48 research outputs found

    Arabic Handwriting: Analysis and Synthesis

    Get PDF

    My Text in Your Handwriting

    Get PDF
    There are many scenarios where we wish to imitate a specific author’s pen-on-paper handwriting style. Rendering new text in someone’s handwriting is difficult because natural handwriting is highly variable, yet follows both intentional and involuntary structure that makes a person’s style self-consistent. The variability means that naive example-based texture synthesis can be conspicuously repetitive. We propose an algorithm that renders a desired input string in an author’s handwriting. An annotated sample of the author’s handwriting is required; the system is flexible enough that historical documents can usually be used with only a little extra effort. Experiments show that our glyph-centric approach, with learned parameters for spacing, line thickness, and pressure, produces novel images of handwriting that look hand-made to casual observers, even when printed on paper

    A large vocabulary online handwriting recognition system for Turkish

    Get PDF
    Handwriting recognition in general and online handwriting recognition in particular has been an active research area for several decades. Most of the research have been focused on English and recently on other scripts like Arabic and Chinese. There is a lack of research on recognition in Turkish text and this work primarily fills that gap with a state-of-the-art recognizer for the first time. It contains design and implementation details of a complete recognition system for recognition of Turkish isolated words. Based on the Hidden Markov Models, the system comprises pre-processing, feature extraction, optical modeling and language modeling modules. It considers the recognition of unconstrained handwriting with a limited vocabulary size first and then evolves to a large vocabulary system. Turkish script has many similarities with other Latin scripts, like English, which makes it possible to adapt strategies that work for them. However, there are some other issues which are particular to Turkish that should be taken into consideration separately. Two of the challenging issues in recognition of Turkish text are determined as delayed strokes which introduce an extra source of variation in the sequence order of the handwritten input and high Out-of-Vocabulary (OOV) rate of Turkish when words are used as vocabulary units in the decoding process. This work examines the problems and alternative solutions at depth and proposes suitable solutions for Turkish script particularly. In delayed stroke handling, first a clear definition of the delayed strokes is developed and then using that definition some alternative handling methods are evaluated extensively on the UNIPEN and Turkish datasets. The best results are obtained by removing all delayed strokes, with up to 2.13% and 2.03% points recognition accuracy increases, over the respective baselines of English and Turkish. The overall system performances are assessed as 86.1% with a 1,000-word lexicon and 83.0% with a 3,500-word lexicon on the UNIPEN dataset and 91.7% on the Turkish dataset. Alternative decoding vocabularies are designed with grammatical sub-lexical units in order to solve the problem of high OOV rate. Additionally, statistical bi-gram and tri-gram language models are applied during the decoding process. The best performance, 67.9% is obtained by the large stem-ending vocabulary that is expanded with a bi-gram model on the Turkish dataset. This result is superior to the accuracy of the word-based vocabulary (63.8%) with the same coverage of 95% on the BOUN Web Corpus

    ONLINE ARABIC TEXT RECOGNITION USING STATISTICAL TECHNIQUES

    Get PDF

    Authenticating Users with 3D Passwords Captured by Motion Sensors

    Get PDF
    Authentication plays a key role in securing various resources including corporate facilities or electronic assets. As the most used authentication scheme, knowledgebased authentication is easy to use but its security is bounded by how much a user can remember. Biometrics-based authentication requires no memorization but ‘resetting’ a biometric password may not always be possible. Thus, we propose study several behavioral biometrics (i.e., mid-air gestures) for authentication which does not have the same privacy or availability concerns as of physiological biometrics. In this dissertation, we first propose a user-friendly authentication system Kin- Write that allows users to choose arbitrary, short and easy-to-memorize passwords while providing resilience to password cracking and password theft. Specifically, we let users write their passwords (i.e., signatures in the 3D space), and verify a user’s identity with similarities between the user’s password and enrolled password templates. Dynamic time warping distance is used for similarity calculation between 3D passwords samples. In the second part of the dissertation, we design an authentication scheme that does not depend on the handwriting contents, i.e., regardless of the written words or symbols, and adapt challenge-response mechanism to avoid possible eavesdropping, man-in-the-middle attacks, and reply attacks. We design a MoCRA system that utilizes Leap Motion to capture users’ writing movements and use writing style to verify users, even if what they write during the verification is completely different from what they write during the enrollment. Specifically, MoCRA leverages co-occurrence matrices to model the handwriting styles, and use a Support Vector Machine (SVM) to accept a legitimate user and reject the rest. In the third part, we study both security and usability performance on multiple types of mid-air gestures that used as passwords, including writing signatures in the air. We objectively quantify the usability performance by metrics related to the enroll time and the complexity of the gestures, and evaluate the security performance by the authentication performance. In addition, we subjectively evaluate the gestures by survey responses from both field subjects who participated in gesture experiments and on-line subjects who watched a short video on gesture introducing. Finally, we study the consistency of gestures over samples collected in a two-month period, and evaluate their security under shoulder surfing attacks

    Graphonomics and your Brain on Art, Creativity and Innovation : Proceedings of the 19th International Graphonomics Conference (IGS 2019 – Your Brain on Art)

    Get PDF
    [Italiano]: “Grafonomia e cervello su arte, creatività e innovazione”. Un forum internazionale per discutere sui recenti progressi nell'interazione tra arti creative, neuroscienze, ingegneria, comunicazione, tecnologia, industria, istruzione, design, applicazioni forensi e mediche. I contributi hanno esaminato lo stato dell'arte, identificando sfide e opportunità, e hanno delineato le possibili linee di sviluppo di questo settore di ricerca. I temi affrontati includono: strategie integrate per la comprensione dei sistemi neurali, affettivi e cognitivi in ambienti realistici e complessi; individualità e differenziazione dal punto di vista neurale e comportamentale; neuroaesthetics (uso delle neuroscienze per spiegare e comprendere le esperienze estetiche a livello neurologico); creatività e innovazione; neuro-ingegneria e arte ispirata dal cervello, creatività e uso di dispositivi di mobile brain-body imaging (MoBI) indossabili; terapia basata su arte creativa; apprendimento informale; formazione; applicazioni forensi. / [English]: “Graphonomics and your brain on art, creativity and innovation”. A single track, international forum for discussion on recent advances at the intersection of the creative arts, neuroscience, engineering, media, technology, industry, education, design, forensics, and medicine. The contributions reviewed the state of the art, identified challenges and opportunities and created a roadmap for the field of graphonomics and your brain on art. The topics addressed include: integrative strategies for understanding neural, affective and cognitive systems in realistic, complex environments; neural and behavioral individuality and variation; neuroaesthetics (the use of neuroscience to explain and understand the aesthetic experiences at the neurological level); creativity and innovation; neuroengineering and brain-inspired art, creative concepts and wearable mobile brain-body imaging (MoBI) designs; creative art therapy; informal learning; education; forensics
    corecore