5,464 research outputs found

    Affective Medicine: a review of Affective Computing efforts in Medical Informatics

    Get PDF
    Background: Affective computing (AC) is concerned with emotional interactions performed with and through computers. It is defined as “computing that relates to, arises from, or deliberately influences emotions”. AC enables investigation and understanding of the relation between human emotions and health as well as application of assistive and useful technologies in the medical domain. Objectives: 1) To review the general state of the art in AC and its applications in medicine, and 2) to establish synergies between the research communities of AC and medical informatics. Methods: Aspects related to the human affective state as a determinant of the human health are discussed, coupled with an illustration of significant AC research and related literature output. Moreover, affective communication channels are described and their range of application fields is explored through illustrative examples. Results: The presented conferences, European research projects and research publications illustrate the recent increase of interest in the AC area by the medical community. Tele-home healthcare, AmI, ubiquitous monitoring, e-learning and virtual communities with emotionally expressive characters for elderly or impaired people are few areas where the potential of AC has been realized and applications have emerged. Conclusions: A number of gaps can potentially be overcome through the synergy of AC and medical informatics. The application of AC technologies parallels the advancement of the existing state of the art and the introduction of new methods. The amount of work and projects reviewed in this paper witness an ambitious and optimistic synergetic future of the affective medicine field

    Evaluation of Machine Learning Algorithms for Emotions Recognition using Electrocardiogram

    Get PDF
    In recent studies, researchers have focused on using various modalities to recognize emotions for different applications. A major challenge is identifying emotions correctly with only electrocardiograms (ECG) as the modality. The main objective is to reduce costs by using single-modality ECG signals to predict human emotional states. This paper presents an emotion recognition approach utilizing the heart rate variability features obtained from ECG with feature selection techniques (exhaustive feature selection (EFS) and Pearson’s correlation) to train the classification models. Seven machine learning (ML) models: multi-layer perceptrons (MLP), Support Vector Machine (SVM), Decision Tree (DT), Gradient Boosting Decision Tree (GBDT), Logistic Regression, Adaboost and Extra Tree classifier are used to classify emotional state. Two public datasets, DREAMER and SWELL are used for evaluation. The results show that no particular ML works best for all data. For DREAMER with EFS, the best models to predict valence, arousal, and dominance are Extra Tree (74.6%), MLP and DT (74.6%), and GBDT and DT (69.8%), respectively. Extra tree with Pearson’s correlation are the best method for the ECG SWELL dataset and provide 100% accuracy. The usage of Extra tree classifier and feature selection technique contributes to the improvement of the model accuracy. Moreover, the Friedman test proved that ET is as good as other classification models for predicting human emotional state and ranks highest. Doi: 10.28991/ESJ-2023-07-01-011 Full Text: PD

    Recognition of Emotion from Speech: A Review

    Get PDF

    Evaluating the Reproducibility of Physiological Stress Detection Models

    Get PDF
    Recent advances in wearable sensor technologies have led to a variety of approaches for detecting physiological stress. Even with over a decade of research in the domain, there still exist many significant challenges, including a near-total lack of reproducibility across studies. Researchers often use some physiological sensors (custom-made or off-the-shelf), conduct a study to collect data, and build machine-learning models to detect stress. There is little effort to test the applicability of the model with similar physiological data collected from different devices, or the efficacy of the model on data collected from different studies, populations, or demographics. This paper takes the first step towards testing reproducibility and validity of methods and machine-learning models for stress detection. To this end, we analyzed data from 90 participants, from four independent controlled studies, using two different types of sensors, with different study protocols and research goals. We started by evaluating the performance of models built using data from one study and tested on data from other studies. Next, we evaluated new methods to improve the performance of stress-detection models and found that our methods led to a consistent increase in performance across all studies, irrespective of the device type, sensor type, or the type of stressor. Finally, we developed and evaluated a clustering approach to determine the stressed/not-stressed classification when applying models on data from different studies, and found that our approach performed better than selecting a threshold based on training data. This paper\u27s thorough exploration of reproducibility in a controlled environment provides a critical foundation for deeper study of such methods, and is a prerequisite for tackling reproducibility in free-living conditions

    Sensor Technologies to Manage the Physiological Traits of Chronic Pain: A Review

    Get PDF
    Non-oncologic chronic pain is a common high-morbidity impairment worldwide and acknowledged as a condition with significant incidence on quality of life. Pain intensity is largely perceived as a subjective experience, what makes challenging its objective measurement. However, the physiological traces of pain make possible its correlation with vital signs, such as heart rate variability, skin conductance, electromyogram, etc., or health performance metrics derived from daily activity monitoring or facial expressions, which can be acquired with diverse sensor technologies and multisensory approaches. As the assessment and management of pain are essential issues for a wide range of clinical disorders and treatments, this paper reviews different sensor-based approaches applied to the objective evaluation of non-oncological chronic pain. The space of available technologies and resources aimed at pain assessment represent a diversified set of alternatives that can be exploited to address the multidimensional nature of pain.Ministerio de Economía y Competitividad (Instituto de Salud Carlos III) PI15/00306Junta de Andalucía PIN-0394-2017Unión Europea "FRAIL
    corecore