32,786 research outputs found

    Robust 3D Action Recognition through Sampling Local Appearances and Global Distributions

    Full text link
    3D action recognition has broad applications in human-computer interaction and intelligent surveillance. However, recognizing similar actions remains challenging since previous literature fails to capture motion and shape cues effectively from noisy depth data. In this paper, we propose a novel two-layer Bag-of-Visual-Words (BoVW) model, which suppresses the noise disturbances and jointly encodes both motion and shape cues. First, background clutter is removed by a background modeling method that is designed for depth data. Then, motion and shape cues are jointly used to generate robust and distinctive spatial-temporal interest points (STIPs): motion-based STIPs and shape-based STIPs. In the first layer of our model, a multi-scale 3D local steering kernel (M3DLSK) descriptor is proposed to describe local appearances of cuboids around motion-based STIPs. In the second layer, a spatial-temporal vector (STV) descriptor is proposed to describe the spatial-temporal distributions of shape-based STIPs. Using the Bag-of-Visual-Words (BoVW) model, motion and shape cues are combined to form a fused action representation. Our model performs favorably compared with common STIP detection and description methods. Thorough experiments verify that our model is effective in distinguishing similar actions and robust to background clutter, partial occlusions and pepper noise

    Enhanced spatial pyramid matching using log-polar-based image subdivision and representation

    Get PDF
    This paper presents a new model for capturing spatial information for object categorization with bag-of-words (BOW). BOW models have recently become popular for the task of object recognition, owing to their good performance and simplicity. Much work has been proposed over the years to improve the BOW model, where the Spatial Pyramid Matching (SPM) technique is the most notable. We propose a new method to exploit spatial relationships between image features, based on binned log-polar grids. Our model works by partitioning the image into grids of different scales and orientations and computing histogram of local features within each grid. Experimental results show that our approach improves the results on three diverse datasets over the SPM technique
    corecore