renaming of identifiers, normalization of literals and so on, as part of their workflow for code clone detection

[157, 96]. A few of such clone detection tools like NiCAD [157], and CCFinder [96] are also well known in

the research area for their better performance on clone detection. So, with this motivation, for a subset of

the features, we also carried out similar transformations before calculating the clone fragment similarities as

discussed above. However, to the best of our knowledge, no previous works on clone validation used a similar

feature set.

We use several re-usable SciWorCS modules to compose the required feature extraction workflows as

discussed above. The discussed feature extraction workflows can be composed of different independent

source preprocessing, transformation and numerical feature calculation modules. The preprocessing modules

for the problem includes pretty-printing and comment removal modules, MprettyPrinting(inputSource) and

McommentRemoval(inputSource) respectively of the input source codes. For an input source code fragment,

the following workflow, Wp can be used for the required preprocessing of the source codes for the discussed

clone validation approach.

Wp : inputSource→ out1 = MprettyPrinting(inputSource)→ out2 = McommentRemoval(out1)

We use TXL [39] for writing the SciWorCS modules for these required source code preprocessing. Similarly, we

identify and write SciWorCS modules for source code fragment transformation and numeric feature calcula-

tion MsourceRenaming(inputSource), MsourceNormalization(inputSource), MsourceAbstracting(inputSource),

MsourceFiltering(inputSource) and MsourceDiff (inputSource1, inputSource2) as discussed above. Note that,

some of the modules can be tuned with a different set of configurations [157, 39], which can be re-used in

different settings in the SciWorCS workflows to extract features of different levels (e.g., functions or block

level granularity in abstracting) for the clone validation problem. Fig. 5.10 illustrates a sample SciWorCS

workflow for clone validation feature extraction as presented above. The figure also shows a subset of ex-

tracted features from a manually validated dataset (e.g., as presented in following Data Source Section) joined

together for the usage of machine learning classifier training phase.

Studying Data Distribution using SciWorCS

As the machine learning algorithm tries to recognize any available underlying pattern in the given dataset,

it is important how we choose the dataset and which features we extract out of it for training and testing of

the system [132]. For example, selecting a smaller or undiversified dataset can make the algorithm biased,

resulting in the failure to generalize all the other different types of clones [132]. So to get generalization

79

Figure 5.10: Sample feature extraction workflow for machine leaning based code clone validation.

in validating different types of code clones by the system we have chosen to use relatively bigger and di-

verse dataset of open source projects. Besides we also considered clones reported by different existing clone

detection tools from multiple open source projects.

Data Source

For training, we used clones from IJaDataset 2.0 [71], a large inter-project dataset of open-source Java

software systems. To test the generality of the proposed method, five different publicly available and state-

of-the-art tools namely NiCad [40], Deckard [88], iClones [63], CCFinderX [96] and SourcererCC [158] were

used to detect clones separately out of the benchmark. Randomly 400 clone pairs were then selected and

manually validated from each of the five clone detection tools separately. We have chosen to work on this

dataset because of a good number of recent research works on code clones have been carried out on these

open source projects and thus we can have a common ground for evaluating the proposed approach.

High Level Details of the Data Set

Reports obtained from any of the existing clone detection tools on possible code clone pairs are given as

input to the proposed SciWorCS workflow for clone validation. Several code clone detection tools were run

on the used data source to find the corresponding reports for the possible code clone pairs. The code clone

pairs were then manually validated for the training phase of the proposed method. As some recent research

shows that the clone validation decision in some scenario depends on users perspective [102], that is given a

80

possible code clone pair to validate some judges might decide it to be a true positive clone pairs where others

might say the opposite (especially, in case of Type 3 and Type 4 clones). So to consider this generalization

to the proposed method the whole set of code pairs were split into 5 parts to be validated by 5 different

programmers independently. This manual validation decision along with the corresponding possible code

clone pairs are given as input to the proposed method for the training phase.

Analyzing Data Distribution for the Clone Classification Problem

Out of those manually validated clones we extracted different features that are used to train the machine

learning model. In this section, we discuss different distribution and statistical studies and behaviors of some

of the extracted features using SciWorCS workflow.

For every code clone pairs detected by clone detection tools, we found the similar code fragments for a

clone pair. These are the similar code fragments for which the tools decided them to be possible code clone

pair.

Figure 5.11: Histogram of Code Fragment Line Differences.

We analyzed the feature of the code clone pairs for both true positive and false positive manually validated

clones in an attempt to find the contribution score for clone classification. For the extracted feature vector

x ∈ Rn, a SciWorCS module plots the numerical feature xi ∈ x for the two class labels true positive

81

vs. false positive manually validated clone. Hence, a general sturcture for such data distribution analysis

SciWorCS modules is MdataDistribution(labeledDataset, feature, targetV ar).

Figure 5.11, shows the distribution of the average code clone fragment feature ((α + β)/2, as discussed

in Section 5.6.3) for the true positive and false positive clone classes. From the figure, we can notice that

the average code fragment size shows much randomness, both for true positive and false positive clones. The

distribution of this feature almost overlaps on one another for the two classes: true positive and false positive

code clones. This overlapping pattern suggests that this feature provides very minimal information about the

two classes and thus yields a very low possible contribution score for training the machine learning algorithm

for validation.

Figure 5.12: Histogram of Syntactical Similarity by Token (Type 1 Norm.)

Besides for extracting some other features we normalized the code clone pairs by 3 levels, namely: Type

1, Type 2 and Type 3 using the SciWorCS modules presented above for source fragment transformation

and normalization. Then for each level of normalizations syntactical similarity was measured by lines and

by tokens for the clone pairs resulting 6 different possible features (Section 5.6.3). To view any underlying

distribution of the features their normalized histogram was plotted both for true positive and false positive

clones. Figure 5.12, shows one of such plottings that is based on the similarity measured by token after Type

1 code normalization. From the figure, it is noticeable that the distribution of the feature is comparatively

better than the average code fragment line feature in terms of validation. Though the distribution for true

82

positive and false positive clones are not completely linearly separable with this feature but still the two

classes are somewhat distinguishable. The distribution indicates a possible better contribution score for val-

idation prediction than the average clone fragment sizes.

We also use SciWorCS workflow to carry out several studies to find out any underlying relationships

between different features for possible clustering of the two clone classes. For example, we tried to figure out

if there is any underlying relationship available for different types of similarity measures that can give any

potential information about the clustering of the two clone classes. We plotted our several study result for

visualization in an attempt to notice any distinguishable separation or clusters. However these analyses did

not show any distinguishable cluster information for the two classes.

As machine learning algorithms try to recognize any underlying pattern available on the working dataset,

the detail analysis on the dataset and possible features are necessary for selecting the features and machine

learning algorithm. This distribution analysis of different possible features for code clones provide informa-

tion about their importance and contribution for clone validation. This analysis provides a clearer view of

the data distribution and thus helps to pick the appropriate machine learning algorithm and corresponding

features for the algorithm. From several analyses on the data distribution we tried to find out the features

that have comparatively more distinguishable distribution and provides more contribution for the two classes

true positive and false positive clones. Table 5.1, shows a feature set ranked on possible contribution score

based on our analysis study. The corresponding distribution mean differences, ∆µ for the two classes also

somewhat indicate the separability for the classification.

The detailed feature study in terms of class distribution prior to applying any machine learning algo-

rithm is very important, since using any noisy feature (for the specific classification problem) may affect the

classification performance and reduces the generality of the classification. Our distribution study, thus also

contributes to the research area for further improvement in feature extraction and selection of appropriate

classification algorithms. From our study, we built the feature vector as listed in Table 5.1. The other fea-

tures were not used for the clone classification due to their low contribution scores or noisy behaviors for the

classification as discussed above.

Training Machine Learning Models for Clone Classification

As we have presented the workflow of the proposed method in the above discussion, it uses a supervised

machine learning algorithm for learning the classification pattern of the user-specific clone validation (i.e.

in Step 6). The supervised classification algorithm will be trained on the manually validated datatset,

D = {(x1,y1), (x2,y2)...(xm,ym)}, for xi ∈ Rn and yi ∈ Rl, where n and l represent the extracted clone

feature set and clone validation labels respectively. The machine learning algorithm is then trained on

the dataset, D to learn a function f , such that f can map from Rn to Rl, representing the class prob-

ability for being true or false positive for the given pairs of code clones. Hence, the SciWorCS modules

McloneClassification(D, featureSet, targetV ariable) for clone classification problems learns the function f

83

Table 5.1: Selected Features Based on Distribution Analysis

Feature ∆µ Feature Summary (as discussed in details in Section 5.6.3)

Line Sim. (Type-1 Norm.) 0.3998 Syntactical similarity measured by line after Type-1 Normalization

Line Sim. (Type-2 Norm.) 0.3701 Syntactical similarity measured by line after Type-2 Normalization

Line Sim. (Type-3 Norm.) 0.3602 Syntactical similarity measured by line after Type-3 Normalization

Token Sim. (Type-2 Norm.) 0.3447 Syntactical similarity measured by Token after Type-2 Normalization

Token Sim. (Type-1 Norm.) 0.3105 Syntactical similarity measured by Token after Type-1 Normalization

Token Sim. (Type-3 Norm.) 0.2537 Syntactical similarity measured by Token after Type-3 Normalization

Function Intersected 0.2364 Total Number of functions intersected by the code fragments

Unmatched Braces 0.2078 Total number of unmatched braces across both code fragment

from the labeled dataset, D for predicting the clone validation patterns. In addition to the classifier specific

configurations (e.g., number of hidden layers for ANN and so on), the machine learning modules, in general,

are configured for the feature set and target labeled variable for classification of the dataset, D.

We use SciWorCS for the comparison study of machine learning models (e.g., which are wrapped as dif-

ferent SciWorCS modules) for the clone classification. We investigated the classification performance using

different machine learning algorithms as to the best of our knowledge, we could not find any other previous

research works that directly focused on user-specific clone validation using such extracted clone features to

target validation of all 3 different types of clones. We studied the performance of multiple machine learning

classification algorithms, for example, Random Forest, Naive Bayes Classifier, C48, Decision Table and Arti-

ficial Neural Network. While we refer the readers to our original paper [129] for details, here we show a part

of the comparative study to demonstrate the use-case of SciWorCS.

Fig. 5.13 illustrates a SciWorCS workflow for code clone classification with different machine learning

algorithms. All of the algorithms use the same dataset as we presented above. In addition to specifying the

input data source, the classifiers are further tuned with corresponding classifier configurations. For example,

the figure demonstrates a set configuration for ‘Random Forest’ machine learning classifier. On completion

of any such configurations for other machine learning classifier modules, the SciWorCS workflow is submitted

for execution. On receiving the workflow job submission, SciWorCS schedules and executes the classifiers

to return the classification stats for the corresponding machine learning classifiers. The machine learning

modules’ classification stats include accuracy, precision, and recall. Table 5.2 shows the obtained code clone

classification accuracy with different machine learning classifiers.

84

Figure 5.13: SciWorCS workflow for clone classification with different machine learning classifiers.

Table 5.2: Classification Accuracy Comparison for different Machine Learning Models.

Machine Learning Classifier Classification Accuracy (%)

1 Random Forest 84.47

2 Random Tree 79.84

3 Naive Bayes 83

4 Bayes Network 81.79

5 Naive Bayes Updateable 82.99

6 Logistic Regression 85.06

7 K* Classifier 81.79

8 Decision Table 85

9 Artificial Neural Network 87.4

85

5.6.4 Code Clone Detection (Software Repository Analysis)

Existing studies show several motivations and use-cases towards collaborative SWfMSs [114, 201, 199, 114].

Different experimental studies can exploit the added advantages of collaboration for accelerating the overall

process [201].

Code Clone. Code clones are similar pairs of code fragments in software systems [155, 156, 129]. Listing

5.11 and 5.12 demonstrate a pair of code clone. Studies show that, on average software systems often

contain 7% to 23% of codes that are copied from one location to another (e.g., code clones) [156, 11, 99].

Developers often intentionally adopt code cloning to re-use the existing pieces of codes towards accelerating

the software development process [156]. While not all of the code clones are considered harmful [98], several

research studies show that in general code cloning is one the major causes of propagation and creation of

new software bugs due to the inconsistent changes of the clone fragments [155, 156]. Code clones are often

responsible for inflating the overall software maintenance cost, and hence their successful detection has been

one of the research problem in the domain of software engineering [156, 175]. In addition to the software

maintenance, code clone detection is directly or indirectly used across several other research domains [154],

such as Plagiarism Detection [160, 147, 119, 87, 14], Library Candidates Detection [43, 29], Origin Analysis

[65, 185], Merging [84, 65], Software Evolution [185, 184, 188], Bug Detection [108, 89, 86, 149], Aspect

Mining [103, 26], Program Understanding [93, 74, 146], Malicious Software Detection [190, 27], Copyright

Infringement Detection [11, 96], Product Line Analysis [35, 97], Automatic Code Completion [9, 8] and so

on.

1 i n t f a c t o r i a l (i n t N) {

2 i n t f =1;// f a c t o r i a l r e s u l t

3 f o r (i n t i =1; i<=N; i++)

4 f = f ∗ i ;

5 r e turn f ;

6 }

Listing 5.11: Sample Code Fragment 1.

1 i n t g e t F a c t o r i a l (i n t Num) {

2 i n t f a c t o r i a l =1;

3 f o r (i n t j =1; j<=Num; j++)

4 f a c t o r i a l = f a c t o r i a l ∗ j ;

5 re turn f a c t o r i a l ;

6 }

Listing 5.12: Sample Code Fragment 2.

Throughout the life-cycle of a software system, the code clone fragments often undergo several changes, such

as identifier name changes, addition/edition/removal of several statements, changes in the presentation and

so on [155, 156]. For example, in the code clone fragments as demonstrated in Listing 5.11 and 5.12, the

function names have been changed in line 1, line 2 demonstrates the difference in comments and also changes

in the used identifier which also has been propagated throughout the entire fragments and so on. These

changes in the code fragments over time, thus often result in complication of the code clone detection process

via simple string matching algorithms [157]. Code clone techniques hence, undergo several pre-processing and

transformation steps, such as pretty-printing [157, 155], normalization of the identifiers [96, 157], forming

syntax tree [104] of the code fragments and so on, prior to applying any matching algorithms. While a great

many number of code clone detection tools and techniques have been proposed over the last decade (e.g., recent

86

study reports at least 198 such tools and techniques until 2017 [175]) for addressing specific types or aspects of

clones, the tools and techniques often share much similarity in their corresponding steps and can be broadly

categorized in some general detection steps or taxonomies, such as source transformation, normalization,

pretty-printing, comparison and so on [155]. The clone detection techniques thus can be generalized as set and

combination of the processing steps, which can be modularized towards the composition of workflows. This

opens up the possibility of re-using the modular steps and also on focusing the case-specific clone detection

rather than focusing on the implementation details of the modules that is exploiting the advantages of

scientific workflow concepts and SWfMSs [186, 3, 141]. For example, a workflow comprising the modular

steps pretty-printing, removing comments and renaming of identifiers result in the output as presented

in Listing 5.13 and 5.14 for the corresponding input code fragments of Listing 5.11 and 5.12 respectively.

1 X X(X X) {

2 X X=1;

3 f o r (X X=1;X<=X;X++)

4 X = X∗X;

5 return X;

6 }

Listing 5.13: Pre-processed and

Transformed Listing 5.11.

1 X X(X X) {

2 X X=1;

3 f o r (X X=1;X<=X;X++)

4 X = X∗X;

5 return X;

6 }

Listing 5.14: Pre-processed and

Transformed Listing 5.12.

Fig. 5.14 demonstrates the workflow composition in SciWorCS for code clone detection. For the use-case,

we leverage the modular steps from NICAD [157] to demonstrate the re-usability of the workflow modules

towards clone detection process as per the given requirements. As input, the workflow takes the target

software system repository and outputs the detected code clone pairs along with different statistics of the

detected clones (e.g., number of detected clones, pair-wise similarity values and so on).

5.7 Conclusion

Realizing the compelling need of collaborative SWfMSs, several methods or techniques have been proposed

and developed in recent years. Several methods have been proposed for the consistency management in

workflow composition in collaborative setups [201, 199, 165, 164, 168, 167, 78]. However, in addition to

the consistency management, studies show that collaborative SWfMSs also need to consider several other

aspects, such as backdoor communication among the sub-group collaborators, sub-workflow execution, the

relationship between scientific workflows and collaboration models and so on [199, 201, 114]. Besides, from

the perspective CSCW, the collaborative systems often need to consider several other factors, such as problem

solving, group decision making and so on to be effective [48].

From these study findings, we proposed an architecture for collaborative SWfMSs. In addition to the

consistency management for collaborative workflow composition, the architecture address plugin-based tool

integration, role-based access control on the workflow components, independent sub-workflow execution and

87

Figure 5.14: Code Clone Detection Workflow in SciWorCS.

monitoring for supporting sub-group collaborations, integrated communication technologies for group discus-

sion, decision making or problem solving and plugin-based visualization framework. As a proof of concept, we

also developed a collaborative SWfMS SciWorCS. In this chapter, we presented different technical features

of SciWorCS and also presented several real-world use-cases for scientific workflow composition, execution

and data visualization. Our proposed architecture demonstrates promising results when evaluated in terms

of different real-world scenarios of scientific workflow collaboration.

We also conducted several empirical and user studies with SciWorCS to study the human work patterns

in term of collaborative SWfMSs. We present our study findings in Chapter 6.

88

6 Understanding the User Behavior for

Collaborative Data Analysis

Unlike the collaborative systems of unstructured objects such as text documents, the collaborative data

analysis can often have different sets of considerations (e.g., dataflow, statistical analysis, visualizations,

high inter-dependence of computational steps, execution scheduling and so on) that need to be addressed

for a successful analysis process [114, 199]. Several methods [130, 91, 201, 165, 199, 164, 56] have been

proposed in recent years towards a successful design of collaborative SWfMS. However, to the best of our

knowledge, none of them considered usability analysis using human collaborators and rather relied only on

computer generated simulated studies where different concurrent threads simulate the collaborators for

corresponding workflow updates over time. While the simulated studies are better for rigorous testing of

the proposed methods [199, 201], in the context of CSCW, the human-centric studies are also important

to evaluate the usability of the collaborative systems in real-world scenarios [142]. Hence, in this chapter,

we present different user-studies for scientific workflow collaboration in terms of collaborative SWfMS. We

leverage our proposed collaborative SWfMS SciWorCS (e.g., as presented in Chapter 5) for conducting

the user-studies.

In Section 6.1 of this chapter we first present the motivation and importance of such user-studies in real-

world scenarios of workflow collaboration. We present the related works in Section 6.2. In Section 6.3, we

then give a brief overview of our developed tool - SciWorCS (e.g., the details of the tool was presented in

Chapter 5) and its used technical features for conducting our user studies. We then present our conducted

study and experimental findings in Section 6.4. Section 6.5 contains the result discussion. We finally draw

conclusion with a brief discussion on our future works in Section 6.6.

6.1 Motivation

In the recent big data era scientific experiments need to handle massive amounts of heterogeneous data

[111, 115]. While these data-intensive experiments open up several possibilities of interesting knowledge

discoveries (such as, by statistical analysis, applying some machine learning models and so on), they also

impose several challenges for a successful analysis process such as, failure handling, optimal task scheduling,

big data visualization, distributed job execution, real-time job monitoring and so on [111]. These challenges

often stands as barriers to focusing on the data analysis task itself, and require significant amounts of time

89

and efforts [201, 165, 199]. Hence, Scientific Workflow Management Systems (SWfMSs) - framework for com-

position and execution of series of computational and data manipulation - are widely being used in recent

years to address these challenges while accelerating the overall data analysis process [201, 199, 111, 55]. In

addition to the job management, the visual programming front-end (e.g., a visual graph representation of

dataflow) have resulted in significant popularity of SWfMSs for even non-computer science background users

for domain-specific data analysis tasks [42, 56, 186, 66]. As a result of extensive research on this domain,

several SWfMSs have been proposed and developed over the last decade [66, 111, 24, 181, 138, 109].

However with the rapid increase in complexity, volumes, and dimensions of heterogeneous data, the big

data analytic workflows often goes beyond the scope of an individual for a successful data analysis process and

hence, requires a collaboration of multiples scientists [199, 201, 165, 168]. As none of the existing SWfMSs

supports real-time collaboration [201, 130, 165, 164], researchers often manually send (e.g., via e-mail and

so on) or upload the workflows to some social shared spaces such as myExperiment [44] for collaboration

[201, 199]. For example, around 3910 such scientific workflows have been shared among 10665 members (as

last noted in August 2018) for collaboration in myExperiment [44]. Realizing the compelling need of such sci-

entific artifact collaboration, researchers have proposed several methods for collaborative SWfMSs in recent

years [130, 164, 199, 201, 165, 167]. However, although the existing techniques show promising results (e.g.,

for consistency management and so on) from several computer generated simulated studies [199, 56, 201] or

theoretical use-cases [165, 164, 167], none of the studies considered human factors, such as adapted work

patterns, data analysis problem solving, challenges and so on for scientific experiments from collaborative

SWfMSs perspective [130]. Unlike collaborative text or graphics editing systems the scientific workflows are

often more structured where one module can be highly dependent on another in their execution forming a

hierarchical relation among them [201, 66, 130, 111]. Even any minor changes in any part of a workflow can

significantly impact the other part of the collaborative workflow in execution and data manipulation [56, 55]-

which often make the problem notably different than that of unstructured document collaborative systems,

such as text or graphics editing systems [130, 201, 165]. Studying and understanding the human engagement

or work patterns for collaborative data analysis, hence is important towards accelerating the emerging data

analysis (e.g., by application of machine learning, data mining and so on) process with the aid of CSCW

[68, 201, 91, 58].

While researchers have agreed upon the necessity of collaborative SWfMSs [130, 91, 201, 165, 199, 164, 56],

there has not been any fully functional one that accumulates the discrete ideas and proposed techniques in

recent years [130, 56]. Hence, for the study, we developed a cloud-based prototype collaborative SWfMSs -

SciWorCS for collaborative data analysis among researchers. For the development of SciWorCS, we consid-

ered several recently proposed techniques on discrete aspects (such as multiple locking schemes for consistency

management [130, 201, 199], job queuing for collaborative execution [66] and so on) envisioning collaborative

data analysis with SWfMSs. We studied the impacts of such variants of techniques in the engagement of

the collaborators in data analysis tasks. We conducted several user studies involving multiple researchers

90

T
o

o
lb

o
x

Workflow

Composition Panel

DAG Parser Monitor

Data
Vis.

Coms.
Tools

Data
Access

T
o

o
lb

o
x

Workflow

Composition Panel

DAGParserMonitor

Data
Vis.

Coms.
Tools

Data
Access

Job Manager

Cloud Storage / Distribute File System

Tool
Definition
& Source

Workflow
Models

C
lie

n
t

S
e
rv

e
r

WebRTC

Workflow
Models

Tool
Definition
& Source

Figure 6.1: High-level Architecture of SciWorCS (e.g., as details presented in Chapter 5)

from a local university. In our study, participants were asked for some data analysis tasks, such as real-world

workflows from myExperiment [44], building machine learning classification models for a given dataset and

so on.

Our study reveals that, while the collaboration, in general, accelerates the data analysis process, the en-

gagement and work patterns of the collaborators often are highly impacted by the nature of the data analysis

problem. For example, when the data analysis tasks involve building some machine learning models, collab-

orators often engaged more in discussion about the possible selection of algorithms, their configurations and

so on prior to the composition of the workflow towards attaining maximum performance (e.g., classification

accuracy). In such cases, collaborators were also found to be more aligned towards ‘scribe’ - style of work for

aiding the discussion process and converging towards the solution, in comparison to some data manipulation

or transformation tasks (e.g., as discussed in details in Section 6.4).

Our work makes following two main contributions:

1. We present our findings towards the human factor in collaborative data analysis using SWfMSs. To

the best of our knowledge, this is the first work that considered such setups unlike some computer

generated simulated studies. Our findings will help towards a better design of collaborative systems for

emerging data analysis areas.

2. We present SciWorCS1- as a byproduct of the study, which can be used for future studies on the domain.

1https://github.com/pseudoPixels/SciWorCS

91

6.2 Related Works

In this section, we first present the related works on - CSCW in aiding the scientific experiments (i.e., in

Section 6.2.1), and we then discuss the recent works towards collaborative data analysis with SWfMSs (i.e.,

in Section 6.2.2).

6.2.1 CSCW in Aiding Scientific Experiments

Several recent types of research assert the necessity of CSCW in supporting complex scientific experiments

that require collaboration among multiple researchers [41, 91, 68, 201]. Jirotka et al. from their investigation

studies presented that, while the relation of scientific experiments (i.e., such as e-Science) and CSCW are

relatively nascent one, they exhibit significant potentials in answering complex research questions and in

important knowledge discovery [91]. Hence, over the past few years, several research studies have been

conducted in understanding human behavior and also resulted in different proposed tools and techniques for

collaboration in scientific experiments [68, 201, 91, 58].

A number of studies have been conducted in the recent years for gaining an in-depth understanding of

scientific work practices such as, how scientific experiments are conducted, how research artifacts are shared,

how scientists interact for tools and technologies and so on [91, 116, 150, 134]. While such investigation

works often target divergent of scientific experiments (e.g., the Electronic Medical Record (EMR) [77], Breast

Cancer Screening [92] and so on), they generally aim in providing important insights on challenges and design

implications of CSCW systems towards virtual work-space for collaborative scientific experiments [116, 91].

6.2.2 Towards Collaborative Data Analysis

Large-scale scientific experiments often take advantages of SWfMSs for modeling the overall data analysis

and manipulation process comprising of different computational steps for input data loading, transformation,

aggregation and so on [111] where, SWfMSs work as a framework for supporting the specification, modifi-

cation, execution, failure handling, and monitoring of the data-intensive tasks [111, 114]. With the increase

of data complexity and volume, extensive research has been done on this domain resulting in a number of

proposed SWfMSs architecture and corresponding implementation. Some of the modern popular SWfMSs

are: Galaxy [66], Taverna [141], Kepler [115], Pegasus [47], VisTrails [31], Triana [181], VIEW [109], Chiron

[138], GridNexus [24]. However, as the scientific data complexity, dimension and volume increase significantly

in recent time, researchers of different domains try to exploit the CSCW - methodologies to accelerate the

analysis process efficiently [91, 92]. These real-time collaborative techniques hence have gained significant

focus envisioning collaborative SWfMSs [130, 201].

Lu et al. [114] studied several motivations opportunities for collaborative SWfMSs from the perspective

of large-scale and multidisciplinary research projects. A number of methods have been proposed for consis-

tency management of the shared workflow in a collaborative environment. Zhang et al. [199] studied the

92

concept of turn based locking scheme in the context of collaborative SWfMSs for facilitating the consistency

management. In such setup, each collaborator generally has only the Read access to the shared workflow.

Collaborators request and compete for the floor for carrying out any update or transaction on the workflow

(e.g., Read & Write access). Fei et al. [56] and Zhang et al. [201] presented locking schemes by allowing only

descendent module locks (e.g., descendent nodes of the workflow DAG [111]).

Sipos et al. [164] used two lock modes - User and System locks. Fei et al. [56] proposed a lock com-

patibility matrix for a set of six pre-defined modes of locks. Besides, techniques have also been studied for

extending the single-user Grid portals to a collaborative environment [168, 165].

While these proposed methods show promising results in computer generated simulated studies, none of

them considered the human factors for usability and engagement in collaborative SWfMSs. Hence, in this

chapter of the thesis, we present empirical evidence on the usability of such collaborative SWfMSs. Our study

aims to answer several questions on this recent research domain, such as What styles of works people adopt

for collaborative data analysis?, What confounding factors impact the collaborative analysis?, How people

find it different in contrast to some other collaborative systems, such as collaborative text or graphics editing

systems? Does collaborative SWfMSs even works towards a data analysis problem solving?

6.3 Implementation Details

Prior to presenting our experimental studies, in this section, for continuity we first give a brief overview of

SciWorCS - our developed tool for the collaborative data analysis study (e.g., the details on the SciWorCS

has been presented in Chapter 5). The SciWorCS implementation is a cloud-based system hosted in a Linux

Server. We used Python 2.7 as the server side language. On the other hand HTML5, CSS and JavaScript

were used for client side programming. We also used Ajax for asynchronous server communications.

SciWorCS Editor and Panels

Fig. 6.2 shows a screenshot of the collaborative scientific workflow composition system. The panel labeled as

‘A’, contains all the workflow components such as workflow modules, saved workflows, shared workflows and

so on. The collaborative composition of the workflow is done on panel ‘B’. The modules can be configured

using the corresponding attributes in the popup panel ‘C’. Panel ‘D’ shows a list of collaborators and their

current online/offline status. The list of the workflow outputs is shown in panel ‘E’. New dataset can be

browsed and uploaded to the central server for analysis from the panel ‘F’.

Collaborative Composition

Fig. 6.3 shows a screenshot of the collaborative workflow composition panel. We adapted the proposed locking

scheme for the consistency management while collaborative workflow composition. The module and attributes

are color-coded to represent their corresponding lock states to the collaborators. For example, the green

93

Figure 6.2: Prototype Implementation of Collaborative Data Analysis Framework

Figure 6.3: Collaboration Process for Consistency Management Handling Concurrent Conflicting
Operations

94

color-coded sub-workflow (i.e., comprising of Modules 3, 4 and 5) denotes the locked sub-workflow by this

collaborator, the red color coded sub-workflow (i.e., comprising of Modules 1 and 2) shows the sub-workflow

currently locked by other remote collaborators and the remaining white colored workflow components (i.e.,

Module 6 and 7) represent no collaborators currently hold locks on those corresponding components. Col-

laborators can request, release or see the current lock status of any corresponding workflow components. For

example, the similar options has been invoked (i.e., with Mouse Right-Click) in the sub-workflow with root

node - Module 6.

6.4 Experimental Studies and Results

6.4.1 Experimental Setups

Primitive Operations for Dataflow Structure Update

Table 6.1: Dataflow Structure Updates Operations.

Dataflow Update Operation

1 New Module Addition to the Workflow

2 New Datalink Relation Addition From a Module

3 New Datalink Relation Addition To a Module

4 Attribute Configuration Update of a Module

5 Source Update of an Existing Datalink

6 Destination Update of an Existing Datalink

7 Sub-workflow Lock Access Request

8 Sub-workflow Lock Access Release

6.4.2 Study 1: Collaborative Composition Patterns

In Study 1, we aim to understand the collaborative composition patterns of dataflow structure comprising

of different modular data processing steps. Study reports divergent styles of works or strategies adapted by

users for varying collaborative systems, such as collaborative Document Writing [142, 135, 136], Software

Development & Management [79, 198, 18], Computer-Aided Design (CAD) systems [180, 107] and so on. For

a collaborative system, researchers study the adapted styles of works to better understand human behaviour

exploiting new sets of tools and technologies for collaboration [19]. For example, Olson et al. [142] recently

presented their empirical study on how people write documents together leveraging the modern collaborative

technologies and tools such as Google Docs and so on. Hence, here we conduct empirical study for investigating

the work patterns in collaborative data analysis environments.

95

Table 6.2: Primitive Operations For Component Access and User Interaction in Collaborative Data
Analysis.

Operation Type Collaborative Operation

Comp. Access/Update

Sub-workflow Access Request

Sub-workflow Access Release

Module Attribute Access Request

Module Attribute Access Release

Module Attribute Update

DAG View Update
Node Position Update

Datalink Position Update

User Interaction

Textual Comm. (P2P/Room Chat)

Audio/Visual Communication

Collab. Virtual Whiteboard

Telepointer Communication

Collab. Input/Output Visualization

In case of complex data analysis process one modular computation is often dependent on other predecessor

modular step(s) forming a dependency relation (i.e., DAG). Some of the recent proposed locking schemes for

collaborative SWfMSs are, locking entire workflow DAG in turns for collaborators [199], locking hierarchical

descendant modules [56, 201, 165], attribute level locking [130] and so on. While these proposed methods

conducted several computer simulated studies to test their performances for consistency management, none

of them considered usability analysis in terms of human collaborators [130, 201]. Unlike these computer

simulated studies, human collaborators might engage in varying strategies for the workflow composition, such

as one collaborator composes (i.e., as ‘scribe’ in collaborative document writing [142]) while other dictates

or discusses the overall process, sequential composition, parallel composition via different roles assignment,

parallel composition via divide and conquer of the overall tasks and so on. Besides, the adapted strategies

often might be impacted by several other factors such as the number of modules, DAG complexity with higher

average dependency degree, group size, used locking schemes and so on. Hence, in this study we answer the

following two research questions:

• RQ 1: What styles of works do collaborators engage in for scientific workflow composition for collab-

orative data analysis?

• RQ 2: What confounding factors influence the styles of works for collaborative workflow composition?

96

Table 6.3: Considered Arbitrary Scientific Workflows from myExperiments [44] for the Study.

W. ID Workflow Summary

4095 Paired-end reads assembly after FastQ groomer using a Mi-

gale modified version of Velvet tool.

4094 Workflow used when applying the CPB2012 Basic Protocol

3; Peaks for ChIP-seq data using MACS14.

2944 Transform FastQ to FASTA, using the tools, Groomer, Filter

FastQ, FastQ Trimmer.

2939 Retrieves Genome and SNP data from UCSC for a particular

chromosome. Finds Exons from SNPs.

Tasks and Stimulus

For this study on collaborative workflow composition pattern, we considered five real-world scientific work-

flows for varying Bioinformatics data transformation and analysis tasks. These workflows were selected

arbitrarily from myExperiment [44] as presented in Table 6.3. In total, these workflows require 19 unique

computational modules, which were integrated into our collaborative framework for the study. The compu-

tational modules are the building blocks of the workflows for the collaborative composition of the study. To

mitigate the bias of problem solving complexity (i.e., we present our study and findings on problem solving

in Study 2) while acquiring the collaborative composition patterns, the workflow structures were printed and

provided to the participants for collaborative composition. For a given workflow, participants had to select

(i.e., via Mouse Left-Click) the required computational modules available in the tool panel (i.e., Panel ‘A’,

Figure 6.2) of the collaborative framework. The selected modules appear in the composition panel (i.e., Panel

‘B’, Figure 6.2) for devising the required datalink relations among them via Mouse Left-Click and Dragging

among the corresponding input/output ports of the modules. Participants follow a series of collaborative

revisions and updates on the workflow such as, module configuration changes (i.e., Panel ‘C’, Figure 6.2, on

Double-Clicking a module), delete/update/addition operations on the workflow components (i.e., modules or

datalinks) and so on by discussion and consensus to complete the composition of the target workflow. Note

that the collaborators’ access for such operations is also controlled by the selected locking schemes such as

turned based [199], descendent module locking schemes [56, 201, 165] and so on for the consistency manage-

ment. For example, for turned based locking scheme a collaborator need to request and get the write access

prior to any such operations for the workflow composition, hierarchical descendant modules or attribute level

locking allow collaborators to work independently on a selected region of the workflow (i.e., sub-workflow)

and so on. We present the impacts of the locking schemes in ‘Results’ Section of the study.

While the locking schemes ensure consistent composition in the face of conflicting operations, participants

use different available user interaction tools (i.e., as presented in Table 6.2) of the framework for orchestrating

97

the collaborative composition of the workflow. The telepointer (i.e., multiple cursors) information are passed

among the collaborators for real-time group awareness on their location, movement and probable focus of

attention [70] in the collaborative workflow. Collaborators also invoke other communication tools (i.e., audio

communication, video conferencing, textual group/P2P chatting) of the framework for discussion and conver-

gence on a plan. In addition to that, the collaborative discussion process is also assisted by the framework’s

data visualization and virtual whiteboard tools.

Experiment Procedure and Data Collection

For the study, participants were provided four real-world dataflow oriented workflows from myExperiments

[44] for collaborative composition. The participants were introduced and trialed with SciWorCS editor prior

to starting the study. To investigate the impact of workflow locking schemes, the study was conducted

in two different sessions with different locking schemes. The sessions with different locking schemes were

counterbalanced to mitigate any bias or confounding factors. Besides, the used locking schemes were also

anonymized to avoid any bias.

All the generated events and operations (e.g., as presented in Table 6.2) by the participants were logged

in the background independently for the two sessions. Every log entries were also mapped with timestamps

for later analysis. Participants were asked to fill out NASA-TLX [75] questionnaires after each of the sessions

of the study.

Results

For the collaborative composition task in this study, we found that collaborators more often adopt the divide

and conquer work approach towards completing the composition. The clear target for the mere composition

task in collaboration, resulted in more or less fair task splits among the collaborators. Prior to starting the

task, the collaborators were found to make plan via discussion for approaching the problem. In addition

to the discussion, individual collaborators were also found to directly contribute to the composition (e.g.,

via module/datalink addition, deletion and so on) - in oppose to the ‘scribe’ style of work (e.g., where a

single collaborator is responsible for entire composition). For example, for a collaborative composition, two

collaborators had - 65% and 35% splits of operations (e.g., module/datalink addition, deletion and so on) out

of total 105 operations for the workflow composition. Besides, the total engagement in the discussion also

showed a fair split of 55% and 45%. The similar trends were also found among other collaborating groups

for the composition task.

From an individual perspective in a collaborative group, a participant’s results also exhibit contribution

in different aspects of the composition. For example, in a collaborative group, a member contributed 15%

in discussion, 50% in edit operations (e.g., module/datalink addition, deletion and so on) and 35% in other

management operations towards the composition, such as DAG view update, access request/wait/release and

so on, out of all the generated events by the collaborator in the composition. Similarly, another collaborator

98

also found to split the self-events in 23% in decision-making discussion, 47% in edit operations and 30% in

other management operations. That is, the results demonstrate that the collaborators in overall, adapted

the task splits and also individuals contributed in different aspects of the composition. For example, Fig.

6.4 illustrates the engagement of the participants in collaborative composition. For more granular pattern

visualization, a whole collaborative composition (e.g., from the log) has been divided into two sessions and

plotted the contribution of the collaborators for the corresponding sessions. The graph illustrates that the

collaborators showed their engagement in comprehending the composition problem across different sessions.

The chat log of the collaborators also exhibits similar patterns, such as - ‘Collab. #1: ... Do you have a

way to proceed? I was thinking lets get [add to workflow] the input modules first?...’, ‘Collab. #2: ... Alright.

Go ahead ...’, ‘Collab. #1: ... I have set all the user inputs [modules]... Would you like to do [add to the

workflow] the second layer [from the provided reference]?...’ .

Figure 6.4: Collaborative Composition Work Patterns

Fig. 6.5 illustrates the impacts of collaborative workflow object controlling techniques (e.g., locking

schemes) on the participants. The collected NASA-TLX responses from the participants have been plotted

in the graph for the two used locking schemes (e.g., turn based locking [199] and sub-workflow locking

[130, 201, 165, 56] via attribute) in the study. The graph illustrates some differences in collaborator’s NASA-

TLX workload for the two types of locking schemes. For example, turn based locking scheme exhibits lesser

mental demand while a higher physical demand in comprehending the problem in collaboration. For turn

based locking, an individual collaborator could focus more on her/his assigned task on getting the floor and

released the floor on completion of the assigned task. On the other hand, in case of sub-workflow locking

schemes [130, 201, 165, 56], such as attribute level locking [130], collaborators had to be aware for releasing the

sub-workflow components for other members and also for checking the access releases on other components.

The similar pattern is also evident for the required effort. The single threaded nature of turn based locking

hence resulted in lower mental demand in comparison. On the contrary, the parallel work-ability in sub-

workflow locking resulted in comparatively lesser physical demand while maximizing the performance than

99

that of turn based locking.

Figure 6.5: NASA-TLX workload for collaborative composition in terms of different locking schemes

6.4.3 Study 2: Collaborative Dataflow Problem Solving and Convergence on a

Plan

The advancement of technologically-mediated collaboration has opened up several possibilities of the sup-

port of CSCW from management tasks to scientific discoveries [13, 195]. While the sheer volume of data

from different science domains has motivated for important knowledge discovery via their efficient analysis,

the increasing dimension and complexity such data-intensive experiments often go beyond the realm of an

individual and require collaboration among multiple researchers [201]. Hence, application of CSCW on such

modern data analysis experiments can accelerate the overall knowledge mining process [195]. In this study,

we investigate the potential of collaborative SWfMSs for scientific data analysis experiments.

We generalize the scientific data analysis experiments as Problem Solving task, which has been an integral

part of CSCW [195, 33]. However, researchers agree upon that the collaborative problem solving tasks can

be classified in two categories such as ‘well-defined ’ and ‘ill-defined ’, depending on the nature of the problem

and solution definitions [33, 13]. The problems where the correct solution and also the required steps to reach

the solution are well understood by the collaborators are termed as ‘well-defined ’. Since the correct solution

is known and also the steps are well structured such problems are often amenable to measurements [33].

On the other hand, in ‘ill-defined ’ problems the solutions are not often exact and also there exists several

paths or strategies towards the possible solution [33, 13]. In the case of scientific experiments, the nature of

the problems might suggest collaborators to engage in divergent strategies. Hence, in this study we aim to

investigate the adapted problem solving strategies for varying nature of scientific experiments with SWfMSs

answering the following two research questions:

100

• RQ 3: How collaborators engage in for scientific data analysis problem solving (i.e., for ‘well-defined ’

and ‘ill-defined ’ problems)?

• RQ 4: How confounding factors influence the problem solving strategies for collaborative scientific

data analysis?

Tasks and Stimulus

In this study, we consider two different tasks for the collaborators targeting the ‘well-defined ’ and ‘ill-defined ’

problems. Since we target the scientific data analysis tasks with SWfMSs, for a given problem, participants

go through several collaborative activities such as brainstorming, reviewing, revision and so on while selecting

the required computational modules, configuring module attributes, building dataflow relation among the

modules and so on towards the target solution.

Task for ‘well-defined ’. Studies [33, 179, 13] show that, some mathematical problems - where a given

set of mathematical operators are used towards a known solution, often can be classified as ‘well-defined ’

problems. Hence, for the ‘well-defined ’ problem solving tasks, we used simple mathematical modules which

are responsible for elementary arithmetic operations, such as Addition, Subtraction, Division, Multiplication,

and Power. The integrated mathematical modules accept one or more numeric values and output a single

resultant value as corresponding data files. As tasks, the participants are provided with a set of sample

numeric input and output to predict and design the corresponding workflow that generates the similar

output as sample dataset. Note that, these five simple mathematical modules can be used multiple times

with complex datalink relations among them to yet solve much complicated numeric patterns. However,

the prediction of such complex workflows can often be non-trivial making the solution ambiguous. Hence,

in order to keep the problem ‘well-defined ’, we limit the required design of the mathematical workflow to

a simpler and fixed structure which are informed to the participants. For example, for our study the used

arithmetic equation is z = AxC OByD , where x, y are sample inputs, z is the corresponding sample output,

O is any operator from the available mathematical modules and A,B,C,D are some integer constants. For

a given of sets of sample inputs and outputs (i.e., x, y and z), participants predict the constants and the

operator, O. Note that, in the formulated task the solution is exact and known (i.e., matching sample inputs

and outputs) and also the solution steps are fixed and well understood (i.e., given workflow structure). In

addition to that, we set a smaller range of the constants to limit the exhaustive search space.

Task for ‘ill-defined ’. Majority of the scientific experiments do not suggest clear direction on how

to proceed or on the correctness of the solution and thus often exhibit ‘ill-defined ’ problem nature [33].

Hence, for the task, we select a machine learning based classification problem. Participants collaboratively

work towards a possible solution using the provided machine learning based computational modules from

the collaborative SWfMSs. We select the machine learning based problem for its convergence to the recent

real-world practices. SWfMSs are gaining significant popularity in the machine learning domain for different

data analytic, Natural Language Processing (NLP) problem solving and so on [161, 85, 145] as they provide

101

Table 6.4: Publicly Available Dataset - ‘Titanic: Machine Learning from Disaster’ as Collected from
Kaggle [95].

Variable Definition

survival Survival (0 = No, 1 = Yes)

pclass Ticket class (1 = 1st, 2 = 2nd, 3 = 3rd)

sex Sex

age Age in years

sibsp Number of siblings/spouses aboard

parch Number of parents/children aboard

ticket Ticket number

fare Passenger fare

cabin Cabin number

embarked Port of Embarkation

several features and services such as reusability, interoperability, monitoring and so on of the machine learning

tools [162, 85].

We select a publicly available dataset - ‘Titanic: Machine Learning from Disaster’ [95] for the classification

task. Table B.3, present the dataset definition as collected from Kaggle [95] - a community of data scientists

and machine learners. The dataset is about the RMS Titanic passengers, where the task is to build a machine

learning model to predict which sort of people were more likely to survive the sinking of Titanic. The machine

learning model for the binary classification (i.e., whether survived or not) is built by selecting features such

as ticket class, age, sex and so on of the corresponding passengers. Note that, the task is ‘ill-defined ’ in the

sense that there exist multiple solution paths and strategies in selecting the feature set, selecting the ‘correct’

machine learning model, configuring the selected machine learning model for training and so on [189, 106].

Collaborators iteratively converge on plans (i.e., feature, model selection and so on) via discussion, reviewing

the performance of the trained model and so on. Collaborators’ discussion process is assisted via different

statistical computational modules and collaborative visualization tools of the framework. For example, for

the given classification task visualizing the data distribution for survival in terms of age, sex, ticket class and

so on can be important for selecting the contributing features or the machine learning model.

Experiment Procedure and Data Collection

For the ‘well-defined’ task participants were introduced with the corresponding equation structure and the

available arithmetic modules in SciWorCS. Participants were also asked to solve some example problems of

similar type to ensure their understandability of the tasks prior to starting the study. In the study, partic-

ipants were provided three sets of sample inputs and outputs, and instructed to maximize the number of

solved problems within a time frame of 15 minutes. The generated events and operations by the collaborators

102

were logged with timestamps as previous study. Participants filled out NASA-TLX [75] questionnaire at the

end of the task.

Participants were introduced with the Titanic survival classification problem and the corresponding

dataset for the ‘ill-defined’ problem. The provided statistical analysis tools in SciWorCS for the tasks were -

Feature Distribution Analysis, Missing Value Statistics, Fill Missing Values By Median, Convert Categorical

Variables to Numeric. The provided machine learning modules were - Logistic Regression, Support Vector

Machine, kNN Classifier and Random Forest Classifier. The modules were implemented on top of scikit-learn

[143] - a Python based library for machine learning and data mining. Participants trialed on the modules

(e.g., for available configurations, graph plots and so on) independently prior to starting the task. In the

study, participants were asked to build machine learning model with the target of maximizing the classifi-

cation accuracy. Like the previous studies, the events were logged with timestamps and participants finally

filled NASA-TLX questionnaire.

Results

Fig. 6.6 illustrates the contribution of the collaborators for the ‘well’ and ‘ill-defined’ task. For ‘well-defined’

task, as noticeable from the graph, the collaborators engaged in the problem solving by often clear splits of

different aspects of the tasks. Also, more or less even amount of communication among the collaborator for

the task splits is also noticeable from the graph. For example, one collaborator communicated - ‘...let me

create the workflow [as the equation structure] while you figure out the input [for solution]...’ for possible

task splits. The task split for different dimensions of the task is also noticeable from the graphs and results.

For example, for the problem solving task, the discussion split among a collaborating group found to be

60% and 40%. On the other hand, of the total amount of workflow update operations, the split was noticed

to be 66% and 34%. In addition to that, the collaborators also participated other management related

operations, such as DAG layout update, access request/wait/release and so on, with a split of 33% and 67%.

There was some difference noticeable in the type of update operations or roles, but the overall contributions

were found to be often fair, as evident from the event and chat logs. For example, in Group 1, while

one collaborator (e.g., Collaborator #2) was more engaged in workflow creation (e.g., module addition,

configuration updates or datalink addition), the other collaborator (e.g., Collaborator #1) contributed more

by reviewing or revisioning (e.g., by commenting on the current dataflow state, removal of some modules

on revision and so on) the dataflow. For example, on initial development and commit of the workflow by

Collaborator #1, the workflow was further revised for the correct behavior by Collaborator #2. ‘... if 3*3*2

[if such multiplication structure is used] the result is 18, [however] the expected result [from the given problem]

is 12...’ - Collaborator #2 commented for possible fixes on revision.

However, for the later task the result exhibit some different patterns. For building the classification

model, the fair task split and the engagement of the collaborators were not as prominent as other tasks.

Although all collaborators were experienced in machine learning and data analysis, the contributions of the

103

collaborators show significant differences. In general, we found that the collaborators often observed the

progress in oppose to active engagement (e.g., module/datalink addition, configuration update and so on),

while a single collaborator scribes the dataflow for building the machine learning model. For example, as

the graph illustrates the contribution in a collaborating group for ‘ill-defined’ task. In collaborating group

3, one collaborator contributed significantly more in the group. The similar pattern is also noticeable from

the graph for group 4. Although there was some communication noticeable, the parallel contribution in

workflow creation with updates operation (e.g., with active edit operation on modules/datalinks) were not

too prominent for every collaborator, in oppose to previous studies. The communication and discussion were,

of course, important for model selection, the configuration of the machine learning models. For example, the

chat log of a collaborating group shows ‘Collab. #1: ... got 67.7% [accuracy] with Logistic Regression...’,

‘Collab. #2: ... might need to consider age [feature]... ’, ‘Collab. #1: ... should we try knn [kNN

classifier]?...’. While the discussion greatly helped in decision making, collaborators adapted scribe style of

work towards building the machine learning models for data analysis.

Figure 6.6: Collaborators’ Engagement and Contribution in Collaborative Data Analysis.

6.5 Result Discussion

The results of Study 1, indicate that collaborators engage in ‘divide and conquer’ strategies with more or less

fair task splits among them when the task is a mere composition based on any fixed references or pre-planned

104

outline. The target of such composition being clear and straightforward, the adapted style of works among

the collaborators for workflow composition often exhibits some similarity to collaborative document writing.

For example, for collaborative document writing people often tend to split the task (e.g., in paragraphs,

sections and so on) for separation of concern and also for accelerating the overall writing by parallelization,

which also undergoes several revisions from time to time by collaborators [142]. The similar pattern was

evident from the chat log of the collaborators, such as ‘Collab. #1: ... How do you want to proceed...?’,

‘Collab. #2: ... you can do [add to workflow] the first seven module... this way we can double check each

others work...’.

However, the Study 2 results exhibit some differences in the work pattern of the collaborators in compre-

hending the given data analysis task. The difference is even more prominent that involves developing some

unstructured workflow models, such as statistical analysis on the dataset, building the ‘correct’ machine

learning model and so on. In addition to the ‘ill-defined’ nature of the problems, the strong dependency

relation among the computational modules for dataflow results in significant differences in comprehending

the data analysis process in collaborative setups. Although the results exhibit some discussion among the

collaborators in approaching the problem, the task splits or parallelization with separation of concerns for a

given data analysis task was not too evident, unlike other collaborative systems, such as, Study 1, collabo-

rative document writing [142, 144], graphics editing systems [37, 60] and so on. While the discussion greatly

influenced the decision making, such as in selecting machine learning models, possible model configurations

and so on, collaborators often followed scribe style of work (e.g., where mainly a single collaborator was re-

sponsible for addition/updates of modules/datalink) towards completing the data analysis task. The strong

dependency nature among the data analysis steps might be a possible reason for such adapted work pattern.

However, there might have several ways of improvement that needs exploration given the nature of such

strong data dependency relation for data analysis problems. For example, some techniques for decoupling

the dependency in the composition phase might help towards efficient task splits and adaption of other work

patterns, such as parallelization, divide and conquer and so on, for even more accelerating the data analysis

process.

6.6 Conclusion

As the complexity, volumes and dimensions of heterogeneous data increasing significantly in the recent years,

the necessity of collaboration for such effective data analysis is even becoming more prominent. Hence, the

collaborative SWfMSs have gained significant popularity in recent years [114, 199]. Several methods (e.g.,

locking schemes, access control techniques and so on) have also been proposed towards the design of a success-

ful collaborative SWfMS. For the evaluation, these methods relied on computer generated simulated studies

where different concurrent threads simulate the collaborators for corresponding workflow updates over

time. However, while the simulated studies provide better insight about the performance of the algorithms

105

[199, 201], in the context of CSCW understanding the user behavior is important towards effective design of

collaborative systems [142, 81]. In order to address the lack of such studies in the context of collaborative

SWfMSs, in this chapter we presented different findings from our conducted user-studies on real-world sci-

entific workflow collaboration.

Our study reveals that the collaborative data analysis pattern can be highly impacted by the nature of

the task. Our study demonstrates that, collaborators engage in ‘divide and conquer’ strategies, when the

solution of the tasks are clear or straightforward (e.g., ‘well-defined’ problems). The adapted styles of work

in such scenario exhibit much similarity to collaborative document writing [142]. On the other hand, for

‘ill-defined’ problems the study results illustrate that, collaborators often engage in ‘scribe’ style of work

where mainly a single collaborator mainly takes the responsibility of addition, update or deletion of workflow

components while the collaborating group as a whole exhibits the trend of discussion towards these possible

workflow updates. Our findings from the study can significantly contribute towards a more effective and effi-

cient design of collaborative SWfMSs in terms of real-world usage scenarios. For example, the collaboration

on ‘ill-defined’ problem solving exhibit significant opportunity of improvement by aiding the ‘scribe’ style

of work with the integration of CSCW techniques with collaborative SWfMSs. The study reveals that, the

‘scribe’ style of work for collaborative data analysis can be facilitated with more CSCW tools for collabora-

tive visualizations and discussion. On those insights, our future work direction includes real-time annotation,

collaborative visualization, decoupling techniques of computational modules in analysis phases.

106

7 Conclusion

This chapter concludes the thesis. We present a summary of the thesis in Section 7.1, and finally, Section

7.2 outlines some future research directions from this thesis.

7.1 Summary

The generation of sheer amount of heterogeneous data on a daily basis by different areas of modern sci-

ence have resulted in significant focus and popularity in Scientific Workflow Management System (SWfMS)

[111, 3, 141, 201]. SWfMSs provide techniques for modeling re-usable modular scientific data processing steps

and their dependency relations as Directed Acyclic Graph (DAG) [111]. SWfMSs are designed to efficiently

support the specification, modification, execution, failure handling, and monitoring of the tasks in a scientific

workflow [111, 3]. However, with the increase in complexity, dimension, and volume of scientific data, their

effective analysis process is often beyond the scope of an individual and requires a collaboration of a research

group instead [199]. Besides, some scientific domains essentially require collaboration as they are highly

correlated among multiple research disciplines [201]. Though several SWfMSs have been proposed and devel-

oped over the last decade, such as Galaxy [66], Taverna [140], Kepler [115] and so on, none of them directly

support collaboration among the users and generally operate in single user mode [201, 199, 200]. For the

collaboration of such scientific workflows or artifacts, users need to go through several manual steps, such as

directly sending the workflows to collaborators or uploading the workflows to some shared social spaces, such

as myExperiment [44] where the process of update, upload and download are repeated among collaborators

a number of times towards the completion of collaborative workflow composition. Even though this manual

collaboration process is time-consuming, does not support real-time editing or any management systems

for considering different updates by the collaborators [199, 164, 165, 201, 56], still the constant increase in

the number of such shared workflows (e.g., around 2895 such scientific artifacts shared for collaboration as

last noted in January 2018) for collaboration demonstrates the compelling need of collaborative SWfMSs

[201, 199].

Realizing the necessity of collaboration, the notion of Collaborative Scientific Workflow Management Sys-

tems (SWfMSs) was introduced and have gained significant focus in the recent years among the researchers

[199, 201, 114, 165, 164, 167, 166, 78, 168, 56]. Studies show that Collaborative SWfMSs often have different

set of challenges and requirements in contrast to single user based SWfMSs that we need to address towards

a successful collaborative SWfMS [200, 114], such as the challenge of consistency management in the face

107

of concurrent conflicting operations [114, 165, 167, 168, 166, 199, 200], independent sub-workflow composi-

tion and execution by collaborating sub-groups, backdoor communication among the sub-group collaborators

[201], access control policies among collaborators [17], relationship between scientific workflows and collabo-

ration models [114, 78]. On this context of Collaborative SWfMSs, our thesis makes four major contribution

as follows.

7.1.1 Fine Grained Attribute Level Locking Scheme

While the existing locking schemes for facilitating consistency management in terms of collaborative SWfMSs,

in general operates on the module level of workflow DAG [199, 201, 165], we proposed a novel approach that

works on finer attribute level for workflow component locking. Using the proposed approach, a large set of

redundant workflow component locks can be minimized towards ensuing higher concurrency in collaborative

SWfMSs. We conducted several computer simulated studies for validating the performance of the proposed

method in terms of existing methods. Our studies show that the proposed method can reduce the average

waiting time of a collaborator by up to 36.19% while increasing the average workflow update rate by up to

15.28%, which is promising.

7.1.2 Role Based Access Control for Collaborative SWfMSs

Study shows that, adequate access control policies among collaborators are often necessary in terms of

collaborative SWfMSs [17]. While the locking schemes facilitate the consistency management in real-time

collaborative workflow composition environment, the access control policy manages the sharing of workflow

components among collaborators [4, 17]. We studied the concept of access control in the context of collabo-

rative SWfMSs and also proposed a role based method for workflow component access controlling following

the Collaborative Interactive Application Methodology (CIAM) [124] in terms of collaborative SWfMSs. We

present our study on role based access control with a use-case of collaborative Plant Phenotyping and Geno-

typing research domain.

7.1.3 SciWorCS: Proposed Architecture Towards a Collaborative SWfMS

From our findings and investigations on existing research works towards collaborative SWfMSs, we propose

an architecture of collaborative SWfMSs. While there have been several studies on discrete aspects of

collaborative SWfMSs in recent years (e.g., consistency management [165, 199, 201], challenges and motivation

of collaborative SWfMSs [114, 200], access control [17], to the best of our knowledge, no proposed SWfMS

architecture or developed SWfMS directly support collaboration yet. In addition to leveraging the two prior

proposed techniques (e.g., consistency management and access control), in our proposed architecture, we

also address different aspects as investigated by different existing studies, such as handling independent

sub-workflow composition and execution via job queuing [199, 201], relationship between scientific workflows

108

and collaboration models for provenance [114], seamless integration of the workflow components [78]. In the

context of CSCW, study shows that while maintaining high responsiveness and concurrency are two primary

requirements [173], providing different methodologies for group communication towards problem solving

and decision making are also often very important towards the success of the system [48]. Hence, we also

leverages different CSCW techniques and tools (e.g., the concept of telepointer, collaborative white broads,

textual communication tools and so on) with the proposed architecture for successful way of group discussion

and decision making in the process of collaborative data analysis. As a proof of concept of the proposed

architecture, we developed SciWorCS a Collaborative Scientific Workflow Management System. We

present different experimental use-cases for the evaluation SciWorCS, where it showed promising results.

7.1.4 Usability Study

For the evaluation, the existing locking schemes[56, 199, 201, 165, 164, 167] in general conducted several

computer generated simulation experiments. While these simulation results depicts the performance of the

proposed methods; however, to the best of our knowledge none of them considered the usability analysis of

their methods in terms of real world setups. One possible reasoning for lack of such studies, is the unavail-

ability of any existing working collaborative SWfMSs that considers beyond just consistency management

[199]. However, in the context of CSCW, understanding the user behavior, styles of work and so on in collab-

orative environment is important towards designing effective and efficient system [142]. Hence, we make use

of SciWorCS that considers different aspects beyond just consistency management of collaborative SWfMSs

as presented by related works. We conducted several user studies with SciWorCS to understand the user

behavior and styles of work in the context of collaborative SWfMSs. Our studies demonstrate that, collab-

orative SWfMSs can significantly accelerate the data analysis process. Besides, the studies reveal several

interesting findings towards further improvement of the concept of collaborative SWfMSs.

7.2 Future Work

We plan to investigate the following in future regarding collaborative SWfMSs.

7.2.1 Collaborative Provenance Models

Provenance management has become an important part in terms of SWfMSs [17, 114]. Provenance is about

tracking the lineage of scientific data, such as the origin, derivation and context of a given dataset [21].

Recent study investigates several challenges and opportunities of provenance management in terms of col-

laborative SWfMSs [114]. The involvement of multiple users in terms of collaborative SWfMSs, adds a new

dimension the owner of data or workflow component to the overall provenance questions, such as the in-

teraction and coordination among collaborators, origin and dependency information of a dataset and so on

109

[114]. We plan to work on such provenance model in future to answer different provenance questions from

SciWorCS.

7.2.2 Studying More CSCW Techniques

We plan to investigate and study the impacts of more variants of CSCW tools and techniques for aiding

the collaborative data analysis process using SWfMSs. We use our findings from our conducted user studies

and collaborative systems of other domain for incorporating different CSCW tools and techniques, such

as, annotation system on collaborative visualization framework, late join mechanism for the collaborators,

adapting techniques for telepointer delay handling and so on. We plan to perform several empirical studies

to better understand the effectiveness and usage patterns of the tools in terms of collaborative data analysis

using collaborative SWfMSs.

7.2.3 Deadlock Awareness among Collaborators

The locking schemes [56, 199, 201, 165, 164, 167] on the workflow component facilitate the consistency

management in the face of conflicting operation in collaborative SWfMSs. Similar to our proposed fine-

grained locking scheme, the existing locking schemes use different database systems (e.g., hosted on a central

server) to manage the lock requests on the workflow components. Hence, the locking schemes take advantages

of the underlying database system, such as for concurrent transactions [201] (e.g., Atomicity, Consistency,

Isolation and Durability). However, on the user interface level, the users might encounter the situation

of deadlock, where two collaborators wait for one another for releasing the corresponding locked workflow

components. As the situation occurs in collaborator levels, as a trivial solution, the deadlocks can be handled

by discussion among the collaborators with the aid of provided CSCW tools for communication. However, we

can use different CSCW techniques for facilitating the awareness of deadlock among collaborators to make

the system even more interactive. As our future work, we plan to investigate different CSCW techniques to

facilitate the deadlock awareness among collaborators in the context of collaborative SWfMSs.

7.2.4 Studying Collaborative Task Scheduling

In the context of data intensive scientific workflows, the processing and transferring of data sources among

multiple collaborating groups can be an interesting scope of study in term of collaborative SWfMSs. An

efficient collaborative task scheduling approach can significantly minimize the overall overhead in data trans-

ferring and processing.

110

7.2.5 Adaptation of SciWorCS in Source Code Repository Analysis

In the modern big data era software repositories have shown significant growth in complexity and volume

comprising of millions of projects (e.g., 67 million+ projects on GitHub1, 500,000+ projects in SourceForge2

and so on) and enormous collection of information about software (e.g., 12.5 million+ active issues, 1.0

billion+ public commits alone in GitHub since September 2016). Like the bioinformatics domain, SWfMSs

also show several potential towards textual analysis in the domain of source code repository analysis. Besides,

the collaborative support of SciWorCS may reveal several interesting findings in such analysis process.

1As per the data collected in July 2018 from: https://octoverse.github.com
2As per the data collected in July 2018 from: https://sourceforge.net/about

111

References

[1] Lemnatec. http://www.lemnatec.com/products/.

[2] Plantcv. http://plantcv.readthedocs.io/en/latest/.

[3] Enis Afgan, Dannon Baker, Marius Van den Beek, Daniel Blankenberg, Dave Bouvier, Martin Čech,
John Chilton, Dave Clements, Nate Coraor, Carl Eberhard, et al. The galaxy platform for accessible,
reproducible and collaborative biomedical analyses: 2016 update. Nucleic acids research, 44(W1):W3–
W10, 2016.

[4] Gail-Joon Ahn, Ravi Sandhu, Myong Kang, and Joon Park. Injecting rbac to secure a web-based
workflow system. In Proceedings of the fifth ACM workshop on Role-based access control, pages 1–10.
ACM, 2000.

[5] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J. Fernández-Moctezuma,
Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry, Eric Schmidt, and Sam Whittle. The dataflow
model: A practical approach to balancing correctness, latency, and cost in massive-scale, unbounded,
out-of-order data processing. Proc. VLDB Endow., 2015.

[6] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes Klein, Frank Leymann,
Kevin Liu, Dieter Roller, Doug Smith, Satish Thatte, et al. Business process execution language for
web services, 2003.

[7] José Luis Araus and Jill E Cairns. Field high-throughput phenotyping: the new crop breeding frontier.
Trends in plant science, 19(1):52–61, 2014.

[8] Muhammad Asaduzzaman, Chanchal K Roy, Kevin A Schneider, and Daqing Hou. Cscc: Simple,
efficient, context sensitive code completion. In 2014 IEEE International Conference on Software Main-
tenance and Evolution (ICSME), pages 71–80. IEEE, 2014.

[9] Muhammad Asaduzzaman, Chanchal K Roy, Kevin A Schneider, and Daqing Hou. A simple, efficient,
context-sensitive approach for code completion. Journal of Software: Evolution and Process, 28(7):512–
541, 2016.

[10] Brenda S Baker. A program for identifying duplicated code. Computing Science and Statistics, pages
49–49, 1993.

[11] Brenda S Baker. On finding duplication and near-duplication in large software systems. In Reverse
Engineering, 1995., Proceedings of 2nd Working Conference on, pages 86–95. IEEE, 1995.

[12] Adam Barker and Jano Van Hemert. Scientific workflow: a survey and research directions. In Interna-
tional Conference on Parallel Processing and Applied Mathematics, pages 746–753. Springer, 2007.

[13] Aaron Bauer and Zoran Popovic. Collaborative problem solving in an open-ended scientific discovery
game. PACMHCI, 1(CSCW):22–1, 2017.

[14] Boumediene Belkhouche, Anastasia Nix, and Johnette Hassell. Plagiarism detection in software designs.
In Proceedings of the 42nd annual Southeast regional conference, pages 207–211. ACM, 2004.

[15] Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens Krinke, and Ettore Merlo. Comparison and
evaluation of clone detection tools. IEEE Transactions on software engineering, 33(9), 2007.

112

http://www.lemnatec.com/products/
http://plantcv.readthedocs.io/en/latest/

[16] Nicolas Bettenburg, Weyi Shang, Walid Ibrahim, Bram Adams, Ying Zou, and Ahmed E Hassan. An
empirical study on inconsistent changes to code clones at release level. In Reverse Engineering, 2009.
WCRE’09. 16th Working Conference on, pages 85–94. IEEE, 2009.

[17] Fahima Bhuyan, Shiyong Lu, Robert Reynolds, Ishtiaq Ahmed, and Jia Zhang. Quality analysis
for scientific workflow provenance access control policies. In 2018 IEEE International Conference on
Services Computing (SCC), pages 261–264. IEEE, 2018.

[18] Christian Bird, David Pattison, Raissa D’Souza, Vladimir Filkov, and Premkumar Devanbu. Latent
social structure in open source projects. In Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of software engineering, pages 24–35. ACM, 2008.

[19] Jeremy Birnholtz and Steven Ibara. Tracking changes in collaborative writing: edits, visibility and
group maintenance. In Proceedings of the ACM 2012 conference on Computer Supported Cooperative
Work, pages 809–818. ACM, 2012.

[20] Kalina Bontcheva, Hamish Cunningham, Ian Roberts, Angus Roberts, Valentin Tablan, Niraj Aswani,
and Genevieve Gorrell. Gate teamware: a web-based, collaborative text annotation framework. Lan-
guage Resources and Evaluation, 47(4):1007–1029, 2013.

[21] Rajendra Bose and James Frew. Lineage retrieval for scientific data processing: a survey. ACM
Computing Surveys (CSUR), 37(1):1–28, 2005.

[22] Robert P Bostrom. Role conflict and ambiguity: Critical variables in the mis user-designer relationship.
In Proceedings of the seventeenth annual computer personnel research conference, pages 88–115. ACM,
1980.

[23] Gary Bradski and Adrian Kaehler. Opencv. Dr. Dobbs journal of software tools, 3, 2000.

[24] Jeffrey L Brown, Clayton S Ferner, Thomas C Hudson, Ann E Stapleton, Ronald J Vetter, Tristan
Carland, Andrew Martin, Jerry Martin, Allen Rawls, William J Shipman, et al. Gridnexus: A grid
services scientific workflow system. International Journal of Computer Information Science (IJCIS),
6(2):72–82, 2005.

[25] Joseph Brown, Meg Pirrung, and Lee Ann McCue. Fqc dashboard: integrates fastqc results into a
web-based, interactive, and extensible fastq quality control tool. Bioinformatics, 33(19):3137–3139,
2017.

[26] Magiel Bruntink, Arie Van Deursen, Remco Van Engelen, and Tom Tourwe. On the use of clone detec-
tion for identifying crosscutting concern code. IEEE Transactions on Software Engineering, 31(10):804–
818, 2005.

[27] Danilo Bruschi, Lorenzo Martignoni, and Mattia Monga. Using code normalization for fighting self-
mutating malware. In Proceedings of the International Symposium on Secure Software Engineering,
pages 37–44, 2006.

[28] Joseph T Buck, Soonhoi Ha, Edward A Lee, and David G Messerschmitt. Ptolemy: A framework for
simulating and prototyping heterogeneous systems. pages 1–34, 1994.

[29] Elizabeth Burd and Malcolm Munro. Investigating the maintenance implications of the replication of
code. In Software Maintenance, 1997. Proceedings., International Conference on, pages 322–329. IEEE,
1997.

[30] Rajkumar Buyya and Srikumar Venugopal. The gridbus toolkit for service oriented grid and utility
computing: An overview and status report. In Grid Economics and Business Models, 2004. GECON
2004. 1st IEEE International Workshop on, pages 19–66. IEEE, 2004.

[31] Steven P Callahan, Juliana Freire, Emanuele Santos, Carlos E Scheidegger, Cláudio T Silva, and
Huy T Vo. Vistrails: visualization meets data management. In Proceedings of the 2006 ACM SIGMOD
international conference on Management of data, pages 745–747. ACM, 2006.

113

[32] Leonardo Candela, Donatella Castelli, and Pasquale Pagano. Virtual research environments: an
overview and a research agenda. Data Science Journal, 12:GRDI75–GRDI81, 2013.

[33] Esther Care, Patrick Griffin, Claire Scoular, Nafisa Awwal, and Nathan Zoanetti. Collaborative problem
solving tasks. In Assessment and teaching of 21st century skills, pages 85–104. Springer, 2015.

[34] Alan Charpentier, Jean-Rémy Falleri, David Lo, and Laurent Réveillère. An empirical assessment
of bellon’s clone benchmark. In Proceedings of the 19th International Conference on Evaluation and
Assessment in Software Engineering, pages 20:1–20:10. ACM, 2015.

[35] Gary Chastek, Patrick Donohoe, Kyo Chul Kang, and Steffen Thiel. Product line analysis: a prac-
tical introduction. Technical report, CARNEGIE-MELLON UNIV PITTSBURGH PA SOFTWARE
ENGINEERING INST, 2001.

[36] Artem Chebotko, Shiyong Lu, Seunghan Chang, Farshad Fotouhi, and Ping Yang. Secure abstraction
views for scientific workflow provenance querying. IEEE Transactions on Services Computing, (4):322–
337, 2010.

[37] Yuan Cheng, Fazhi He, Yiqi Wu, and Dejun Zhang. Meta-operation conflict resolution for human–
human interaction in collaborative feature-based cad systems. Cluster Computing, 19(1):237–253, 2016.

[38] Yuan Cheng, Fazhi He, Bin Xu, Soonhung Han, Xiantao Cai, and Yilin Chen. A multi-user selective
undo/redo approach for collaborative cad systems. Journal of Computational Design and Engineering,
1(2):103–115, 2014.

[39] James R Cordy, Charles D Halpern-Hamu, and Eric Promislow. Txl: A rapid prototyping system for
programming language dialects. Computer Languages, 16(1):97–107, 1991.

[40] James R Cordy and Chanchal K Roy. The NICAD clone detector. In Program Comprehension (ICPC),
2011 IEEE 19th International Conference on, pages 219–220. IEEE, 2011.

[41] Brian Corrie and Todd Zimmerman. Build it: Will they come? In Media Space 20+ Years of Mediated
Life, pages 393–413. Springer, 2009.

[42] Rafael Ferreira da Silva, Rosa Filgueira, Ilia Pietri, Ming Jiang, Rizos Sakellariou, and Ewa Deelman.
A characterization of workflow management systems for extreme-scale applications. Future Generation
Computer Systems, 75:228–238, 2017.

[43] Neil Davey, Paul Barson, Simon Field, Ray Frank, and D Tansley. The development of a software clone
detector. International Journal of Applied Software Technology, 1995.

[44] David De, Roure Carole, and Goble Robert Stevens. The design and realisation of the myexperiment
virtual research environment for social sharing of workflows. 2008.

[45] Cleidson RB de Souza, David Redmiles, Li-Te Cheng, David Millen, and John Patterson. Sometimes
you need to see through walls: a field study of application programming interfaces. In Proceedings of
the 2004 ACM conference on Computer supported cooperative work, pages 63–71. ACM, 2004.

[46] Ewa Deelman, Dennis Gannon, Matthew Shields, and Ian Taylor. Workflows and e-science: An overview
of workflow system features and capabilities. Future generation computer systems, 25(5):528–540, 2009.

[47] Ewa Deelman, Gurmeet Singh, Mei-Hui Su, James Blythe, Yolanda Gil, Carl Kesselman, Gaurang
Mehta, Karan Vahi, G Bruce Berriman, John Good, et al. Pegasus: A framework for mapping complex
scientific workflows onto distributed systems. Scientific Programming, 13(3):219–237, 2005.

[48] Joanna DeFranco-Tommarello and F Deek. Collaborative software development: a discussion of problem
solving models and groupware technologies. In hicss, page 41. IEEE, 2002.

[49] Wanchun Dou, Jinjun Chen, Shaokun Fan, and SC Chueng. A context-and role-driven scientific work-
flow development pattern. Concurrency and Computation: Practice and Experience, 20(15):1741–1757,
2008.

114

[50] Ekwa Duala-Ekoko and Martin P Robillard. Tracking code clones in evolving software. In Software
Engineering, 2007. ICSE 2007. 29th International Conference on, pages 158–167. IEEE, 2007.

[51] Noah Fahlgren, Maximilian Feldman, Malia A Gehan, Melinda S Wilson, Christine Shyu, Douglas W
Bryant, Steven T Hill, Colton J McEntee, Sankalpi N Warnasooriya, Indrajit Kumar, et al. A versatile
phenotyping system and analytics platform reveals diverse temporal responses to water availability in
setaria. Molecular plant, 8(10):1520–1535, 2015.

[52] Noah Fahlgren, Malia A Gehan, and Ivan Baxter. Lights, camera, action: high-throughput plant
phenotyping is ready for a close-up. Current opinion in plant biology, 24:93–99, 2015.

[53] Thomas Fahringer, Radu Prodan, Rubing Duan, Jüurgen Hofer, Farrukh Nadeem, Francesco Nerieri,
Stefan Podlipnig, Jun Qin, Mumtaz Siddiqui, Hong-Linh Truong, et al. Askalon: A development and
grid computing environment for scientific workflows. Workflows for e-Science, pages 450–471, 2007.

[54] FastQC. A quality control tool for high throughput sequence data. http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/.

[55] Xubo Fei and Shiyong Lu. A dataflow-based scientific workflow composition framework. IEEE Trans-
actions on Services Computing, 5(1):45–58, 2012.

[56] Xubo Fei, Shiyong Lu, and Jia Zhang. A granular concurrency control for collaborative scientific
workflow composition. In Services Computing (SCC), 2011 IEEE International Conference on, pages
410–417. IEEE, 2011.

[57] Fabio Fiorani and Ulrich Schurr. Future scenarios for plant phenotyping. Annual review of plant biology,
64:267–291, 2013.

[58] Stephen M Fiore and Travis J Wiltshire. Technology as teammate: Examining the role of external
cognition in support of team cognitive processes. Frontiers in psychology, 7:1531, 2016.

[59] Juliana Freire, David Koop, Emanuele Santos, and Cláudio T Silva. Provenance for computational
tasks: A survey. Computing in Science & Engineering, 10(3), 2008.

[60] Liping Gao, Fangyu Yu, Qingkui Chen, and Naixue Xiong. Consistency maintenance of do and un-
do/redo operations in real-time collaborative bitmap editing systems. Cluster Computing, 19(1):255–
267, 2016.

[61] Ritu Garg and Awadhesh Kumar Singh. Multi-objective workflow grid scheduling using\varepsilon-
fuzzy dominance sort based discrete particle swarm optimization. The Journal of Supercomputing,
68(2):709–732, 2014.

[62] Ritu Garg and Awadhesh Kumar Singh. Adaptive workflow scheduling in grid computing based on dy-
namic resource availability. Engineering Science and Technology, an International Journal, 18(2):256–
269, 2015.

[63] Nils Göde and Rainer Koschke. Incremental clone detection. In Software Maintenance and Reengineer-
ing, 2009. CSMR’09. 13th European Conference on, pages 219–228. IEEE, 2009.

[64] Nils Göde and Rainer Koschke. Frequency and risks of changes to clones. In Proceedings of the 33rd
International Conference on Software Engineering, pages 311–320. ACM, 2011.

[65] Michael W Godfrey and Lijie Zou. Using origin analysis to detect merging and splitting of source code
entities. IEEE Transactions on Software Engineering, 31(2):166–181, 2005.

[66] Jeremy Goecks, Anton Nekrutenko, and James Taylor. Galaxy: a comprehensive approach for sup-
porting accessible, reproducible, and transparent computational research in the life sciences. Genome
biology, 11(8):R86, 2010.

[67] GoJS. Interactive JavaScript Diagrams in HTML. https://gojs.net/latest/index.html.

115

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://gojs.net/latest/index.html

[68] Ian Goldin. World wide research: Reshaping the sciences and humanities. MIT Press, 2010.

[69] Katharina Görlach, Mirko Sonntag, Dimka Karastoyanova, Frank Leymann, and Michael Reiter. Con-
ventional workflow technology for scientific simulation. In Guide to e-Science, pages 323–352. Springer,
2011.

[70] Saul Greenberg, Carl Gutwin, and Mark Roseman. Semantic telepointers for groupware. In Computer-
Human Interaction, 1996. Proceedings., Sixth Australian Conference on, pages 54–61. IEEE, 1996.

[71] Ambient Software Evoluton Group. IJaDataset 2.0. http://secold.org/projects/seclone.

[72] Jonathan Grudin. Why cscw applications fail: problems in the design and evaluationof organizational
interfaces. In Proceedings of the 1988 ACM conference on Computer-supported cooperative work, pages
85–93. ACM, 1988.

[73] Carl Gutwin and Saul Greenberg. Support for group awareness in real-time desktop conferences. 1995.

[74] Mark Harman. Search based software engineering for program comprehension. In Program Compre-
hension, 2007. ICPC’07. 15th IEEE International Conference on, pages 3–13. IEEE, 2007.

[75] Sandra G Hart and Lowell E Staveland. Development of nasa-tlx (task load index): Results of empirical
and theoretical research. In Advances in psychology, volume 52, pages 139–183. Elsevier, 1988.

[76] Anja Hartmann, Tobias Czauderna, Roberto Hoffmann, Nils Stein, and Falk Schreiber. Htpheno: an
image analysis pipeline for high-throughput plant phenotyping. BMC bioinformatics, 12(1):148, 2011.

[77] Mark Hartswood, Rob Procter, Mark Rouncefield, and Roger Slack. Making a case in medical work: im-
plications for the electronic medical record. Computer Supported Cooperative Work (CSCW), 12(3):241–
266, 2003.

[78] Markus Held and Wolfgang Blochinger. Structured collaborative workflow design. Future Generation
Computer Systems, 25(6):638–653, 2009.

[79] Austin Z Henley, KIvanç Muçlu, Maria Christakis, Scott D Fleming, and Christian Bird. Cfar: A tool to
increase communication, productivity, and review quality in collaborative code reviews. In Proceedings
of the 2018 CHI Conference on Human Factors in Computing Systems, pages 157–170. ACM, 2018.

[80] Robert J Henry. Plant genotyping: the DNA fingerprinting of plants. CABI, 2001.

[81] Yoshiki Higo, Yasushi Ueda, Toshihro Kamiya, Shinji Kusumoto, and Katsuro Inoue. On software
maintenance process improvement based on code clone analysis. Product Focused Software Process
Improvement, pages 185–197, 2002.

[82] Daniel Hoffman and Paul Strooper. Tools and techniques for java api testing. In Software Engineering
Conference, 2000. Proceedings. 2000 Australian, pages 235–245. IEEE, 2000.

[83] David Hollingsworth and UK Hampshire. Workflow management coalition: The workflow reference
model. Document Number TC00-1003, 19:16, 1995.

[84] James J Hunt and Walter F Tichy. Extensible language-aware merging. In Software Maintenance,
2002. Proceedings. International Conference on, pages 511–520. IEEE, 2002.

[85] Nancy Ide, James Pustejovsky, Christopher Cieri, Eric Nyberg, Denise DiPersio, Chunqi Shi, Keith
Suderman, Marc Verhagen, Di Wang, and Jonathan Wright. The language application grid. In Inter-
national Workshop on Worldwide Language Service Infrastructure, pages 51–70. Springer, 2015.

[86] Patricia Jablonski and Daqing Hou. Cren: a tool for tracking copy-and-paste code clones and renaming
identifiers consistently in the ide. In Proceedings of the 2007 OOPSLA workshop on eclipse technology
eXchange, pages 16–20. ACM, 2007.

116

http://secold.org/ projects/seclone

[87] Hugo T. Jankowitz. Detecting plagiarism in student pascale programs. The Computer Journal, 31(1):1–
8, 1988.

[88] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. Deckard: Scalable and
accurate tree-based detection of code clones. In Proceedings of the 29th international conference on
Software Engineering, pages 96–105. IEEE Computer Society, 2007.

[89] Lingxiao Jiang, Zhendong Su, and Edwin Chiu. Context-based detection of clone-related bugs. In
Proceedings of the the 6th joint meeting of the European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software engineering, pages 55–64. ACM, 2007.

[90] Zhen Ming Jiang and Ahmed E Hassan. A framework for studying clones in large software systems.
In Source Code Analysis and Manipulation, 2007. SCAM 2007. Seventh IEEE International Working
Conference on, pages 203–212. IEEE, 2007.

[91] Marina Jirotka, Charlotte P Lee, and Gary M Olson. Supporting scientific collaboration: Methods,
tools and concepts. Computer Supported Cooperative Work (CSCW), 22(4-6):667–715, 2013.

[92] Marina Jirotka, Rob Procter, Mark Hartswood, Roger Slack, Andrew Simpson, Catelijne Coopmans,
Chris Hinds, and Alex Voss. Collaboration and trust in healthcare innovation: The ediamond case
study. Computer Supported Cooperative Work (CSCW), 14(4):369–398, 2005.

[93] J Howard Johnson. Identifying redundancy in source code using fingerprints. In Proceedings of the 1993
conference of the Centre for Advanced Studies on Collaborative research: software engineering-Volume
1, pages 171–183. IBM Press, 1993.

[94] Elmar Juergens, Florian Deissenboeck, Benjamin Hummel, and Stefan Wagner. Do code clones matter?
In Software Engineering, 2009. ICSE 2009. IEEE 31st International Conference on, pages 485–495.
IEEE, 2009.

[95] Kaggle. Titanic: Machine Learning from Disaster. https://www.kaggle.com/c/titanic/data.

[96] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. CCFinder: a multilinguistic token-based
code clone detection system for large scale source code. IEEE Transactions on Software Engineering,
28(7):654–670, 2002.

[97] Cory Kapser and Michael W Godfrey. Improved tool support for the investigation of duplication
in software. In Software Maintenance, 2005. ICSM’05. Proceedings of the 21st IEEE International
Conference on, pages 305–314. IEEE, 2005.

[98] Cory Kapser and Michael W Godfrey. ” cloning considered harmful” considered harmful. In Reverse
Engineering, 2006. WCRE’06. 13th Working Conference on, pages 19–28. IEEE, 2006.

[99] Cory J Kapser and Michael W Godfrey. Supporting the analysis of clones in software systems. Journal
of Software: Evolution and Process, 18(2):61–82, 2006.

[100] Nickolaos Kavantzas. Web services choreography description language (ws-cdf) version 1.0. http://www.
w3. org/TR/ws-cdl-10/, 2004.

[101] VR Kavitha and N Suresh Kumar. A method for identifying loops in a workflow using petri nets. Life
Science Journal, 10(3), 2013.

[102] Iman Keivanloo, Feng Zhang, and Ying Zou. Threshold-free code clone detection for a large-scale
heterogeneous java repository. In Software Analysis, Evolution and Reengineering (SANER), 2015
IEEE 22nd International Conference on, pages 201–210. IEEE, 2015.

[103] Andy Kellens, Kim Mens, and Paolo Tonella. A survey of automated code-level aspect mining tech-
niques. In Transactions on aspect-oriented software development IV, pages 143–162. Springer, 2007.

[104] Rainer Koschke, Raimar Falke, and Pierre Frenzel. Clone detection using abstract syntax suffix trees.
In Reverse Engineering, 2006. WCRE’06. 13th Working Conference on, pages 253–262. IEEE, 2006.

117

https://www.kaggle.com/c/titanic/data

[105] Christos Kozanitis and David A. Patterson. Genap: a distributed sql interface for genomic data. In
BMC Bioinformatics, 2016.

[106] Ashraf Labib and Martin Read. Not just rearranging the deckchairs on the titanic: Learning from
failures through risk and reliability analysis. Safety science, 51(1):397–413, 2013.

[107] Min Li, Shuming Gao, and Charlie C Wang. Real-time collaborative design with heterogeneous cad
systems based on neutral modeling commands. Journal of Computing and Information Science in
Engineering, 7(2):113–125, 2007.

[108] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. Cp-miner: Finding copy-paste and related
bugs in large-scale software code. IEEE Transactions on software Engineering, 32(3):176–192, 2006.

[109] Cui Lin, Shiyong Lu, Xubo Fei, Artem Chebotko, Darshan Pai, Zhaoqiang Lai, Farshad Fotouhi,
and Jing Hua. A reference architecture for scientific workflow management systems and the view soa
solution. IEEE Transactions on Services Computing, 2(1):79–92, 2009.

[110] M. Lipp. The Danet Workflow Component. http://www.wfmopen.sourceforge.net/, 2007.

[111] Ji Liu, Esther Pacitti, Patrick Valduriez, and Marta Mattoso. A survey of data-intensive scientific
workflow management. Journal of Grid Computing, 13(4):457–493, 2015.

[112] Salvatore Loreto and Simon Pietro Romano. Real-Time Communication with WebRTC: Peer-to-Peer
in the Browser. ” O’Reilly Media, Inc.”, 2014.

[113] LSST. Large Synoptic Survey Telescope. http://www.lsst.org/lsst/science, 2009.

[114] Shiyong Lu and Jia Zhang. Collaborative scientific workflows. In Web Services, 2009. ICWS 2009.
IEEE International Conference on, pages 527–534. IEEE, 2009.

[115] Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger, Matthew Jones, Edward A
Lee, Jing Tao, and Yang Zhao. Scientific workflow management and the kepler system. Concurrency
and Computation: Practice and Experience, 18(10):1039–1065, 2006.

[116] Paul Luff, Jon Hindmarsh, and Christian Heath. Workplace studies: Recovering work practice and
informing system design. Cambridge university press, 2000.

[117] Ruiqi Luo, Ping Yang, Shiyong Lu, and Mikhail Gofman. Analysis of scientific workflow provenance
access control policies. In Services Computing (SCC), 2012 IEEE Ninth International Conference on,
pages 266–273. IEEE, 2012.

[118] D.H. Honemann M. Robert, W.J. Evans and T.J. Balch. Robert’s Rules of Order. Newly Revised, 10th
Edition. Perseus Publishing Company, 2000.

[119] Udi Manber et al. Finding similar files in a large file system. In Usenix Winter, volume 94, pages 1–10,
1994.

[120] Marta Mattoso, Claudia Werner, Guilherme Horta Travassos, Vanessa Braganholo, Eduardo Oga-
sawara, Daniel Oliveira, Sergio Cruz, Wallace Martinho, and Leonardo Murta. Towards supporting the
life cycle of large scale scientific experiments. International Journal of Business Process Integration
and Management, 5(1):79–92, 2010.

[121] Nirav Merchant, Eric Lyons, Stephen Goff, Matthew Vaughn, Doreen Ware, David Micklos, and Parker
Antin. The iplant collaborative: Cyberinfrastructure for enabling data to discovery for the life sciences.
PLoS Biol, 2016.

[122] Ana I Molina, Miguel A Redondo, Manuel Ortega, and Ulrich Hoppe. Ciam: A methodology for the
development of groupware user interfaces. J. UCS, 14(9):1435–1446, 2008.

118

http://www.wfmopen.sourceforge.net/
http://www.lsst.org/lsst/science

[123] Ana Isabel Molina, Miguel Angel Redondo, and Manuel Ortega. A conceptual and methodological
framework for modeling interactive groupware applications. In International Conference on Collabora-
tion and Technology, pages 413–420. Springer, 2006.

[124] Ana Isabel Molina, Miguel Ángel Redondo, and Manuel Ortega. A methodological approach for user
interface development of collaborative applications: A case study. Science of Computer Programming,
74(9):754–776, 2009.

[125] Manishankar Mondal. On the stability of software clones: A genealogy-based empirical study. PhD
thesis, University of Saskatchewan Saskatoon, 2013.

[126] Manishankar Mondal, Md Saidur Rahman, Chanchal K Roy, and Kevin A Schneider. Is cloned code
really stable? Empirical Software Engineering, pages 1–78, 2017.

[127] Manishankar Mondal, Chanchal K Roy, and Kevin A Schneider. Bug propagation through code cloning:
An empirical study. In Software Maintenance and Evolution (ICSME), 2017 IEEE International Con-
ference on, pages 227–237. IEEE, 2017.

[128] Manishankar Mondal, Chanchal K Roy, and Kevin A Schneider. Does cloned code increase maintenance
effort? In Software Clones (IWSC), 2017 IEEE 11th International Workshop on, pages 1–7. IEEE,
2017.

[129] G. Mostaeen, Jeffrey Svajlenko, Banani Roy, Chanchal K. Roy, and K. Schneider. On the use of machine
learning techniques towards the design of cloud based automatic code clone validation tools. In Source
Code Analysis and Manipulation, 2018. SCAM 2018. 18th IEEE International Working Conference on.
IEEE, 2018.

[130] Golam Mostaeen, Banani Roy, Chanchal K. Roy, and Kevin A. Schneider. Fine-grained attribute level
locking scheme for collaborative scientific workflow development. In Services Computing (SCC), 2018
IEEE International Conference on, pages 273–277. IEEE, 2018.

[131] Jonathan Munson and Prasun Dewan. A concurrency control framework for collaborative systems.
In Proceedings of the 1996 ACM conference on Computer supported cooperative work, pages 278–287.
ACM, 1996.

[132] K. Murphy. Machine learning: a probabilistic perspective, 2012.

[133] NCI. Cancer Biomedical Informatics Grid (caBIG). https://cabig.nci.nih.gov/.

[134] Davide Nicolini. Practice theory, work, and organization: An introduction. OUP Oxford, 2012.

[135] Sylvie Noël and Jean-Marc Robert. How the web is used to support collaborative writing. Behaviour
& Information Technology, 22(4):245–262, 2003.

[136] Sylvie Noël and Jean-Marc Robert. Empirical study on collaborative writing: What do co-authors do,
use, and like? Computer Supported Cooperative Work (CSCW), 13(1):63–89, 2004.

[137] John T Nosek. Augmenting the social construction of knowledge and artifacts. Technical report, Temple
Univ. Philadelphia, Dept. Of Computer And Information Sciences, 1998.

[138] Eduardo Ogasawara, Jonas Dias, Vitor Silva, Fernando Chirigati, Daniel Oliveira, Fabio Porto, Patrick
Valduriez, and Marta Mattoso. Chiron: a parallel engine for algebraic scientific workflows. Concurrency
and Computation: Practice and Experience, 25(16):2327–2341, 2013.

[139] T Oinn. Xscufl language reference. Internet: Available: www. ebi. ac. uk/tmo/mygrid/XScuflSpecifi-
cation. html [October 14, 2009], 2004.

[140] Tom Oinn, Matthew Addis, Justin Ferris, Darren Marvin, Martin Senger, Mark Greenwood, Tim
Carver, Kevin Glover, Matthew R Pocock, Anil Wipat, et al. Taverna: a tool for the composition and
enactment of bioinformatics workflows. Bioinformatics, 20(17):3045–3054, 2004.

119

https://cabig.nci.nih.gov/

[141] Tom Oinn, Mark Greenwood, Matthew Addis, M Nedim Alpdemir, Justin Ferris, Kevin Glover, Carole
Goble, Antoon Goderis, Duncan Hull, Darren Marvin, et al. Taverna: lessons in creating a workflow
environment for the life sciences. Concurrency and Computation: Practice and Experience, 18(10):1067–
1100, 2006.

[142] Judith S Olson, Dakuo Wang, Gary M Olson, and Jingwen Zhang. How people write together now:
Beginning the investigation with advanced undergraduates in a project course. ACM Transactions on
Computer-Human Interaction (TOCHI), 24(1):4, 2017.

[143] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine
learning in python. Journal of machine learning research, 12(Oct):2825–2830, 2011.

[144] Jeffrey M Perkel. Scientific writing: the online cooperative: collaborative browser-based tools aim to
change the way researchers write and publish their papers. Nature, 514(7520):127–129, 2014.

[145] Matic Perovšek, Janez Kranjc, Tomaž Erjavec, Bojan Cestnik, and Nada Lavrač. Textflows: A vi-
sual programming platform for text mining and natural language processing. Science of Computer
Programming, 121:128–152, 2016.

[146] Denys Poshyvanyk and Andrian Marcus. Combining formal concept analysis with information retrieval
for concept location in source code. In null, pages 37–48. IEEE, 2007.

[147] Lutz Prechelt, Guido Malpohl, and Michael Philippsen. Finding plagiarisms among a set of programs
with jplag. J. UCS, 8(11):1016, 2002.

[148] Radu Prodan and Thomas Fahringer. Dynamic scheduling of scientific workflow applications on the
grid: a case study. In Proceedings of the 2005 ACM symposium on Applied computing, pages 687–694.
ACM, 2005.

[149] Mohammad Masudur Rahman and Chanchal K Roy. Improving ir-based bug localization with context-
aware query reformulation. In Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, pages 621–632.
ACM, 2018.

[150] David Randall, Richard Harper, and Mark Rouncefield. Fieldwork for design: theory and practice.
Springer Science & Business Media, 2007.

[151] Paolo Romano, Rosalba Giugno, and Alfredo Pulvirenti. Tools and collaborative environments for
bioinformatics research. Briefings in bioinformatics, 12(6):549–561, 2011.

[152] Anthony Rowe, Dimitrios Kalaitzopoulos, Michelle Osmond, Moustafa Ghanem, and Yike Guo. The
discovery net system for high throughput bioinformatics. Bioinformatics, 19(suppl 1):i225–i231, 2003.

[153] Banani Roy, Amit Kumar Mondal, Kawser Wazed, Chanchal K. Roy, and Kevin A. Schneider. Towards
a reference architecture for cloud-based plant genotyping and phenotyping analysis frameworks. In Proc.
of International Conference on Software Architecture, 2017, accepted.

[154] Chanchal K Roy. Detection and analysis of near-miss software clones. In Software Maintenance, 2009.
ICSM 2009. IEEE International Conference on, pages 447–450. IEEE, 2009.

[155] Chanchal K. Roy and James R. Cordy. A survey on software clone detection research. Queen’s School
of Computing TR, 541(115):64–68, 2007.

[156] Chanchal K. Roy and James R. Cordy. An empirical study of function clones in open source software.
In Reverse Engineering, 2008. WCRE’08. 15th Working Conference on, pages 81–90. IEEE, 2008.

[157] Chanchal K Roy and James R Cordy. NICAD: Accurate detection of near-miss intentional clones using
flexible pretty-printing and code normalization. In Program Comprehension, 2008. ICPC 2008. The
16th IEEE International Conference on, pages 172–181. IEEE, 2008.

120

[158] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K Roy, and Cristina V Lopes. Sourcerercc:
Scaling code clone detection to big-code. In Software Engineering (ICSE), 2016 IEEE/ACM 38th
International Conference on, pages 1157–1168. IEEE, 2016.

[159] André Schaaff, L Verdes-Montenegro, J Ruiz, and J Santander Vela. Scientific workflows in astronomy.
Proceeding of Astronomical Data Analysis Software and Systems, 2012.

[160] Saul Schleimer, Daniel S Wilkerson, and Alex Aiken. Winnowing: local algorithms for document
fingerprinting. In Proceedings of the 2003 ACM SIGMOD international conference on Management of
data, pages 76–85. ACM, 2003.

[161] Ricky J Sethi and Yolanda Gil. Scientific workflows in data analysis: Bridging expertise across multiple
domains. Future Generation Computer Systems, 75:256–270, 2017.

[162] Ricky J Sethi, Hyunjoon Jo, and Yolanda Gil. Re-using workflow fragments across multiple data
domains. In High Performance Computing, Networking, Storage and Analysis (SCC), 2012 SC Com-
panion:, pages 90–99. IEEE, 2012.

[163] Adam C. Siepel, Andrew N. Tolopko, Andrew D. Farmer, Peter A. Steadman, Faye D. Schilkey, B. Dawn
Perry, and William D. Beavis. An integration platform for heterogeneous bioinformatics software
components. IBM Systems Journal, 40(2):570–591, 2001.

[164] Gergely Sipos. Protecting the consistency of workflow applications in collaborative development envi-
ronments. Future Generation Computer Systems, 28(3):500–512, 2012.

[165] Gergely Sipos and Péter Kacsuk. Maintaining consistency properties of grid workflows in collaborative
editing systems. In Grid and Cooperative Computing, 2009. GCC’09. Eighth International Conference
on, pages 168–175. IEEE, 2009.

[166] Gergely Sipos and Péter Kacsuk. Efficient graph partitioning algorithms for collaborative grid workflow
developer environments. Euro-Par 2010-Parallel Processing, pages 50–61, 2010.

[167] Gergely Sipos and Peter K Kacsuk. Collaborative workflow editing in the p-grade portal. 2005.

[168] Gergely Sipos, Gareth Lewis, Péter Kacsuk, and Vassil Alexandrov. Workflow-oriented collaborative
grid portals. Advances in Grid Computing-EGC 2005, pages 64–69, 2005.

[169] Jung Soh, Xiaoli Dong, Sean M. Caffrey, Gerrit Voordouw, and Christoph W. Sensen. Phoenix 2: A
locally installable large-scale 16s rrna gene sequence analysis pipeline with web interface. Journal of
Biotechnology, 167(4):393 – 403, 2013.

[170] Apache Spark. Apache Spark Lightning-fast cluster computing. https://spark.apache.org/.

[171] Vipin T Sreedharan, Sebastian J Schultheiss, Géraldine Jean, André Kahles, Regina Bohnert, Philipp
Drewe, Pramod Mudrakarta, Nico Görnitz, Georg Zeller, and Gunnar Rätsch. Oqtans: the rna-seq
workbench in the cloud for complete and reproducible quantitative transcriptome analysis. Bioinfor-
matics, 30(9):1300–1301, 2014.

[172] Chengzheng Sun. Optional and responsive fine-grain locking in internet-based collaborative systems.
IEEE Transactions on Parallel and Distributed Systems, 13(9):994–1008, 2002.

[173] Chengzheng Sun and David Chen. Consistency maintenance in real-time collaborative graphics editing
systems. ACM Transactions on Computer-Human Interaction (TOCHI), 9(1):1–41, 2002.

[174] David Sun and Chengzheng Sun. Operation context and context-based operational transformation. In
Proceedings of the 2006 20th anniversary conference on Computer supported cooperative work, pages
279–288. ACM, 2006.

[175] Jeff Thomas Svajlenko et al. Large-Scale Clone Detection and Benchmarking. PhD thesis, University
of Saskatchewan, 2018.

121

https://spark.apache.org/

[176] Jeffrey Svajlenko and Chanchal K Roy. Efficiently measuring an accurate and generalized clone detec-
tion precision using clone clustering. In SEKE, pages 426–433, 2016.

[177] Robert Tairas and Jeff Gray. Phoenix-based clone detection using suffix trees. In Proceedings of the
44th annual Southeast regional conference, pages 679–684. ACM, 2006.

[178] Robert Tairas and Jeff Gray. An information retrieval process to aid in the analysis of code clones.
Empirical Software Engineering, 14(1):33–56, 2009.

[179] Yla R Tausczik, Aniket Kittur, and Robert E Kraut. Collaborative problem solving: A study of
mathoverflow. In Proceedings of the 17th ACM conference on Computer supported cooperative work &
social computing, pages 355–367. ACM, 2014.

[180] Francis Eng Hock Tay and Avijit Roy. Cybercad: a collaborative approach in 3d-cad technology in a
multimedia-supported environment. Computers in Industry, 52(2):127–145, 2003.

[181] Ian Taylor, Matthew Shields, Ian Wang, and Andrew Harrison. The triana workflow environment:
Architecture and applications. Workflows for e-Science, pages 320–339, 2007.

[182] David Tilman, Christian Balzer, Jason Hill, and Belinda L Befort. Global food demand and the sus-
tainable intensification of agriculture. Proceedings of the National Academy of Sciences, 108(50):20260–
20264, 2011.

[183] Haluk Topcuoglu, Salim Hariri, and Min-you Wu. Performance-effective and low-complexity task
scheduling for heterogeneous computing. IEEE transactions on parallel and distributed systems,
13(3):260–274, 2002.

[184] Qiang Tu et al. Evolution in open source software: A case study. In Software Maintenance, 2000.
Proceedings. International Conference on, pages 131–142. IEEE, 2000.

[185] Qiang Tu and Michael W Godfrey. An integrated approach for studying architectural evolution. In
Program Comprehension, 2002. Proceedings. 10th International Workshop on, pages 127–136. IEEE,
2002.

[186] useGalaxy. An open source, web-based platform for data intensive biomedical research. https://
usegalaxy.org/.

[187] Wil MP Van Der Aalst and Arthur HM Ter Hofstede. Yawl: yet another workflow language. Information
systems, 30(4):245–275, 2005.

[188] Filip Van Rysselberghe and Serge Demeyer. Reconstruction of successful software evolution using clone
detection. In null, page 126. IEEE, 2003.

[189] Kunal Vyas, Zeshi Zheng, and Lin Li. Titanic-machine learning from disaster. Machine Learning Final
Project, UMass Lowell, pages 1–7, 2015.

[190] Andrew Walenstein and Arun Lakhotia. The software similarity problem in malware analysis. In
Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2007.

[191] Christopher Walton and A Barker. An agent-based e-science experiment builder. In Proceedings of
the 1st International Workshop on Semantic Intelligent Middleware for the Web and the Grid, pages
247–264, 2004.

[192] Weka. Open Source Machine Learning Tools Collection. https://www.cs.waikato.ac.nz/ml/weka/.

[193] James A Whittaker and Michael G Thomason. A markov chain model for statistical software testing.
IEEE Transactions on Software engineering, 20(10):812–824, 1994.

[194] James Wilsdon et al. Knowledge, networks and nations: Global scientific collaboration in the 21st
century. The Royal Society, 2011.

122

https://usegalaxy.org/
https://usegalaxy.org/
https://www.cs.waikato.ac.nz/ml/weka/

[195] Stefan Wuchty, Benjamin F Jones, and Brian Uzzi. The increasing dominance of teams in production
of knowledge. Science, 316(5827):1036–1039, 2007.

[196] Maik Wurdel, Daniel Sinnig, and Peter Forbrig. Ctml: Domain and task modeling for collaborative
environments. J. UCS, 14(19):3188–3201, 2008.

[197] Jiachen Yang, Keisuke Hotta, Yoshiki Higo, Hiroshi Igaki, and Shinji Kusumoto. Classification model
for code clones based on machine learning. Empirical Software Engineering, 20(4):1095–1125, 2015.

[198] Yunwen Ye, Yasuhiro Yamamoto, and Kumiyo Nakakoji. A socio-technical framework for supporting
programmers. In Proceedings of the the 6th joint meeting of the European software engineering confer-
ence and the ACM SIGSOFT symposium on The foundations of software engineering, pages 351–360.
ACM, 2007.

[199] Jia Zhang. Co-taverna: a tool supporting collaborative scientific workflows. In Services Computing
(SCC), 2010 IEEE International Conference on, pages 41–48. IEEE, 2010.

[200] Jia Zhang, Qihao Bao, Xiaoyi Duan, Shiyong Lu, Lijun Xue, Runyu Shi, and Pingbo Tang. Collab-
orative scientific workflow composition as a service: An infrastructure supporting collaborative data
analytics workflow design and management. In Collaboration and Internet Computing (CIC), 2016
IEEE 2nd International Conference on, pages 219–228. IEEE, 2016.

[201] Jia Zhang, Daniel Kuc, and Shiyong Lu. Confucius: A tool supporting collaborative scientific workflow
composition. IEEE Transactions on Services Computing, 7(1):2–17, 2014.

[202] Haibin Zhu and MengChu Zhou. Role-based collaboration and its kernel mechanisms. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 36(4):578–589, 2006.

123

Appendix A

Consistency Management Simulation Study

A.1 Code Snippets

1 //node cons t ruc t
2 func t i on Node (data) {
3 t h i s . data = data ;
4 t h i s . parent = n u l l ;
5 t h i s . i sLocked = f a l s e ;
6 t h i s . currentOwner = ”NONE” ;
7 t h i s . c h i l d r e n = [] ;
8 }
9

10 // t r e e cons t ruc t
11 func t i on Tree (data) {
12 var node = new Node (data) ;
13 t h i s . r o o t = node ;
14 }
15
16 // t r a v e r s e the t r e e by df d e f a u l t s t a r t i n g from the root o f the t r e e
17 Tree . prototype . traverseDF = func t i on (c a l l b a c k) {
18
19 // t h i s i s a r e c u r s e and immediately−invok ing func t i on
20 (func t i on r e c u r s e (currentNode) {
21 // step 2
22 f o r (var i = 0 , l ength = currentNode . c h i l d r e n . l ength ; i < l ength ; i++) {
23 // step 3
24 r e c u r s e (currentNode . c h i l d r e n [i]) ;
25 }
26
27 // step 4
28 c a l l b a c k (currentNode) ;
29
30 // step 1
31 }) (t h i s . r o o t) ;
32
33 } ;
34
35 // t r a v e r s e by depth f i r s t s earch from a s p e c i f i e d s t a r t node (parent)
36 Tree . prototype . traverseDF FromNode = func t i on (startNode , c a l l b a c k) {
37
38 // t h i s i s a r e c u r s e and immediately−invok ing func t i on
39 (func t i on r e c u r s e (currentNode) {
40 // step 2
41 f o r (var i = 0 , l ength = currentNode . c h i l d r e n . l ength ; i < l ength ; i++) {
42 // step 3
43 r e c u r s e (currentNode . c h i l d r e n [i]) ;
44 }
45
46 // step 4
47 c a l l b a c k (currentNode) ;
48
49 // step 1
50 }) (startNode) ;
51
52 } ;
53
54 // scans through a l l the nodes o f the t r e e
55 Tree . prototype . conta in s = func t i on (ca l lback , t r a v e r s a l) {
56 t r a v e r s a l . c a l l (th i s , c a l l b a c k) ;
57

124

58 } ;
59
60 //add a new node to a s p e c i f i c parent o f the t r e e
61 Tree . prototype . add = func t i on (data , toData , t r a v e r s a l) {
62 var c h i l d = new Node (data) ,
63 parent = nul l ,
64 c a l l b a c k = func t i on (node) {
65 i f (node . data === toData) {
66 parent = node ;
67 }
68 } ;
69
70 t h i s . conta in s (ca l lback , t r a v e r s a l) ;
71
72 i f (parent) {
73 parent . c h i l d r e n . push (c h i l d) ;
74 c h i l d . parent = parent ;
75 } e l s e {
76 throw new Error (’ Cannot add node to a non−e x i s t e n t parent . ’) ;
77 }
78 // re turn the newly c rea ted node
79 re turn c h i l d ;
80 } ;
81
82 // change the parent o f a node to a new s p e c i f i e d parent . the whole subt ree (descendants)
83 //moves along the node .
84 Tree . prototype . changeParent = func t i on (data , newParentData , t r a v e r s a l) {
85 var targetNode = nul l ,
86 oldParent = nul l ,
87 c a l l b a c k = func t i on (node) {
88 i f (node . data === data) {
89 oldParent = node . parent ;
90 targetNode = node ;
91 }
92 } ;
93
94 t h i s . conta in s (ca l lback , t r a v e r s a l) ;
95
96 i f (o ldParent) {
97 index = f indIndex (oldParent . ch i ld r en , data) ;
98
99 i f (index === undef ined) {

100 throw new Error (’ Node to change parents o f does not e x i s t . ’) ;
101 } e l s e {
102 nodeToChangeParentOf = oldParent . c h i l d r e n . s p l i c e (index , 1) ;
103
104 var newParent = nul l ,
105 newParentCallback = func t i on (node) {
106 i f (node . data === newParentData) {
107 newParent = node ;
108 }
109 } ;
110
111 t h i s . conta in s (newParentCallback , t r a v e r s a l) ;
112
113 i f (newParent) {
114 newParent . c h i l d r e n . push (targetNode) ;
115 targetNode . parent = newParent ;
116 // a l e r t (newParent . c h i l d r e n [0] . data) ;
117 } e l s e {
118 throw new Error (’New Parent Does not e x i s t ! ’) ;
119 }
120
121
122 }
123
124
125 } e l s e {

125

126 throw new Error (’ The node did not have any prev ious parent ! ’) ;
127 }
128
129 } ;
130
131 // removes a p a r t i c u l a r node from i t s parent .
132 Tree . prototype . remove = func t i on (data , fromData , t r a v e r s a l) {
133 var t r e e = th i s ,
134 parent = nul l ,
135 childToRemove = nul l ,
136 index ;
137
138 var c a l l b a c k = func t i on (node) {
139 i f (node . data === fromData) {
140 parent = node ;
141 }
142 } ;
143
144 t h i s . conta in s (ca l lback , t r a v e r s a l) ;
145
146 i f (parent) {
147 index = f indIndex (parent . ch i ld r en , data) ;
148
149 i f (index === undef ined) {
150 throw new Error (’ Node to remove does not e x i s t . ’) ;
151 } e l s e {
152 childToRemove = parent . c h i l d r e n . s p l i c e (index , 1) ;
153 }
154 } e l s e {
155 throw new Error (’ Parent does not e x i s t . ’) ;
156 }
157
158 re turn childToRemove ;
159 } ;
160
161 // r e tu rn s node object , g iven i t s node data
162 Tree . prototype . getNode = func t i on (nodeData , t r a v e r s a l) {
163 var theNode = nul l ,
164 c a l l b a c k = func t i on (node) {
165 i f (node . data === nodeData) {
166 theNode = node ;
167 }
168 } ;
169 t h i s . conta in s (ca l lback , t r a v e r s a l) ;
170
171 re turn theNode ;
172
173 }
174
175 // check i f the node or any o f i t s descendants are locked c u r r e n t l y .
176 // i f not , the node f l o o r i s a v a i l a b l e as per the c l i e n t r eque s t .
177 Tree . prototype . i sNodeFloorAva i lab l e = func t i on (nodeData , t r a v e r s a l) {
178 var theNode = t h i s . getNode (nodeData , t r a v e r s a l) ;
179 i f (theNode == n u l l) {
180 throw new Error (’ The reques ted node f o r a c c e s s does not e x i s t ! ’) ;
181 }
182
183 // i f the node i s i t s e l f locked , then i t s NOT a v a i l a b l e f o r the reques ted user
184 i f (theNode . i sLocked == true) re turn f a l s e ;
185
186 // i f the node i t s e l f i s not locked , check i f any o f i t s c h i l d r e n are locked or not
187 // i f any o f them are locked , the a c c e s s i s NOT granted . . .
188 var n o d e F l o o r A v a i l a b i l i t y = true ;
189 t h i s . traverseDF FromNode (theNode , f unc t i on (node) {
190 // i f any o f i t s descendants are locked cur r ent ly , the node a c c e s s i s not a v a i l a b l e
191 i f (node . i sLocked == true) n o d e F l o o r A v a i l a b i l i t y = f a l s e ;
192 }) ;
193

126

194
195 re turn n o d e F l o o r A v a i l a b i l i t y ;
196
197 }
198
199 //someone has got the a c c e s s to t h i s node , so l ock i t and a l l i t s descendants
200 Tree . prototype . lockThisNodeAndDescendants = func t i on (newOwner , nodeData , t r a v e r s a l) {
201 var theNode = t h i s . getNode (nodeData , t r a v e r s a l) ;
202 t h i s . traverseDF FromNode (theNode , f unc t i on (node) {
203 // use he lpe r func t i on to load t h i s node f o r the cor re spond ing user
204 lockNode (node , newOwner) ;
205 }) ;
206 }
207
208 //someone has r e l e a s e d the a c c e s s to t h i s node , so UNLOCK i t and a l l i t s descendants
209 Tree . prototype . unlockThisNodeAndDescendants = func t i on (nodeData , t r a v e r s a l) {
210 var theNode = t h i s . getNode (nodeData , t r a v e r s a l) ;
211 t h i s . traverseDF FromNode (theNode , f unc t i on (node) {
212 // use the he lpe r func t i on to unlock the node .
213 unlockNode (node) ;
214 }) ;
215 }
216
217
218 //HELPER FUNCTION: c h i l d index
219 func t i on f indIndex (arr , data) {
220 var index ;
221
222 f o r (var i = 0 ; i < ar r . l ength ; i++) {
223 i f (a r r [i] . data === data) {
224 index = i ;
225 }
226 }
227
228 re turn index ;
229 }
230
231 //HELPER FUNCTION: lock a given node with cor re spond ing owner name
232 func t i on lockNode (node , nodeOwner) {
233 node . i sLocked = true ;
234 node . currentOwner = nodeOwner ;
235 }
236
237 //HELPER FUNCTION: unlock a node
238 func t i on unlockNode (node) {
239 node . i sLocked = f a l s e ;
240 node . currentOwner = ”NONE” ;
241 }

Listing A.1: Log Snippet as Recorded for a User-Study Session.

127

Appendix B

User Study: User Manual and Study Design

B.1 SciWorCS

SciWorCS is a Collaborative Scientific Workflow management System. SciWorCS follows a plugin-based
architecture for the scientific computational modules. It provides collaborative environment for scientific
data analysis using efficient attribute level locking scheme. In addition to the collaborative data analysis,
SciWorCS also provides real-time monitoring of the computation steps.

B.2 Introduction to SciWorCS Editor

Fig. B.1, shows a screenshot of the collaborative scientific workflow composition system. Besides, logging in
to a SciWorCS1 cloud instance would be better to follow along the descriptions.

The panel labeled as ‘A’, contains all the workflow components such as, Toolbox (i.e., set of workflow
modules), Saved Workflows and Shared Workflows with other users. The set of modules are classified in
different Toolbox based on the general data analysis purposes of the computational modules. Some examples
of such Toolboxes are: Bioinformatics, Machine Learning, Source Analysis and so on as illustrated in the
figure.

The collaborative composition of the workflow is done on panel ‘B’. For the intended data analysis task,
the required modules are selected (e.g., via Left-Mouse Click) from the corresponding Toolbox to appear in
the composition panel. The selected modules are then connected together (via., Left-Mouse Click & Drag)
on the corresponding input/output ports for defining the datalink relation among the modules. Please note
that, the linking requires a matching data types (e.g., a .txt output port connects only with another .txt
input port) between the input/output ports. The modules can be configured with corresponding attributes
from panel ‘C’. Panel ‘D’ shows a list of collaborators and their current online/offline status. The list of the
workflow outputs are shown in panel ‘E’. New dataset can be browsed and uploaded to the central server for
analysis from the panel ‘F’.

B.3 SciWorCS Workflow Composition

B.3.1 Prerequisites

Basic understanding of SciWorCS editor and locking schemes for collaborative workflow composition. Com-
pose the following reference workflow with the modules available in ‘Galaxy Modules’ toolbox. The workflow
need to compose using both of the locking schemes separately - locking scheme one2 and locking scheme two3.
Each participants are required to add at least one of the computational modules to the workflow.

B.3.2 Task Description

This task is about collabortive composition of scientific workflows. The reference of the workflows to compose
are taken from myExperiment - a shared social space for scientific artifacts sharing among researchers.
Collaborators need to compose the workflows using two different locking schemes.

At the end of the study, SAVE the generated console logs as participant yourID task 1a.log and
participant yourID task 1b.log for the two systems respectively.

1Example SciWorCS Cloud Instance:: sample cloud instance
2Link for Locking Scheme 1
3Link for Locking Scheme 2

128

http://p2irc-cloud.usask.ca/p2irc_system1
http://p2irc-cloud.usask.ca/p2irc_system1
http://p2irc-cloud.usask.ca/attr_based

Figure B.1: SciWorCS Editor for Collaborative Scientific Workflow Composition

Figure B.2: Sample workflow for collaborative composition practice

Workflows for system1 locking scheme

Fig. 1.2 and Fig. 1.3 are the two reference workflows to compose using system1 locking scheme. At the end
of system1 locking scheme, please, ANSWER NASA-TLX questionnaires with your participant id and
Task id as 1a here.

Workflows for system2 locking scheme

Fig. 1.4 and Fig. 1.5 are the two reference workflows to compose using system1 locking scheme.
At the end of system1 locking scheme, please, ANSWER NASA-TLX questionnaires with your par-

ticipant id and Task id as 1b here.

B.3.3 Toolbox

The required tools are available in the toolbox named as Galaxy Modules. The modules are prefixed with
Galaxy. There are 19 such computational modules in the toolbox for this task.

129

https://goo.gl/forms/m5mZZL4imhkcM7sE3
https://goo.gl/forms/m5mZZL4imhkcM7sE3

Figure B.3: Paired-end reads assembly after FastQ groomer using a Migale modified version of Velvet
tool.

B.4 Collaborative Problem Solving

B.4.1 Prerequisites

Basic understanding of executing and monitoring the workflow. Using the ‘Mathematical Analysis’ Toolbox
collaboratively develop a workflow that adds two given numbers and returns the obtained result.

B.4.2 Task Description

For the problem solving tasks, we used simple mathematical modules which are responsible for elementary
arithmetic operations, such as Addition, Subtraction, Division, Multiplication and Power. The integrated
mathematical modules accept one or more numeric values and outputs a single resultant value as corre-
sponding data files. As tasks the collaborators get a set of sample numeric input and output to predict and
design the corresponding workflow that generates the similar output as sample dataset. Note that, these
five simple mathematical modules can be used multiple times with complex datalink relations among them
to yet solve much complicated numeric patterns. However, the prediction of such complex workflows can
be often be non-trivial making the solution ambiguous. Hence, in order to keep the problem simpler, we
limit the required design of the mathematical workflow to a simpler and fixed structure. For this study the
used arithmetic equation structure is, z = AxC OByD , where x, y are sample inputs, z is the corresponding
sample output, O is any operator from the available mathematical modules and A,B,C,D are some integer
constants. For a given of sets of sample inputs and outputs (i.e., x, y and z), participants need to predict
the constants, A,B,C,D and the operator, O. Hence, the designed workflow requires maximum seven math-
ematical modules -two for taking inputs (i.e., x and y), two for multiplications (i.e., Ax and Bx), two for
powers (i.e., xC and yD) and one for unknown mathematical operator, O. Please see Fig 2.1 for an example
reference workflow of the task.

Note that, some of the modules can be omitted given the calculated corresponding constant value is 1.
For example, if A = 1 then the multiplication module can be omitted. In that case, the workflow can have a
different structure than the provided reference structure.

At the end of the study, SAVE the generated console logs as participant yourID task 2.log. Also
please, ANSWER NASA-TLX questionnaires with your participant id and Task id as 2 here.

130

https://goo.gl/forms/m5mZZL4imhkcM7sE3

Figure B.4: Workflow used when applying the CPB2012 Basic Protocol 3; Peaks for ChIP-seq data
using MACS14.

Figure B.5: Reference Workflow for the Task

Sample Input Output for the Task

Participants need to collaboratively solve and build the required workflows for the sample input output in
Table 2.2, 2.3 and 2.4. Pariticipants collaboratively work towards the building of the three corresponding
workflows. The target is maximizing the number of solved problems within a time range of 10 minutes.

B.4.3 Toolbox

The available modules for the task are as follows:

1. Math Get User Input: Gets the user input (i.e., x and y).

2. Math Const Mult: Multiplies a variable by a constant (i.e., A in Ax).

3. Math Power: Raise a power on a given variable (i.e., C in xC)

4. Arithmetic Operators: Applies methematical operator on two given variable and returns resultant.
Available mathematical operators are: Addition, Subtraction, Multiplication, Division.

131

Table B.1: First Math Task (1 of 2)

x y z

1 1 2
2 2 8
3 3 18
4 4 32

Table B.2: Second Math Task (2 of 2)

x y z

4 6 26
3 4 18
4 2 14
9 2 24

B.5 Collaborative Data Analysis using Machine Learning Classi-
fiers and Statistical Tools

B.5.1 Task Description

We select a publicly available dataset - ‘Titanic: Machine Learning from Disaster’ for the machine learning
based classification task. Table B.3, present the dataset definition as collected from Kaggle - a community
of data scientists and machine learners. The dataset is about the RMS Titanic passengers, where the task
is to build a machine learning model to predict which sort of people were more likely to survive the sinking
of Titanic. The machine learning model for the binary classification (i.e., whether Survived or not) is to be
build by using features, such as ticket class, age, sex and so on of the corresponding passengers. Note that,
there exists multiple solution paths and strategies in selecting the feature set, selecting the ‘correct’ machine
learning model, configuring the selected machine learning model for training and so on. Collaborators need
to iteratively converge on plans (i.e., feature set selection, machine model selection and so on) via discussion,
statistical analysis of the dataset and reviewing the obtained performance of the trained model. Collaborators’
discussion process is assisted via different statistical computational modules and collaborative visualization
tools of SciWorCS. For example, for the given classification task visualizing the data distribution for survival
in terms of age, sex, ticket class and so on can be important for selecting the contributing features or the
machine learning model.

At the end of the study, SAVE the generated console logs as participant yourID task 3.log. Also
please, ANSWER NASA-TLX questionnaires with your participant id and Task id as 3 here.

B.5.2 Dataset

The supplied dataset for the study contains information of 892 passengers of Titatic in .csv format, with the
feature set as specified in Table B.3. The dataset can be viewed from SciWorCS. Note that, like any other
data analysis task, the provided dataset requires pre-processing for handling missing data (such as, missing
Age information of some passengers and so on), transforming to categorical features (such as, Sex can be
represented as 0/1 instead of textual - ‘male’/‘female’).

B.5.3 Toolbox

The available modules for the task are as follows:

1. Stats Load Dataset: Selects and loads the available dataset for the analysis.

2. Stats MissingValues: Calculates and shows the statistics of missing values in a given dataset in .txt
format.

132

https://goo.gl/forms/m5mZZL4imhkcM7sE3

Table B.3: Publicly Available Dataset - ‘Titanic: Machine Learning from Disaster’ as Collected
from Kaggle.

Variable Definition
Survived Survival of the Passenger (0 = No, 1 = Yes)

Pclass Ticket class (1 = 1st, 2 = 2nd, 3 = 3rd)
Name Name of the Passenger

Sex Sex
Age Age in years

Sibsp Number of siblings/spouses aboard
Parch Number of parents/children aboard
Ticket Ticket number

Fare Passenger fare
Cabin Cabin number

Embarked Port of Embarkation

3. Stats FillMissingByMedian: The missing values are filled with median value of the available values.
For example, the missing Age are filled median values of the available Age of other passengers.

4. Stats Feature Distribution: Graph plots the selected features based on class labels. Note that, the
selected feature should NOT contain any missing values (such as Age). To handle such missing values
Stats FillMissingByMedian module might be used prior to visualizing the feature distribution.

5. Stats FeatureCategories ByLabel: Graph plots the feature categories by label. For example, how many
of the survived passengers were male or female (e.g., dataset categorization by Sex).

6. Stats CreateCategoricalVariable: Creates numerical categorical variables. For example, the Sex field
contains either ‘male’ or ‘female’. The categorization creates two additional features namely - ‘Sex male’
and ‘Sex female’ and filled with numeric 0/1 accordingly.

7. Stats Drop Variable: Drops the selected variable which is not used further for classification.

8. Machine Learning Models: There are five machine learning based classification models in the Tool-
box. The classification models are: Logistic Regression, SVM, kNN, Random Forest and Naive Bayes
classifiers.

B.6 NASA-TLX Questionnaires

The NASA-TLX Questionnaires [75] as presented to the participants at the end of every sessions of the
user study. Participants were asked to provide their responses for the questionnaires within a range of 1 to
10 (e.g., 1: Very Low and 10: Very High):

1. How mentally demanding was the task?

2. How much physical activity was required (e.g. pushing, pulling, turning, controlling, activating, etc)?
Was the task easy or demanding, slow or brisk, slack or strenuous, restful or laborious?

3. How much time pressure did you feel due to the rate of pace at which the tasks or task elements
occurred? Was the pace slow and leisurely or rapid and frantic?

4. How successful do you think you were in accomplishing the goals of the task set by the experimenter
(or yourself)?

5. How hard did you have to work to accomplish your level of performance?

6. How insecure, discouraged, irritated, stressed and annoyed versus secure, gratified, content, relaxed and
complacent did you feel during the task?

133

B.7 Log Snippet

Listing B.1 is a Log snippet as recorded for a user study sessions. An entry of the log is generated for a cor-
responding event by a participant during a user-study session. The stored log contains different information,
such as Timpestamp of the event, Source Script responsible for the event trigger, User ID, Event Type and
Log Information -representing the details information of the generated event. The recorded logs were then
parsed for different analysis.

1 TIMESTAMP SOURCE SCRIPT USER ID EVENT TYPE LOG INFO
2 1 5 : 3 5 : 3 3 . 9 9 4 te l epo inte r module lock ingGO . j s :3126 john@gmail . com =>P2P CHAT SENT=>to :

dar in gmai l com ∗ t ex t : Hi t h i s time you can do the f i r s t seven module
3 1 5 : 3 5 : 4 3 . 1 2 0 te l epo inte r module lock ingGO . j s :3126 john@gmail . com =>P2P CHAT SENT=>to :

dar in gmai l com ∗ t ex t : I can do the r e s t
4 1 5 : 3 7 : 2 3 . 1 5 8 te l epo inte r module lock ingGO . j s :3126 john@gmail . com =>P2P CHAT SENT=>to :

dar in gmai l com ∗ t ex t : Yeah sure
5 1 5 : 3 7 : 5 4 . 1 9 1 te l epo inte r module lock ingGO . j s :2801 john@gmail . com =>MODULE ADDED=>module id : 2
6 1 5 : 3 7 : 5 6 . 5 8 8 te l epo inte r module lock ingGO . j s :1108 john@gmail . com =>MODULEMOVED=>key :

module id 2 ∗x:−116∗y:−172
7 1 5 : 3 8 : 0 4 . 2 1 6 te l epo inte r module lock ingGO . j s :2801 john@gmail . com =>MODULE ADDED=>module id : 4
8 1 5 : 3 8 : 0 6 . 8 9 8 te l epo inte r module lock ingGO . j s :1108 john@gmail . com =>MODULEMOVED=>key :

module id 4 ∗x :588∗y:−171
9 1 5 : 3 8 : 2 8 . 6 6 3 te l epo inte r module lock ingGO . j s :2801 john@gmail . com =>MODULE ADDED=>module id : 6

10 1 5 : 3 8 : 3 0 . 8 3 1 te l epo inte r module lock ingGO . j s :1108 john@gmail . com =>MODULEMOVED=>key :
module id 6 ∗x:−95∗y :45

11 1 5 : 3 9 : 4 5 . 4 7 8 te l epo inte r module lock ingGO . j s :2801 john@gmail . com =>MODULE ADDED=>module id : 8
12 1 5 : 3 9 : 4 7 . 9 6 8 te l epo inte r module lock ingGO . j s :1108 john@gmail . com =>MODULEMOVED=>key :

module id 8 ∗x:−492∗y :202
13 1 5 : 4 0 : 0 9 . 2 2 8 te l epo inte r module lock ingGO . j s :3126 john@gmail . com =>P2P CHAT SENT=>to :

dar in gmai l com ∗ t ex t : from sc ra t ch ?
14 1 5 : 4 0 : 3 7 . 5 6 4 te l epo inte r module lock ingGO . j s :3126 john@gmail . com =>P2P CHAT SENT=>to :

dar in gmai l com ∗ t ex t : yeah makes sense
15 1 5 : 4 0 : 4 3 . 6 1 9 te l epo inte r module lock ingGO . j s :3126 john@gmail . com =>P2P CHAT SENT=>to :

dar in gmai l com ∗ t ex t : l e t s s t a r t over
16 1 5 : 4 1 : 3 9 . 6 5 5 te l epo inte r module lock ingGO . j s :1028 john@gmail . com =>MODULE DELETED=>module id

: module id 8
17 1 5 : 4 1 : 4 0 . 4 6 9 te l epo inte r module lock ingGO . j s :1028 john@gmail . com =>MODULE DELETED=>module id

: module id 6
18 1 5 : 4 1 : 4 1 . 3 4 9 te l epo inte r module lock ingGO . j s :1028 john@gmail . com =>MODULE DELETED=>module id

: module id 2
19 1 5 : 4 1 : 4 3 . 0 9 3 te l epo inte r module lock ingGO . j s :1028 john@gmail . com =>MODULE DELETED=>module id

: module id 4
20 1 5 : 4 3 : 4 6 . 2 2 5 te l epo inte r module lock ingGO . j s :3126 john@gmail . com =>P2P CHAT SENT=>to :

dar in gmai l com ∗ t ex t : are you going the whole th ing ?
21 1 5 : 4 4 : 1 8 . 6 8 1 te l epo inte r module lock ingGO . j s :3126 john@gmail . com =>P2P CHAT SENT=>to :

dar in gmai l com ∗ t ex t : dont do the l a s t one
22 1 5 : 4 4 : 3 3 . 1 0 4 te l epo inte r module lock ingGO . j s :3126 john@gmail . com =>P2P CHAT SENT=>to :

dar in gmai l com ∗ t ex t : I know how to use your module
23 1 5 : 4 5 : 2 8 . 7 2 0 te l epo inte r module lock ingGO . j s :3126 john@gmail . com =>P2P CHAT SENT=>to :

dar in gmai l com ∗ t ex t : okay
24 1 5 : 4 5 : 5 5 . 4 3 5 te l epo inte r module lock ingGO . j s :1131 john@gmail . com =>

SUB WORKFLOW LOCK REQUESTED=>rootNode : module id 15
25 1 5 : 4 6 : 1 2 . 8 2 6 te l epo inte r module lock ingGO . j s :1131 john@gmail . com =>

SUB WORKFLOW LOCK REQUESTED=>rootNode : module id 18
26 1 5 : 4 6 : 2 4 . 6 8 2 te l epo inte r module lock ingGO . j s :1131 john@gmail . com =>

SUB WORKFLOW LOCK REQUESTED=>rootNode : module id 19
27 1 5 : 4 6 : 2 8 . 1 3 0 te l epo inte r module lock ingGO . j s :1131 john@gmail . com =>

SUB WORKFLOW LOCK REQUESTED=>rootNode : module id 20
28 1 5 : 4 6 : 3 6 . 8 8 9 te l epo inte r module lock ingGO . j s :2688 john@gmail . com =>SUB WORKFLOW LOG GRANTED

=>rootNode : module id 18
29 1 5 : 4 6 : 3 8 . 5 2 6 te l epo inte r module lock ingGO . j s :2688 john@gmail . com =>SUB WORKFLOW LOG GRANTED

=>rootNode : module id 19
30 1 5 : 4 6 : 4 5 . 8 7 2 te l epo inte r module lock ingGO . j s :2688 john@gmail . com =>SUB WORKFLOW LOG GRANTED

=>rootNode : module id 20
31 1 5 : 4 7 : 2 0 . 6 6 1 te l epo inte r module lock ingGO . j s :2688 john@gmail . com =>SUB WORKFLOW LOG GRANTED

=>rootNode : module id 15
32 1 5 : 4 7 : 3 1 . 0 3 0 te l epo inte r module lock ingGO . j s :1767 john@gmail . com =>MODULE CONFIG CHANGE=>

moduleID : module id 18

134

33 1 5 : 4 7 : 3 1 . 0 3 0 te l epo inte r module lock ingGO . j s :1089 john@gmail . com =>DATALINK ADDED=>from :
module id 15 ∗ frompid : summation resu lt . txt ∗ to : module id 18 ∗ top id : base number . txt

34 1 5 : 4 7 : 5 4 . 4 5 9 te l epo inte r module lock ingGO . j s :1767 john@gmail . com =>MODULE CONFIG CHANGE=>
moduleID : module id 19

35 1 5 : 4 7 : 5 4 . 4 6 0 te l epo inte r module lock ingGO . j s :1089 john@gmail . com =>DATALINK ADDED=>from :
module id 18 ∗ frompid : r e s u l t . txt ∗ to : module id 19 ∗ top id : f i r s t number . txt

36 1 5 : 4 8 : 4 6 . 2 8 2 te l epo inte r module lock ingGO . j s :1767 john@gmail . com =>MODULE CONFIG CHANGE=>
moduleID : module id 19

37 1 5 : 4 8 : 4 6 . 2 8 3 te l epo inte r module lock ingGO . j s :1089 john@gmail . com =>DATALINK ADDED=>from :
module id 16 ∗ frompid : m u l t i p l i c a t i o n r e s u l t . txt ∗ to : module id 19 ∗ top id : second number . txt

38 1 5 : 4 9 : 0 6 . 8 1 6 te l epo inte r module lock ingGO . j s :2688 john@gmail . com =>SUB WORKFLOW LOG GRANTED
=>rootNode : module id 21

39 1 5 : 4 9 : 0 6 . 8 1 6 te l epo inte r module lock ingGO . j s :1131 john@gmail . com =>
SUB WORKFLOW LOCK REQUESTED=>rootNode : module id 21

40 1 5 : 4 9 : 1 8 . 3 3 0 te l epo inte r module lock ingGO . j s :1767 john@gmail . com =>MODULE CONFIG CHANGE=>
moduleID : module id 21

41 1 5 : 4 9 : 1 8 . 3 3 0 te l epo inte r module lock ingGO . j s :1089 john@gmail . com =>DATALINK ADDED=>from :
module id 19 ∗ frompid : summation resu lt . txt ∗ to : module id 21 ∗ top id : f i r s t number . txt

42 1 5 : 4 9 : 2 3 . 5 3 8 te l epo inte r module lock ingGO . j s :1767 john@gmail . com =>MODULE CONFIG CHANGE=>
moduleID : module id 21

43 1 5 : 4 9 : 2 3 . 5 3 8 te l epo inte r module lock ingGO . j s :1089 john@gmail . com =>DATALINK ADDED=>from :
module id 20 ∗ frompid : summation resu lt . txt ∗ to : module id 21 ∗ top id : second number . txt

44 1 5 : 4 9 : 2 8 . 6 3 9 te l epo inte r module lock ingGO . j s :2688 john@gmail . com =>SUB WORKFLOW LOG GRANTED
=>rootNode : module id 22

45 1 5 : 4 9 : 2 8 . 6 4 0 te l epo inte r module lock ingGO . j s :1131 john@gmail . com =>
SUB WORKFLOW LOCK REQUESTED=>rootNode : module id 22

46 1 5 : 4 9 : 3 1 . 3 3 1 te l epo inte r module lock ingGO . j s :1767 john@gmail . com =>MODULE CONFIG CHANGE=>
moduleID : module id 22

47 1 5 : 4 9 : 3 1 . 3 3 2 te l epo inte r module lock ingGO . j s :1089 john@gmail . com =>DATALINK ADDED=>from :
module id 21 ∗ frompid : s u b t r a c t i o n r e s u l t . txt ∗ to : module id 22 ∗ top id : base number . txt

48 1 5 : 4 9 : 4 0 . 5 6 4 te l epo inte r module lock ingGO . j s :2801 john@gmail . com =>MODULE ADDED=>module id
: 25

49 1 5 : 4 9 : 4 5 . 6 9 5 te l epo inte r module lock ingGO . j s :1108 john@gmail . com =>MODULEMOVED=>key :
module id 25 ∗x :867 .8714625000002∗y :587 .0895187500003

50 1 5 : 5 0 : 0 0 . 0 7 3 te l epo inte r module lock ingGO . j s :1767 john@gmail . com =>MODULE CONFIG CHANGE=>
moduleID : module id 25

51 1 5 : 5 0 : 0 0 . 0 7 4 te l epo inte r module lock ingGO . j s :1089 john@gmail . com =>DATALINK ADDED=>from :
module id 24 ∗ frompid : s u b t r a c t i o n r e s u l t . txt ∗ to : module id 25 ∗ top id : second number . txt

52 1 5 : 5 0 : 0 4 . 4 0 1 te l epo inte r module lock ingGO . j s :1767 john@gmail . com =>MODULE CONFIG CHANGE=>
moduleID : module id 25

53 1 5 : 5 0 : 0 4 . 4 0 1 te l epo inte r module lock ingGO . j s :1089 john@gmail . com =>DATALINK ADDED=>from :
module id 22 ∗ frompid : r e s u l t . txt ∗ to : module id 25 ∗ top id : f i r s t number . txt

54
55 . . .
56 . . .
57 . . .

Listing B.1: Log Snippet as Recorded for a User-Study Session.

135

	Permission to Use
	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Motivation
	Problem Statement
	Our Contribution
	Fine Grained Locking Scheme for Consistency Management
	Role Based Access Control for Collaborative SWfMSs
	SciWorCS: Towards a Collaborative SWfMS
	Usability Study

	Publications
	Thesis Outline

	Background
	Scientific Workflows
	Life Cycle of A Scientific Workflow

	Scientific Workflow Management Systems

	Granular Attribute Level Locking for Consistency Management in Collaborative Scientific Workflow Composition
	Motivation
	Background: Consistency Management in Collaborative SWfMSs
	Empirical Study on Modern Scientific Workflow Collaboration: From the Perspective of Existing Locking Schemes
	Study on Modern Workflow Dependency Degree, and its Impacts on Collaboration
	Study on Modern Workflow Module Structure
	Impacts of Module Attributes on Collaboration

	Proposed Method
	Fine-Grained Workflow Component Locking for Workflow Collaboration
	Lock Management Algorithms

	Experiments and Evaluations
	Implementation Details
	Experimental Setup
	Study on Average Waiting Time and Throughput
	Study on Workflow Composition Time and Efficiency
	Performance Study on Varying Node Access Requests Topology
	Analysis Study in terms of Varying Workflow Tree Structures

	Threats to the Validity
	Related Works
	Conclusion

	Modeling a Collaborative Scientific Workflow Management System using CIAM: A case-study with Plant Phenotyping and Genotyping
	Motivation
	Related Works
	Frameworks or Tools Supporting Pipeline Compositions
	Tools Supporting API Testing Environment

	A Motivating Example Scenario
	Proposed Approach
	User Roles and Sociogram
	Responsibilities and Process Modeling
	Tool Design
	Pipeline Composition

	Evaluation
	Case Study: Collaborative Development and Management of a Pipeline
	User Study

	Conclusion

	SciWorCS- Towards A Collaborative Scientific Workflow Management System
	Motivation
	Related Works
	SciWorCS Architecture
	Toolbox: Set of Reusable Computational Steps
	DAG Formulation for a Data Analysis Workflow
	Collaborative Composition
	Job Management and Execution

	Implementation Details
	SciWorCS Task Specific User Interfaces
	Plugging in New Tools to SciWorCS Toolbox
	Collaborative Workflow Composition
	Tools for Aiding Collaborative Workflow Composition
	Data Visualization

	SciWorCS Usage Examples
	QC Report of FastQ File with FastQC (Bioinformatics)
	Machine Learning Based Clone Validation (Software Repository Analysis)
	Machine Learning Based Clone Validation Approach
	Code Clone Detection (Software Repository Analysis)

	Conclusion

	Understanding the User Behavior for Collaborative Data Analysis
	Motivation
	Related Works
	CSCW in Aiding Scientific Experiments
	Towards Collaborative Data Analysis

	Implementation Details
	Experimental Studies and Results
	Experimental Setups
	Study 1: Collaborative Composition Patterns
	Study 2: Collaborative Dataflow Problem Solving and Convergence on a Plan

	Result Discussion
	Conclusion

	Conclusion
	Summary
	Fine Grained Attribute Level Locking Scheme
	Role Based Access Control for Collaborative SWfMSs
	SciWorCS: Proposed Architecture Towards a Collaborative SWfMS
	Usability Study

	Future Work
	Collaborative Provenance Models
	Studying More CSCW Techniques
	Deadlock Awareness among Collaborators
	Studying Collaborative Task Scheduling
	Adaptation of SciWorCS in Source Code Repository Analysis

	References
	Appendix Consistency Management Simulation Study
	Code Snippets

	Appendix User Study: User Manual and Study Design
	SciWorCS
	Introduction to SciWorCS Editor
	SciWorCS Workflow Composition
	Prerequisites
	Task Description
	Toolbox

	Collaborative Problem Solving
	Prerequisites
	Task Description
	Toolbox

	Collaborative Data Analysis using Machine Learning Classifiers and Statistical Tools
	Task Description
	Dataset
	Toolbox

	NASA-TLX Questionnaires
	Log Snippet

