167 research outputs found

    Fast emergency paths schema to overcome transient link failures in ospf routing

    Full text link
    A reliable network infrastructure must be able to sustain traffic flows, even when a failure occurs and changes the network topology. During the occurrence of a failure, routing protocols, like OSPF, take from hundreds of milliseconds to various seconds in order to converge. During this convergence period, packets might traverse a longer path or even a loop. An even worse transient behaviour is that packets are dropped even though destinations are reachable. In this context, this paper describes a proactive fast rerouting approach, named Fast Emergency Paths Schema (FEP-S), to overcome problems originating from transient link failures in OSPF routing. Extensive experiments were done using several network topologies with different dimensionality degrees. Results show that the recovery paths, obtained by FEPS, are shorter than those from other rerouting approaches and can improve the network reliability by reducing the packet loss rate during the routing protocols convergence caused by a failure.Comment: 18 page

    A Logically Centralized Approach for Control and Management of Large Computer Networks

    Get PDF
    Management of large enterprise and Internet Service Provider networks is a complex, error-prone, and costly challenge. It is widely accepted that the key contributors to this complexity are the bundling of control and data forwarding in traditional routers and the use of fully distributed protocols for network control. To address these limitations, the networking research community has been pursuing the vision of simplifying the functional role of a router to its primary task of packet forwarding. This enables centralizing network control at a decision plane where network-wide state can be maintained, and network control can be centrally and consistently enforced. However, scalability and fault-tolerance concerns with physical centralization motivate the need for a more flexible and customizable approach. This dissertation is an attempt at bridging the gap between the extremes of distribution and centralization of network control. We present a logically centralized approach for the design of network decision plane that can be realized by using a set of physically distributed controllers in a network. This approach is aimed at giving network designers the ability to customize the level of control and management centralization according to the scalability, fault-tolerance, and responsiveness requirements of their networks. Our thesis is that logical centralization provides a robust, reliable, and efficient paradigm for management of large networks and we present several contributions to prove this thesis. For network planning, we describe techniques for optimizing the placement of network controllers and provide guidance on the physical design of logically centralized networks. For network operation, algorithms for maintaining dynamic associations between the decision plane and network devices are presented, along with a protocol that allows a set of network controllers to coordinate their decisions, and present a unified interface to the managed network devices. Furthermore, we study the trade-offs in decision plane application design and provide guidance on application state and logic distribution. Finally, we present results of extensive numerical and simulative analysis of the feasibility and performance of our approach. The results show that logical centralization can provide better scalability and fault-tolerance while maintaining performance similarity with traditional distributed approach

    Segment Routing: a Comprehensive Survey of Research Activities, Standardization Efforts and Implementation Results

    Full text link
    Fixed and mobile telecom operators, enterprise network operators and cloud providers strive to face the challenging demands coming from the evolution of IP networks (e.g. huge bandwidth requirements, integration of billions of devices and millions of services in the cloud). Proposed in the early 2010s, Segment Routing (SR) architecture helps face these challenging demands, and it is currently being adopted and deployed. SR architecture is based on the concept of source routing and has interesting scalability properties, as it dramatically reduces the amount of state information to be configured in the core nodes to support complex services. SR architecture was first implemented with the MPLS dataplane and then, quite recently, with the IPv6 dataplane (SRv6). IPv6 SR architecture (SRv6) has been extended from the simple steering of packets across nodes to a general network programming approach, making it very suitable for use cases such as Service Function Chaining and Network Function Virtualization. In this paper we present a tutorial and a comprehensive survey on SR technology, analyzing standardization efforts, patents, research activities and implementation results. We start with an introduction on the motivations for Segment Routing and an overview of its evolution and standardization. Then, we provide a tutorial on Segment Routing technology, with a focus on the novel SRv6 solution. We discuss the standardization efforts and the patents providing details on the most important documents and mentioning other ongoing activities. We then thoroughly analyze research activities according to a taxonomy. We have identified 8 main categories during our analysis of the current state of play: Monitoring, Traffic Engineering, Failure Recovery, Centrally Controlled Architectures, Path Encoding, Network Programming, Performance Evaluation and Miscellaneous...Comment: SUBMITTED TO IEEE COMMUNICATIONS SURVEYS & TUTORIAL

    Optimization of BGP Convergence and Prefix Security in IP/MPLS Networks

    Get PDF
    Multi-Protocol Label Switching-based networks are the backbone of the operation of the Internet, that communicates through the use of the Border Gateway Protocol which connects distinct networks, referred to as Autonomous Systems, together. As the technology matures, so does the challenges caused by the extreme growth rate of the Internet. The amount of BGP prefixes required to facilitate such an increase in connectivity introduces multiple new critical issues, such as with the scalability and the security of the aforementioned Border Gateway Protocol. Illustration of an implementation of an IP/MPLS core transmission network is formed through the introduction of the four main pillars of an Autonomous System: Multi-Protocol Label Switching, Border Gateway Protocol, Open Shortest Path First and the Resource Reservation Protocol. The symbiosis of these technologies is used to introduce the practicalities of operating an IP/MPLS-based ISP network with traffic engineering and fault-resilience at heart. The first research objective of this thesis is to determine whether the deployment of a new BGP feature, which is referred to as BGP Prefix Independent Convergence (PIC), within AS16086 would be a worthwhile endeavour. This BGP extension aims to reduce the convergence delay of BGP Prefixes inside of an IP/MPLS Core Transmission Network, thus improving the networks resilience against faults. Simultaneously, the second research objective was to research the available mechanisms considering the protection of BGP Prefixes, such as with the implementation of the Resource Public Key Infrastructure and the Artemis BGP Monitor for proactive and reactive security of BGP prefixes within AS16086. The future prospective deployment of BGPsec is discussed to form an outlook to the future of IP/MPLS network design. As the trust-based nature of BGP as a protocol has become a distinct vulnerability, thus necessitating the use of various technologies to secure the communications between the Autonomous Systems that form the network to end all networks, the Internet

    Routing Engine Architecture for Next Generation Routers: Evolutional Trends

    Full text link

    Foutbestendige toekomstige internetarchitecturen

    Get PDF

    Maestro: Achieving scalability and coordination in centralizaed network control plane

    Get PDF
    Modem network control plane that supports versatile communication services (e.g. performance differentiation, access control, virtualization, etc.) is highly complex. Different control components such as routing protocols, security policy enforcers, resource allocation planners, quality of service modules, and more, are interacting with each other in the control plane to realize complicated control objectives. These different control components need to coordinate their actions, and sometimes they could even have conflicting goals which require careful handling. Furthermore, a lot of these existing components are distributed protocols running on large number of network devices. Because protocol state is distributed in the network, it is very difficult to tightly coordinate the actions of these distributed control components, thus inconsistent control actions could create serious problems in the network. As a result, such complexity makes it really difficult to ensure the optimality and consistency among all different components. Trying to address the complexity problem in the network control plane, researchers have proposed different approaches, and among these the centralized control plane architecture has become widely accepted as a key to solve the problem. By centralizing the control functionality into a single management station, we can minimize the state distributed in the network, thus have better control over the consistency of such state. However, the centralized architecture has fundamental limitations. First, the centralized architecture is more difficult to scale up to large network size or high requests rate. In addition, it is equally important to fairly service requests and maintain low request-handling latency, while at the same time having highly scalable throughput. Second, the centralized routing control is neither as responsive nor as robust to failures as distributed routing protocols. In order to enhance the responsiveness and robustness, one approach is to achieve the coordination between the centralized control plane and distributed routing protocols. In this thesis, we develop a centralized network control system, called Maestro, to solve the fundamental limitations of centralized network control plane. First we use Maestro as the central controller for a flow-based routing network, in which large number of requests are being sent to the controller at very high rate for processing. Such a network requires the central controller to be extremely scalable. Using Maestro, we systematically explore and study multiple design choices to optimally utilize modern multi-core processors, to fairly distribute computation resource, and to efficiently amortize unavoidable overhead. We show a Maestro design based on the abstraction that each individual thread services switches in a round-robin manner, can achieve excellent throughput scalability while maintaining far superior and near optimal max-min fairness. At the same time, low latency even at high throughput is achieved by Maestro's workload-adaptive request batching. Second, we use Maestro to achieve the coordination between centralized controls and distributed routing protocols in a network, to realize a hybrid control plane framework which is more responsive and robust than a pure centralized control plane, and more globally optimized and consistent than a pure distributed control plane. Effectively we get the advantages of both the centralized and the distributed solutions. Through experimental evaluations, we show that such coordination between the centralized controls and distributed routing protocols can improve the SLA compliance of the entire network
    • …
    corecore