44,288 research outputs found

    The role of concurrency in an evolutionary view of programming abstractions

    Full text link
    In this paper we examine how concurrency has been embodied in mainstream programming languages. In particular, we rely on the evolutionary talking borrowed from biology to discuss major historical landmarks and crucial concepts that shaped the development of programming languages. We examine the general development process, occasionally deepening into some language, trying to uncover evolutionary lineages related to specific programming traits. We mainly focus on concurrency, discussing the different abstraction levels involved in present-day concurrent programming and emphasizing the fact that they correspond to different levels of explanation. We then comment on the role of theoretical research on the quest for suitable programming abstractions, recalling the importance of changing the working framework and the way of looking every so often. This paper is not meant to be a survey of modern mainstream programming languages: it would be very incomplete in that sense. It aims instead at pointing out a number of remarks and connect them under an evolutionary perspective, in order to grasp a unifying, but not simplistic, view of the programming languages development process

    Knowledge-Intensive Processes: Characteristics, Requirements and Analysis of Contemporary Approaches

    Get PDF
    Engineering of knowledge-intensive processes (KiPs) is far from being mastered, since they are genuinely knowledge- and data-centric, and require substantial flexibility, at both design- and run-time. In this work, starting from a scientific literature analysis in the area of KiPs and from three real-world domains and application scenarios, we provide a precise characterization of KiPs. Furthermore, we devise some general requirements related to KiPs management and execution. Such requirements contribute to the definition of an evaluation framework to assess current system support for KiPs. To this end, we present a critical analysis on a number of existing process-oriented approaches by discussing their efficacy against the requirements

    User interface and function library for ground robot navigation

    Get PDF
    Master's Project (M.S.) University of Alaska Fairbanks, 2017A web application user interface and function library were developed to enable a user to program a ground robot to navigate autonomously. The user interface includes modules for generating a grid of obstacles from a map image, setting waypoints for a path through the map, and programming a robot in a code editor to navigate autonomously. The algorithm used for navigation is an A* algorithm modified with obstacle padding to accommodate the width of the robot and path smoothing to simplify the paths. The user interface and functions were designed to be simple so that users without technical backgrounds can use them, and by doing so they can engage in the development process of human-centered robots. The navigation functions were successful in finding paths in test configurations, and the performance of the algorithms was fast enough for user interactivity up to a certain limit of grid cell sizes

    AN EXAMINATION OF CONCURRENT DISCRIMINATION LEARNING WITHIN INDIVIDUALS WITH PARKINSON’S DISEASE

    Get PDF
    The main focus of this research is to further understand memory formation by examining the role of the basal ganglia in learning. Broadly, this study examines how the basal ganglia may play a role in a task that has been associated with declarative memory mechanisms, in this case the concurrent discrimination task (CDT). Specifically, we examine how performance is affected on the CDT when structures of the basal ganglia are compromised by recruiting individuals with Parkinson’s disease (PD). Past work examining the performance of individuals with PD on a CDT have had contradicting results and have proposed that participants may adopt different strategies that rely variously either on declarative or non-declarative strategy (Moody et. al., 2010). We aimed to reduce strategy differences by making changes in stimuli, increasing the number of stimuli significantly, increasing the number of learning blocks, and making all participants explicitly aware of the task structure and goals. By making the goals explicit, we predicted that we would engage a declarative mechanism in both PD and control individuals. To examine declarative memory formation we used the Remember Know task (RK). However, since used a significantly larger set size of stimuli we hypothesized that individuals with PD would perform significantly worse on the CDT than control individuals. The current study reveals that there are no significant differences in performance between individuals with PD and control participants on both the CDT and RK task. We attribute these results to design of our paradigm and stimuli which may have influenced individuals to engage in declarative strategies to perform the CDT reasonably well

    User interface and function library for ground robot navigation

    Get PDF
    Master's Project (M.S.) University of Alaska Fairbanks, 2017A web application user interface and function library were developed to enable a user to program a ground robot to navigate autonomously. The user interface includes modules for generating a grid of obstacles from a map image, setting waypoints for a path through the map, and programming a robot in a code editor to navigate autonomously. The algorithm used for navigation is an A* algorithm modified with obstacle padding to accommodate the width of the robot and path smoothing to simplify the paths. The user interface and functions were designed to be simple so that users without technical backgrounds can use them, and by doing so they can engage in the development process of human-centered robots. The navigation functions were successful in finding paths in test configurations, and the performance of the algorithms was fast enough for user interactivity up to a certain limit of grid cell sizes

    RGB-D-based Action Recognition Datasets: A Survey

    Get PDF
    Human action recognition from RGB-D (Red, Green, Blue and Depth) data has attracted increasing attention since the first work reported in 2010. Over this period, many benchmark datasets have been created to facilitate the development and evaluation of new algorithms. This raises the question of which dataset to select and how to use it in providing a fair and objective comparative evaluation against state-of-the-art methods. To address this issue, this paper provides a comprehensive review of the most commonly used action recognition related RGB-D video datasets, including 27 single-view datasets, 10 multi-view datasets, and 7 multi-person datasets. The detailed information and analysis of these datasets is a useful resource in guiding insightful selection of datasets for future research. In addition, the issues with current algorithm evaluation vis-\'{a}-vis limitations of the available datasets and evaluation protocols are also highlighted; resulting in a number of recommendations for collection of new datasets and use of evaluation protocols
    • …
    corecore