1,188 research outputs found

    Hidden Markov Model Identifiability via Tensors

    Full text link
    The prevalence of hidden Markov models (HMMs) in various applications of statistical signal processing and communications is a testament to the power and flexibility of the model. In this paper, we link the identifiability problem with tensor decomposition, in particular, the Canonical Polyadic decomposition. Using recent results in deriving uniqueness conditions for tensor decomposition, we are able to provide a necessary and sufficient condition for the identification of the parameters of discrete time finite alphabet HMMs. This result resolves a long standing open problem regarding the derivation of a necessary and sufficient condition for uniquely identifying an HMM. We then further extend recent preliminary work on the identification of HMMs with multiple observers by deriving necessary and sufficient conditions for identifiability in this setting.Comment: Accepted to ISIT 2013. 5 pages, no figure

    Fluctuating Macro Policies and the Fiscal Theory

    Get PDF
    This paper estimates regime-switching rules for monetary policy and tax policy over the post-war period in the United States and imposes the estimated policy process on a calibrated dynamic stochastic general equilibrium model with nominal rigidities. Decision rules are locally unique and produce a stationary long-run rational expectations equilibrium in which (lump-sum) tax shocks always affect output and inflation. Tax non-neutralities in the model arise solely through the mechanism articulated by the fiscal theory of the price level. The paper quantifies that mechanism and finds it to be important in U.S. data, reconciling a popular class of monetary models with the evidence that tax shocks have substantial impacts. Because long-run policy behavior determines existence and uniqueness of equilibrium, in a regime-switching environment more accurate qualitative inferences can be gleaned from full-sample information than by conditioning on policy regime.

    Behavioral ecology of wild turkeys

    Get PDF
    Wild turkey (Meleagris gallopovo) hens are solitary and cryptic during the reproductive season, sensitive to observer presence near the nest site, and as a result our understanding of their incubation behavior is limited to a handful of studies. Lacking this important behavioral information, it remains unclear how incubation behavior among turkey hens influences reproductive success. Habitat use among hens during the reproductive season is influenced by forest management strategies such as prescribed fire, however, these inferences are primarily derived from pine (Pinus spp.) forest habitat of the southeastern U.S. and are not likely applicable to hardwood forests of the Midwest. To address these unknowns, I remotely monitored Eastern wild turkeys (Meleagris gallopovo silvestris) using micro-GPS and studied their habitat use, incubation behavior, and daily nest survival. Chapter 1 of my dissertation provides a review of animal behavior in the context of wildlife conservation, habitat use in managed landscapes, and wild turkey hen reproductive behavior and success. In Chapter 2, I sought to examine habitat use among wild turkey hens during the reproductive season as a function of prescribed fire; a forest management strategy that is increasing in use in Illinois to reduce invasive and undesirable vegetation and encourage oak (Quercus spp.) regeneration. More specifically, I addressed two questions, (1) Does prescribed fire influence habitat selection among hens? and (2) Does burn regime (time-since-fire and burn frequency) influence hen habitat use among burned forest areas? I found that within their annual and reproductive period ranges, hens generally used burned and non-burned forest in proportion to what was available to them within the flock and annual ranges. During the reproductive season in Illinois, wild turkey hens exhibited habitat selection among burned forest areas as a function of time-since-burn and burn frequency, and non-burned forest represented a large proportion of their annual and seasonal ranges with most nests occurring in non-burned forests. The effects of time-since-burn and burn frequency on habitat use changed in response to the reproductive period (i.e., egg-laying, incubation, or post-nesting) and spatial scale examined (i.e., annual home range vs. reproductive period home range vs. reproductive period core area). The home ranges and core areas of wild turkey hens in Illinois included a mosaic of fire elements. Habitat use by hens during egg-laying and incubation periods indicated hens selected areas with at least one growing season since burning. The diversity in use of burned and non-burned forest suggests that managing for pyrodiversity in forested landscapes of Illinois may provide a range of habitats that are valuable for nesting and brood-rearing turkeys. In Chapter 3, I used hidden Markov models to classify activity data collected from hens during each nest attempt to describe individual incubation behavior. I discovered that hens exhibited a partial incubation period which lasted from 1 - 6 days prior to the start of continuous incubation (i.e., the day following the first night spent on the nest). I found that the mean daily recess frequency was 1.3 (SD = 0.7) and ranged between 0 - 5 recesses. Mean recess duration was 45.3 min (SD = 30.7 min) and ranged between 5 – 325 min. Recesses occurred more frequently in the afternoon than in the morning. In addition to growing our understanding of turkey recess behavior, future harvest regulations in Illinois will be informed by improved knowledge of the partial incubation period and the timing of hen recesses. In Chapter 4, I analyzed 48 nest attempts to evaluate the influence of recess behavior described in Chapter 3, habitat and landscape features, ambient temperature, and temporal variables on daily nest survival. Based on the results from binary-regression models of daily nest survival, I found that daily nest survival rates declined with increasing visual obstruction (51 – 100 cm) of a nest site. Models of incubation recess behavior did a poor job explaining daily survival rates of nests and ranked below the constant survival model. These results suggest that factors beyond the scope of this study, such as nest predator community composition and abundance, are likely playing a strong role in the survival of wild turkey nests across Illinois. Taken together, these results suggest that (1) pyrodiversity in a forested landscape may be valuable for Eastern wild turkey hens during the reproductive season, and (2) although recess behavior varied among hens, it did not appear to influence daily nest survival. Managing a forested area with pyrodiversity goals can provide valuable habitat for nesting and brood-rearing wild turkeys, but reproductive success may remain low regardless

    Occupancy vs. detection: Estimating changes in epiphytic lichen communities over 20 years

    Get PDF
    The growing global human population is exerting increasing pressure on the natural environment. Habitat destruction and anthropogenic climate change are causing species to decline or to shift their distribution ranges, but some species cannot keep up with the unprecedented speed of these changes and go extinct. As a result, we are losing biodiversity at the pace of a mass extinction. Already now, this loss has entailed unwanted effects on human well-being by negatively affecting ecosystem services like food provisioning, climate regulation, or pest control. Increased political pressure has urged governments to take action towards the conservation of diversity of life on Earth. To be effective, however, actions aimed at the protection of species require the evaluation of the current status of the species and how the populations change over time. Like many others, the government of Switzerland uses national Red Lists to identify the most threatened species and to set priorities for conservation actions at the national scale. The data for these Red List assessments come from large-scale surveys or monitoring programs that were established for the purpose of observing and inferring changes over time. However, ecological surveys are subject to detection errors, i.e., failing to detect species where they occur. These errors can lead to biases in the estimation of species distributions, habitat associations, or population changes, potentially resulting in an inappropriate threat category and a misassignment of resources for conservation measures. It is the purpose of this thesis to obtain estimates of population change for epiphytic lichen species in Switzerland that are less affected by detection errors, using data collected within the scope of the national Red List assessment. To estimate detection errors, it was first necessary to test the applicability of the available statistical methods to the lichen data (Chapter 1). Given the scarcity of published literature on the subject of detection errors in lichens, it also made sense to investigate the extent and the causes of such errors in greater detail (Chapter 2). The insights from these investigations then allowed me to analyse the ecological patterns behind population changes of epiphytic lichens in Switzerland over the last 20 years (Chapter 3). In Chapter 1, I tested whether the structure of the lichen data was generally suitable for the type of statistical models that are most often used to account for detection errors. They are called occupancy models and they require data from sites that were surveyed multiple times over a short period. The model uses the differences and similarities between the observations of the repeated visits to estimate the detection probability. In the standardised lichen data from the national Red List survey, only a small subset of all sites was surveyed a second time, while the others were surveyed only once. To find out whether these single-visit sites could contribute information to parameter estimation in an occupancy model, I simulated data under different designs but with the same mixed structure as the lichen data, i.e., with some repeated-visit sites (with two or four visits) and many single-visit sites. I first fitted an occupancy model to only the repeated-visit portion of the data and extracted the precision of the parameter estimates. I then successively added more single-visit sites, reran the analysis, and checked whether the precision of the parameter estimates improved. Precision did improve with additional single-visit sites, both for the parameter occupancy and the parameter detection probability. This shows that single-visit sites contribute to parameter estimation, when they are combined with repeated-visit data, and that it is beneficial to include single-visit data in an occupancy analysis. When the number of repeated visits was raised from two to four, precision was not only generally better, but also the contribution of single-visit sites improved. This finding is of limited relevance for the analysis of the currently available lichen data, but it could be useful to make adjustments to the design in the future. In Chapter 2, I explored the magnitude of and variation in detection probability in the lichen data that were collected during the first Red List assessment (1995–2000). I included the conspicuousness and the taxonomic identifiability of the species as covariates to detection probability, supposing that conspicuous and easy-to-identify species may have a higher detectability. The experience of observers with individual species was also likely to affect detectability in a positive way. Average detection probability across all observers was estimated at 49%, with substantial differences between observers and species, some of which were due to people’s experience or to the conspicuousness or identifiability of the species. As observer experience changed over time, detectability was slightly higher towards the end of the sampling period than at the beginning. The result that detection success was estimated to be almost a fifty-fifty chance was rather surprising. The standardised circumstances would have suggested a higher detectability: the size of the sampled area was limited, survey time almost unlimited, and all observers had prior experience with lichen surveys. In contrast to animals, lichens cannot run away or hide, and while most plants and fungi exhibit seasonality in their morphology, lichens do not. It is therefore likely that such low detection probabilities ⎯ in other words, such high detection errors ⎯ occur in most datasets of sessile organisms. Ignoring them would lead to a severe understimation of frequencies of occurrence and area of occupancy. The variation between species and differences between observers in combination with a potential spatial clustering of observers is expected to result in a stronger bias for some species than for others, an effect that is difficult to assess without the explicit estimation of detection probability. In Chapter 3, I estimated how occupancy changed for 329 epiphytic lichen species in Switzerland between the first and the second national Red List assessment conducted over the periods 1995–2000 and 2018–2022. Although the model estimates occupancy at the species level, I took a more community-based approach in this chapter and grouped species into 18 ecological guilds. Three guilds described a preference for free-standing trees, humid forests, or old trees, two guilds represented specialized photobionts (trentepohlioid and cyano), and twelve guilds were derived from high and low ecological indicator values for temperature, precipitation, continentality, eutrophication, pH, and light availability. With this guild-based approach, I was able to find potentially meaningful correlations with environmental change in Switzerland over the same time scale. An ongoing decline in species associated with old trees suggests that the low abundance of such trees, though increasing, has not yet allowed specialist lichens to recover from the severe loss they experienced due to unsustainable forestry practices in the last century. A strong increase in species indicative of high pH and tolerant to eutrophication in combination with a decline in eutrophication-sensitive and acidophytic species suggests a continuing effect of environmental pollutants on lichen communities. While acid deposition decreased to a very low level over the last decades, critical levels for nitrogen deposition are still exceeded in two thirds of the country. Some guild changes could also potentially be attributed to climate change. Species of high temperatures and low precipitation tended to increase, whereas species with a preference for low temperatures or high precipitation tended to decline. If these simultaneous environmental changes were indeed the driving force behind the observed changes, they are likely to continue in the near future. In the three chapters, I have consequently shown that it was possible to use the mixed structure of the lichen data to obtain detection-corrected estimates of frequency of occurrence and population changes. I showed how large the detection error was despite many favourable circumstances, and how it can be accounted for in an ecological study. Limitations of this thesis include model assumptions that may not be entirely fulfilled, and the restrictions imposed by data scarcity on the number of covariates that could be included in the model. In the future, I see potential in combining the standardised data with the countless individual observations recorded by volunteers or in other projects. Including multiple sources in one integrated model could improve both accuracy and precision of estimates of population changes. At a larger scale, e.g., for standardised species distribution modelling for global Red List assessments, it would be valuable to find a set of readily available and reliable predictor variables to model lichen occurrences. It is important to keep in mind, however, that estimates of species frequency or population changes will not reduce the risk of extinction a species may be facing, however precise these estimates may be. Ultimately, conservation actions will be necessary to ensure the persistence of many species. Nevertheless, this thesis lays the foundation for a more accurate, data-based Red List assessment. As such, I hope it can direct conservation efforts to where they are most needed.Die wachsende menschliche Bevölkerung ĂŒbt einen zunehmenden Druck auf ihre natĂŒrliche Umwelt aus. Arten werden aus ihren zerstörten LebensrĂ€umen verdrĂ€ngt und der menschengemachte Klimawandel zwingt sie, ihre Ausbreitungsgebiete zu verschieben. Einige Arten können mit der Geschwindigkeit der globalen VerĂ€nderungen nicht Schritt halten und sterben aus. Die Folge ist, dass wir gegenwĂ€rtig in einem solchen Tempo Artenvielfalt verlieren, wie es sonst nur wĂ€hrend Massenaussterben geschehen ist. Bereits jetzt hat der Verlust an Vielfalt unerwĂŒnschte Folgen fĂŒr uns Menschen nach sich gezogen, unter anderem durch verminderte Ökosystem-Dienstleistungen wie der Nahrungsversorgung, Klimaregulierung oder SchĂ€dlingsbekĂ€mpfung. Der steigende Druck durch die Bevölkerung und Nichtregierungsorganisationen hat Regierungen dazu veranlasst, sich vermehrt des Schutzes der biologischen Vielfalt auf der Erde anzunehmen. Damit Schutzmassnahmen effektiv greifen können, bedarf es einer Evaluation des gegenwĂ€rtigen Zustands der Artenvielfalt und die Möglichkeit, die VerĂ€nderung des Zustands ĂŒber die Zeit zu verfolgen. Wie viele andere LĂ€nder verwendet die Schweizer Regierung nationale Rote Listen, um die Arten zu ermitteln, die am stĂ€rksten bedroht sind, und PrioritĂ€ten dort zu setzen, wo der grösste Handlungsbedarf besteht. Die Datengrundlage fĂŒr die Rote-Liste-EinschĂ€tzungen stammt aus gross angelegten Erhebungen und Monitoringprogrammen, welche zu diesem Zweck eingerichtet wurden. WĂ€hrend solcher Erhebungen kann es jedoch vorkommen, dass Fehler gemacht werden, z.B. dass man eine Art nicht entdeckt, obwohl sie an einem Ort vorkommt. Viele einzelne Entdeckungsfehler fĂŒhren zu einem systematischen Fehler bei der SchĂ€tzung des Verbreitungsgebiets, der LebensraumprĂ€ferenzen oder der PopulationsverĂ€nderungen von Arten. Dies kann zur Einteilung der Art in eine falsche Rote-Liste-Kategorie fĂŒhren, was wiederum suboptimal angewandte Fördergelder nach sich ziehen kann. Um einen systematischen Fehler (eine VerfĂ€lschung oder Verzerrung) in den ökologischen SchĂ€tzwerten zu vermeiden, muss der Entdeckungsfehler geschĂ€tzt und entsprechend dafĂŒr korrigiert werden. Es ist das Ziel dieser Arbeit, unverfĂ€lschte SchĂ€tzungen fĂŒr die Bestandsentwicklungen der borkenbewohnenden Flechten der Schweiz ĂŒber die letzten 20 Jahre zu erhalten. Als Grundlage dienen Daten der Erhebungen, die im Rahmen der zwei nationalen Rote-Liste-Projekte durchgefĂŒhrt wurden. Die EinschĂ€tzung der Entdeckungswahrscheinlichkeit verlangt den Einsatz besonderer statistischer Modelle, die bisher nur selten fĂŒr Flechtendaten verwendet wurden. Daher habe ich in Kapitel 1 dieser Arbeit untersucht, ob diese statistischen Modelle sich fĂŒr die vorliegenden Flechtendaten eignen. Weil es zum Thema Entdeckungswahrscheinlichkeit von Flechten bisher nur begrenzt Literatur gibt, war es ausserdem sinnvoll, das Ausmass der Entdeckungsfehler sowie mögliche GrĂŒnde dafĂŒr in einem eigenen Kapitel 2 zu diskutieren. Gewappnet mit den Erkenntnissen dieser ersten Untersuchungen, habe ich mich dann in Kapitel 3 auf die VerĂ€nderungen konzentriert, die in der Artzusammensetzung von borkenbewohnenden Flechtengesellschaften in der Schweiz ĂŒber die letzten 20 Jahre geschehen sind. In Kapitel 1 habe ich untersucht, ob sich die Struktur der Flechtendaten fĂŒr die Verwendung jener statistischen Modelle eignet, mit denen Entdeckungsfehler geschĂ€tzt werden können. Diese Modelle heissen auf Englisch Occupancy models, zu Deutsch etwa «Belegmodelle», weil sie die Wahrscheinlichkeit berechnen, dass eine ErhebungsflĂ€che von der Art «belegt» ist, d.h. ob die Art dort vorkommt. Belegmodelle benötigen Daten von ErhebungsflĂ€chen («Plots»), die innerhalb einer kurzen Zeit wiederholt unabhĂ€ngig erhoben worden sind. Das Modell schĂ€tzt dann die Entdeckungswahrscheinlichkeit aufgrund von Unterschieden und Gemeinsamkeiten zwischen den Wiederholungen. In den standardisierten Flechtendaten der Rote-Liste-Erhebungen sind nur ein kleiner Teil aller Plots wiederholt (genauer gesagt zweimal) erhoben worden. Alle anderen wurden nur ein einziges Mal erfasst. Um herauszufinden, ob diese einmalig bearbeiteten FlĂ€chen dennoch Information fĂŒr die ParameterschĂ€tzung des Modells beisteuern, habe ich Daten simuliert, die in ihrer Struktur den Flechtendaten Ă€hnlich sind. Die Simulation von Daten erlaubt es, die Leistung eines Modells zu evaluieren, da die richtigen Werte selbst gesetzt werden und darum bekannt sind. In einem ersten Schritt habe ich ein Belegmodell an den Teil der simulierten Daten angepasst, der von wiederholten Aufnahmen stammt, und die PrĂ€zision der SchĂ€tzwerte gespeichert. Dann habe ich sukzessive mehr und mehr Daten von einmalig bearbeiteten FlĂ€chen hinzugefĂŒgt, das Modell erneut angepasst und wiederum die PrĂ€zision der SchĂ€tzwerte extrahiert. Ich konnte feststellen, dass die PrĂ€zision mit steigender Anzahl an einmalig bearbeiteten FlĂ€chen zunimmt; sowohl die PrĂ€zision des SchĂ€tzwerts fĂŒr die Belegwahrscheinlichkeit als auch des SchĂ€tzwerts fĂŒr die Entdeckungswahrscheinlichkeit. Daraus lĂ€sst sich schliessen, dass auch einmalig besuchte FlĂ€chen zur ParameterschĂ€tzung beitragen, sofern sie mit Daten aus wiederholten Aufnahmen kombiniert werden. Bei einer Erhöhung der Anzahl Wiederholungen von zwei auf vier war nicht nur die PrĂ€zision im Allgemeinen höher, sondern auch der Beitrag der einmalig bearbeiteten FlĂ€chen. Dieses Resultat ist wenig relevant fĂŒr die Analyse der vorhandenen Flechtendaten, aber es liefert wertvolle Hinweise, wie die Methode fĂŒr zukĂŒnftige Flechtenerhebungen verbessert werden könnte. In Kapitel 2 habe ich die Grössenordnung und Variation der Entdeckungswahrscheinlichkeit in den Flechtendaten der ersten Rote-Liste-EinschĂ€tzung (1995–2000) unter die Lupe genommen. Als Einflussvariable habe ich die AuffĂ€lligkeit und die Bestimmbarkeit der Flechtenarten verwendet, weil ich davon ausgegangen bin, dass auffĂ€llige und leicht bestimmbare Arten eine höhere Entdeckungswahrscheinlichkeit haben. Auch die vorherige Erfahrung der Beobachter:innen mit einzelnen Arten habe ich als Variable einfliessen lassen. Die durchschnittliche Entdeckungswahrscheinlichkeit lag bei 49%, doch es gab grosse VariabilitĂ€t zwischen Leuten und Arten, was sich teilweise durch unterschiedliche Erfahrung, AuffĂ€lligkeit oder Bestimmbarkeit der Arten erklĂ€ren liess. Da die Erfahrung der Beobachter:innen ĂŒber den Erhebungszeitraum zugenommen hat, war die Entdeckungswahrscheinlichkeit zu Beginn kleiner als gegen Ende der Aufnahmen. Die Tatsache, dass der Entdeckungserfolg knapp einer 50:50 Chance gleichkommt, war etwas ĂŒberraschend. Aufgrund des standardisierten Erhebungsverwahrens wĂ€re eine höhere Entdeckungswahrscheinlichkeit zu erwarten gewesen: Die Grösse der AufnahmeflĂ€chen war begrenzt, die Zeit fĂŒr die Erhebung so gut wie uneingeschrĂ€nkt und sĂ€mtliche Beobachter:innen waren erfahren im Erheben von Flechtendaten. Im Gegensatz zu Tieren können Flechten sich auch nicht vor einer Entdeckung verstecken. Und wĂ€hrend die meisten Pflanzen und Pilze jahreszeitliche Unterschiede in ihrem Aussehen aufweisen, sehen Flechten das ganze Jahr ĂŒber gleich aus. Man könnte also davon ausgehen, dass Ă€hnlich tiefe Entdeckungswahrscheinlichkeiten, mit anderen Worten Ă€hnlich grosse Entdeckungsfehler, in den meisten Erhebungen von sesshaften Organismen auftreten. Diese Fehler zu ignorieren, fĂŒhrt unweigerlich zu einer drastischen UnterschĂ€tzung der HĂ€ufigkeit dieser Arten. Aufgrund der grossen Variation zwischen Arten und Beobachter:innen in Kombination mit einer ungleichmĂ€ssigen Verteilung der Leute, ist es ausserdem wahrscheinlich, dass die VerfĂ€lschung der SchĂ€tzwerte bei einigen Arten stĂ€rker ausfallen wird als bei anderen. Diese Unterschiede können nur dann verstanden werden, wenn die Entdeckungswahrscheinlichkeit der Arten explizit geschĂ€tzt wird. In Kapitel 3 habe ich geschĂ€tzt, wie sich die HĂ€ufigkeit von 329 borkenbewohnenden Flechten in der Schweiz zwischen den Jahren 1995–2000 respektive 2018–2022 verĂ€ndert hat. Die Feldaufnahmen dafĂŒr fanden im Rahmen der ersten und zweiten Rote-Liste-Erhebung statt. Auch wenn das Belegmodell VerĂ€nderungen auf Artniveau berechnet, habe ich die Arten fĂŒr dieses Kapitel in 18 ökologische Gilden eingeteilt, um die VerĂ€nderungen auf der Ebene der Flechtengemeinschaften zu beschreiben. Drei Gilden beschrieben eine Vorliebe fĂŒr freistehende BĂ€ume, luftfeuchte WĂ€lder und alte BĂ€ume, zwei Gilden waren definiert durch spezielle Photobionten (trentepohlioid und cyano), und zwölf Gilden waren von hohen und tiefen ökologischen Zeigerwerten hergeleitet fĂŒr Temperatur, Niederschlag, KontinentalitĂ€t, Eutrophierung, pH und LichtverhĂ€ltnisse. Dank dieser gildenbasierten Herangehensweise konnte ich Verbindungen herstellen zwischen der Artzusammensetzung und UmweltverĂ€nderungen in der Schweiz ĂŒber den gleichen Zeitraum. Ein kontinuierlicher RĂŒckgang der Gilde alte BĂ€ume lĂ€sst vermuten, dass sich diese spezialisierten Flechten noch nicht vom starken RĂŒckgang erholen konnten, den sie im letzten Jahrhundert aufgrund von nicht nachhaltiger Waldwirtschaft erlitten haben. Die Anstrengungen der heutigen Waldwirtschaft, die Dichte alter BĂ€ume zu fördern, konnten daran offenbar noch nichts Ă€ndern. Eine starke Zunahme eutrophierungstoleranter (hohe Eutrophierung) und basenliebender (hoher pH) Arten und eine gleichzeitige Abnahme eutrophierungssensibler (geringe Eutrophierung) und sĂ€ureliebender (tiefer pH) Arten weist darauf hin, dass Flechtengemeinschaften nach wie vor stark von Schadstoffen in der Luft und im Niederschlag betroffen sind. WĂ€hrend nĂ€mlich die SĂ€ureeintrĂ€ge in den letzten Jahrzehnten kontinuierlich gesunken sind, werden die kritischen Werte fĂŒr StickstoffeintrĂ€ge noch in zwei Drittel der Schweizer LandesflĂ€che ĂŒberschritten. Die Resultate lassen auch Vermutungen ĂŒber den Effekt des Klimawandels zu. So haben wĂ€rmeliebende (hohe Temperaturen) und trockenheitsresistente (wenig Niederschlag) Arten zugenommen, wĂ€hrend kĂ€lteliebende (tiefe Temperaturen) und feuchtigkeitsbedĂŒrftige (viel Niederschlag) Arten abgenommen haben. Sollten die genannten Faktoren tatsĂ€chlich die GrĂŒnde fĂŒr die beobachteten VerĂ€nderungen sein, dann werden sich die Flechtengemeinschaften auch in den kommenden Jahrzehnten noch weiter in eine Ă€hnliche Richtung entwickeln. Ich habe in diesen drei Kapiteln gezeigt, dass es möglich ist, mit einem Datensatz aus teilweise wiederholten, teilweise einmalig durchgefĂŒhrten Aufnahmen, SchĂ€tzwerte fĂŒr die HĂ€ufigkeit von Arten zu erhalten, die fĂŒr Erhebungsfehler korrigieren. Ich konnte zeigen, dass der Entdeckungsfehler trotz gĂŒnstiger Voraussetzungen sehr gross sein kann in einer ökologischen Studie. Schwachstellen meiner Arbeit sind unter anderem gewisse Voraussetzungen der statistischen Modelle, die möglicherweise nur begrenzt erfĂŒllt waren, und die EinschrĂ€nkung der ModellkomplexitĂ€t, die aufgrund der geringen Stichprobengrösse zustande gekommen ist. FĂŒr die Schweiz sehe ich zukĂŒnftig eine grosse Chance darin, die standardisierten Daten der Rote-Liste-Erhebungen mit den zahllosen Einzelbeobachtungen von Freiwilligen (oder aus anderen Projekten) zu kombinieren. Wenn Beobachtungen aus verschiedenen Quellen in einem einzigen Modell vereint wĂŒrden, liessen sich Ausbreitung und BestandsverĂ€nderungen in der Schweiz besser schĂ€tzen. Auf nationaler und internationaler Ebene, z.B. fĂŒr globale Rote-Liste-EinschĂ€tzungen, wĂ€re es ausserdem wĂŒnschenswert, eine Liste mit zuverlĂ€ssigen und leicht zugĂ€nglichen Umweltvariablen zusammenzustellen, die die Modellierung von Flechtenvorkommen vereinfachen und standardisieren wĂŒrde. Allerdings werden SchĂ€tzungen von Ausbreitungsgebieten oder BestandsverĂ€nderungen allein die Aussterbewahrscheinlichkeit von Arten nicht reduzieren können, unabhĂ€ngig von ihrer Genauigkeit. Schlussendlich mĂŒssen Massnahmen ergriffen werden, um das Fortbestehen der Arten zu sichern. Aber indem diese Arbeit dazu beigetragen hat, Rote-Liste-EinschĂ€tzungen zuverlĂ€ssiger und genauer zu machen, hoffe ich, dass NaturschutzprioritĂ€ten gezielter dort gesetzt werden können, wo sie am meisten gebraucht werden

    Use of automated coding methods to assess motivational behaviour in education

    Get PDF
    Teachers’ motivational behaviour is related to important student outcomes. Assessing teachers’ motivational behaviour has been helpful to improve teaching quality and enhance student outcomes. However, researchers in educational psychology have relied on self-report or observer ratings. These methods face limitations on accurately and reliably assessing teachers’ motivational behaviour; thus restricting the pace and scale of conducting research. One potential method to overcome these restrictions is automated coding methods. These methods are capable of analysing behaviour at a large scale with less time and at low costs. In this thesis, I conducted three studies to examine the applications of an automated coding method to assess teacher motivational behaviours. First, I systematically reviewed the applications of automated coding methods used to analyse helping professionals’ interpersonal interactions using their verbal behaviour. The findings showed that automated coding methods were used in psychotherapy to predict the codes of a well-developed behavioural coding measure, in medical settings to predict conversation patterns or topics, and in education to predict simple concepts, such as the number of open/closed questions or class activity type (e.g., group work or teacher lecturing). In certain circumstances, these models achieved near human level performance. However, few studies adhered to best-practice machine learning guidelines. Second, I developed a dictionary of teachers’ motivational phrases and used it to automatically assess teachers’ motivating and de-motivating behaviours. Results showed that the dictionary ratings of teacher need support achieved a strong correlation with observer ratings of need support (rfull dictionary = .73). Third, I developed a classification of teachers’ motivational behaviour that would enable more advanced automated coding of teacher behaviours at each utterance level. In this study, I created a classification that includes 57 teacher motivating and de-motivating behaviours that are consistent with self-determination theory. Automatically assessing teachers’ motivational behaviour with automatic coding methods can provide accurate, fast pace, and large scale analysis of teacher motivational behaviour. This could allow for immediate feedback and also development of theoretical frameworks. The findings in this thesis can lead to the improvement of student motivation and other consequent student outcomes

    Verification of emotion recognition from facial expression

    Get PDF
    Analysis of facial expressions is an active topic of research with many potential applications, since the human face plays a significant role in conveying a person’s mental state. Due to the practical values it brings, scientists and researchers from different fields such as psychology, finance, marketing, and engineering have developed significant interest in this area. Hence, there are more of a need than ever for the intelligent tool to be employed in the emotional Human-Computer Interface (HCI) by analyzing facial expressions as a better alternative to the traditional devices such as the keyboard and mouse. The face is a window of human mind. The examination of mental states explores the human’s internal cognitive states. A facial emotion recognition system has a potential to read people’s minds and interpret the emotional thoughts to the world. High rates of recognition accuracy of facial emotions by intelligent machines have been achieved in existing efforts based on the benchmarked databases containing posed facial emotions. However, they are not qualified to interpret the human’s true feelings even if they are recognized. The difference between posed facial emotions and spontaneous ones has been identified and studied in the literature. One of the most interesting challenges in the field of HCI is to make computers more human-like for more intelligent user interfaces. In this dissertation, a Regional Hidden Markov Model (RHMM) based facial emotion recognition system is proposed. In this system, the facial features are extracted from three face regions: the eyebrows, eyes and mouth. These regions convey relevant information regarding facial emotions. As a marked departure from prior work, RHMMs for the states of these three distinct face regions instead of the entire face for each facial emotion type are trained. In the recognition step, regional features are extracted from test video sequences. These features are processed according to the corresponding RHMMs to learn the probabilities for the states of the three face regions. The combination of states is utilized to identify the estimated emotion type of a given frame in a video sequence. An experimental framework is established to validate the results of such a system. RHMM as a new classifier emphasizes the states of three facial regions, rather than the entire face. The dissertation proposes the method of forming observation sequences that represent the changes of states of facial regions for training RHMMs and recognition. The proposed method is applicable to the various forms of video clips, including real-time videos. The proposed system shows the human-like capability to infer people’s mental states from moderate level of facial spontaneous emotions conveyed in the daily life in contrast to posed facial emotions. Moreover, the extended research work associated with the proposed facial emotion recognition system is forwarded into the domain of finance and biomedical engineering, respectively. CEO’s fear facial emotion has been found as the strong and positive predictor to forecast the firm stock price in the market. In addition, the experiment results also have demonstrated the similarity of the spontaneous facial reactions to stimuli and inner affective states translated by brain activity. The results revealed the effectiveness of facial features combined with the features extracted from the signals of brain activity for multiple signals correlation analysis and affective state classification
    • 

    corecore