29,092 research outputs found

    Improving Candidate Quality of Probabilistic Logic Models

    Get PDF
    Many real-world phenomena exhibit both relational structure and uncertainty. Probabilistic Inductive Logic Programming (PILP) uses Inductive Logic Programming (ILP) extended with probabilistic facts to produce meaningful and interpretable models for real-world phenomena. This merge between First Order Logic (FOL) theories and uncertainty makes PILP a very adequate tool for knowledge representation and extraction. However, this flexibility is coupled with a problem (inherited from ILP) of exponential search space growth and so, often, only a subset of all possible models is explored due to limited resources. Furthermore, the probabilistic evaluation of FOL theories, coming from the underlying probabilistic logic language and its solver, is also computationally demanding. This work introduces a prediction-based pruning strategy, which can reduce the search space based on the probabilistic evaluation of models, and a safe pruning criterion, which guarantees that the optimal model is not pruned away, as well as two alternative more aggressive criteria that do not provide this guarantee. Experiments performed using three benchmarks from different areas show that prediction pruning is effective in (i) maintaining predictive accuracy for all criteria and experimental settings; (ii) reducing the execution time when using some of the more aggressive criteria, compared to using no pruning; and (iii) selecting better candidate models in limited resource settings, also when compared to using no pruning

    A synthesis of logic and bio-inspired techniques in the design of dependable systems

    Get PDF
    Much of the development of model-based design and dependability analysis in the design of dependable systems, including software intensive systems, can be attributed to the application of advances in formal logic and its application to fault forecasting and verification of systems. In parallel, work on bio-inspired technologies has shown potential for the evolutionary design of engineering systems via automated exploration of potentially large design spaces. We have not yet seen the emergence of a design paradigm that effectively combines these two techniques, schematically founded on the two pillars of formal logic and biology, from the early stages of, and throughout, the design lifecycle. Such a design paradigm would apply these techniques synergistically and systematically to enable optimal refinement of new designs which can be driven effectively by dependability requirements. The paper sketches such a model-centric paradigm for the design of dependable systems, presented in the scope of the HiP-HOPS tool and technique, that brings these technologies together to realise their combined potential benefits. The paper begins by identifying current challenges in model-based safety assessment and then overviews the use of meta-heuristics at various stages of the design lifecycle covering topics that span from allocation of dependability requirements, through dependability analysis, to multi-objective optimisation of system architectures and maintenance schedules

    A synthesis of logic and biology in the design of dependable systems

    Get PDF
    The technologies of model-based design and dependability analysis in the design of dependable systems, including software intensive systems, have advanced in recent years. Much of this development can be attributed to the application of advances in formal logic and its application to fault forecasting and verification of systems. In parallel, work on bio-inspired technologies has shown potential for the evolutionary design of engineering systems via automated exploration of potentially large design spaces. We have not yet seen the emergence of a design paradigm that combines effectively and throughout the design lifecycle these two techniques which are schematically founded on the two pillars of formal logic and biology. Such a design paradigm would apply these techniques synergistically and systematically from the early stages of design to enable optimal refinement of new designs which can be driven effectively by dependability requirements. The paper sketches such a model-centric paradigm for the design of dependable systems that brings these technologies together to realise their combined potential benefits
    corecore