6,077 research outputs found

    Improving graph convolutional networks with non-parametric activation functions

    Get PDF
    Graph neural networks (GNNs) are a class of neural networks that allow to efficiently perform inference on data that is associated to a graph structure, such as, e.g., citation networks or knowledge graphs. While several variants of GNNs have been proposed, they only consider simple nonlinear activation functions in their layers, such as rectifiers or squashing functions. In this paper, we investigate the use of graph convolutional networks (GCNs) when combined with more complex activation functions, able to adapt from the training data. More specifically, we extend the recently proposed kernel activation function, a non-parametric model which can be implemented easily, can be regularized with standard lp-norms techniques, and is smooth over its entire domain. Our experimental evaluation shows that the proposed architecture can significantly improve over its baseline, while similar improvements cannot be obtained by simply increasing the depth or size of the original GCN

    Deep Markov Random Field for Image Modeling

    Full text link
    Markov Random Fields (MRFs), a formulation widely used in generative image modeling, have long been plagued by the lack of expressive power. This issue is primarily due to the fact that conventional MRFs formulations tend to use simplistic factors to capture local patterns. In this paper, we move beyond such limitations, and propose a novel MRF model that uses fully-connected neurons to express the complex interactions among pixels. Through theoretical analysis, we reveal an inherent connection between this model and recurrent neural networks, and thereon derive an approximated feed-forward network that couples multiple RNNs along opposite directions. This formulation combines the expressive power of deep neural networks and the cyclic dependency structure of MRF in a unified model, bringing the modeling capability to a new level. The feed-forward approximation also allows it to be efficiently learned from data. Experimental results on a variety of low-level vision tasks show notable improvement over state-of-the-arts.Comment: Accepted at ECCV 201

    Graph Convolutional Networks (GCNs) for Molecular Property Prediction in Drug Development

    Get PDF
    Molecular property prediction is key to drug development. The rising of deep learning techniques provides new possibilities to learn the molecular properties directly from chemical data. In particular, graph convolutional networks have been introduced into the field and made significant enhancements compared to traditional methods. The first part of this paper serves as a study to explore and evaluate this emerging method while the second part demonstrates that graph convolution networks can be further improved by incorporating attention mechanism, another influential deep learning idea.No embargoAcademic Major: Computer and Information Scienc

    Representation Learning: A Review and New Perspectives

    Full text link
    The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can be used to help design representations, learning with generic priors can also be used, and the quest for AI is motivating the design of more powerful representation-learning algorithms implementing such priors. This paper reviews recent work in the area of unsupervised feature learning and deep learning, covering advances in probabilistic models, auto-encoders, manifold learning, and deep networks. This motivates longer-term unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation and manifold learning
    • …
    corecore