293 research outputs found

    Machine Learning Prediction Approach to Enhance Congestion Control in 5G IoT Environment

    Full text link
    [EN] The 5G network is a next-generation wireless form of communication and the latest mobile technology. In practice, 5G utilizes the Internet of Things (IoT) to work in high-tra_ c networks with multiple nodes/ sensors in an attempt to transmit their packets to a destination simultaneously, which is a characteristic of IoT applications. Due to this, 5G o_ ers vast bandwidth, low delay, and extremely high data transfer speed. Thus, 5G presents opportunities and motivations for utilizing next-generation protocols, especially the stream control transmission protocol (SCTP). However, the congestion control mechanisms of the conventional SCTP negatively influence overall performance. Moreover, existing mechanisms contribute to reduce 5G and IoT performance. Thus, a new machine learning model based on a decision tree (DT) algorithm is proposed in this study to predict optimal enhancement of congestion control in the wireless sensors of 5G IoT networks. The model was implemented on a training dataset to determine the optimal parametric setting in a 5G environment. The dataset was used to train the machine learning model and enable the prediction of optimal alternatives that can enhance the performance of the congestion control approach. The DT approach can be used for other functions, especially prediction and classification. DT algorithms provide graphs that can be used by any user to understand the prediction approach. The DT C4.5 provided promising results, with more than 92% precision and recall.Najm, IA.; Hamoud, AK.; Lloret, J.; Bosch Roig, I. (2019). Machine Learning Prediction Approach to Enhance Congestion Control in 5G IoT Environment. Electronics. 8(6):1-23. https://doi.org/10.3390/electronics8060607S12386Rahem, A. A. T., Ismail, M., Najm, I. A., & Balfaqih, M. (2017). Topology sense and graph-based TSG: efficient wireless ad hoc routing protocol for WANET. Telecommunication Systems, 65(4), 739-754. doi:10.1007/s11235-016-0242-7Aalsalem, M. Y., Khan, W. Z., Gharibi, W., Khan, M. K., & Arshad, Q. (2018). Wireless Sensor Networks in oil and gas industry: Recent advances, taxonomy, requirements, and open challenges. Journal of Network and Computer Applications, 113, 87-97. doi:10.1016/j.jnca.2018.04.004Sunny, A., Panchal, S., Vidhani, N., Krishnasamy, S., Anand, S. V. R., Hegde, M., … Kumar, A. (2017). A generic controller for managing TCP transfers in IEEE 802.11 infrastructure WLANs. Journal of Network and Computer Applications, 93, 13-26. doi:10.1016/j.jnca.2017.05.006Jain, R. (1990). Congestion control in computer networks: issues and trends. IEEE Network, 4(3), 24-30. doi:10.1109/65.56532Kafi, M. A., Djenouri, D., Ben-Othman, J., & Badache, N. (2014). Congestion Control Protocols in Wireless Sensor Networks: A Survey. IEEE Communications Surveys & Tutorials, 16(3), 1369-1390. doi:10.1109/surv.2014.021714.00123Floyd, S. (2000). Congestion Control Principles. doi:10.17487/rfc2914Qazi, I. A., & Znati, T. (2011). On the design of load factor based congestion control protocols for next-generation networks. Computer Networks, 55(1), 45-60. doi:10.1016/j.comnet.2010.07.010Katabi, D., Handley, M., & Rohrs, C. (2002). Congestion control for high bandwidth-delay product networks. ACM SIGCOMM Computer Communication Review, 32(4), 89-102. doi:10.1145/964725.633035Wang, Y., Rozhnova, N., Narayanan, A., Oran, D., & Rhee, I. (2013). An improved hop-by-hop interest shaper for congestion control in named data networking. ACM SIGCOMM Computer Communication Review, 43(4), 55-60. doi:10.1145/2534169.2491233Mirza, M., Sommers, J., Barford, P., & Zhu, X. (2010). A Machine Learning Approach to TCP Throughput Prediction. IEEE/ACM Transactions on Networking, 18(4), 1026-1039. doi:10.1109/tnet.2009.2037812Taherkhani, N., & Pierre, S. (2016). Centralized and Localized Data Congestion Control Strategy for Vehicular Ad Hoc Networks Using a Machine Learning Clustering Algorithm. IEEE Transactions on Intelligent Transportation Systems, 17(11), 3275-3285. doi:10.1109/tits.2016.2546555Fadlullah, Z. M., Tang, F., Mao, B., Kato, N., Akashi, O., Inoue, T., & Mizutani, K. (2017). State-of-the-Art Deep Learning: Evolving Machine Intelligence Toward Tomorrow’s Intelligent Network Traffic Control Systems. IEEE Communications Surveys & Tutorials, 19(4), 2432-2455. doi:10.1109/comst.2017.2707140Gonzalez-Landero, F., Garcia-Magarino, I., Lacuesta, R., & Lloret, J. (2018). PriorityNet App: A Mobile Application for Establishing Priorities in the Context of 5G Ultra-Dense Networks. IEEE Access, 6, 14141-14150. doi:10.1109/access.2018.2811900Lloret, J., Parra, L., Taha, M., & Tomás, J. (2017). An architecture and protocol for smart continuous eHealth monitoring using 5G. Computer Networks, 129, 340-351. doi:10.1016/j.comnet.2017.05.018Khan, I., Zafar, M., Jan, M., Lloret, J., Basheri, M., & Singh, D. (2018). Spectral and Energy Efficient Low-Overhead Uplink and Downlink Channel Estimation for 5G Massive MIMO Systems. Entropy, 20(2), 92. doi:10.3390/e20020092Elappila, M., Chinara, S., & Parhi, D. R. (2018). Survivable Path Routing in WSN for IoT applications. Pervasive and Mobile Computing, 43, 49-63. doi:10.1016/j.pmcj.2017.11.004Singh, K., Singh, K., Son, L. H., & Aziz, A. (2018). Congestion control in wireless sensor networks by hybrid multi-objective optimization algorithm. Computer Networks, 138, 90-107. doi:10.1016/j.comnet.2018.03.023Shelke, M., Malhotra, A., & Mahalle, P. N. (2017). Congestion-Aware Opportunistic Routing Protocol in Wireless Sensor Networks. Smart Innovation, Systems and Technologies, 63-72. doi:10.1007/978-981-10-5544-7_7Godoy, P. D., Cayssials, R. L., & García Garino, C. G. (2018). Communication channel occupation and congestion in wireless sensor networks. Computers & Electrical Engineering, 72, 846-858. doi:10.1016/j.compeleceng.2017.12.049Najm, I. A., Ismail, M., Lloret, J., Ghafoor, K. Z., Zaidan, B. B., & Rahem, A. A. T. (2015). Improvement of SCTP congestion control in the LTE-A network. Journal of Network and Computer Applications, 58, 119-129. doi:10.1016/j.jnca.2015.09.003Najm, I. A., Ismail, M., & Abed, G. A. (2014). High-Performance Mobile Technology LTE-A using the Stream Control Transmission Protocol: A Systematic Review and Hands-on Analysis. Journal of Applied Sciences, 14(19), 2194-2218. doi:10.3923/jas.2014.2194.2218Katuwal, R., Suganthan, P. N., & Zhang, L. (2018). An ensemble of decision trees with random vector functional link networks for multi-class classification. Applied Soft Computing, 70, 1146-1153. doi:10.1016/j.asoc.2017.09.020Gómez, S. E., Martínez, B. C., Sánchez-Esguevillas, A. J., & Hernández Callejo, L. (2017). Ensemble network traffic classification: Algorithm comparison and novel ensemble scheme proposal. Computer Networks, 127, 68-80. doi:10.1016/j.comnet.2017.07.018Hasan, M., Hossain, E., & Niyato, D. (2013). Random access for machine-to-machine communication in LTE-advanced networks: issues and approaches. IEEE Communications Magazine, 51(6), 86-93. doi:10.1109/mcom.2013.6525600Liang, D., Zhang, Z., & Peng, M. (2015). Access Point Reselection and Adaptive Cluster Splitting-Based Indoor Localization in Wireless Local Area Networks. IEEE Internet of Things Journal, 2(6), 573-585. doi:10.1109/jiot.2015.2453419Park, H., Haghani, A., Samuel, S., & Knodler, M. A. (2018). Real-time prediction and avoidance of secondary crashes under unexpected traffic congestion. Accident Analysis & Prevention, 112, 39-49. doi:10.1016/j.aap.2017.11.025Shu, J., Liu, S., Liu, L., Zhan, L., & Hu, G. (2017). Research on Link Quality Estimation Mechanism for Wireless Sensor Networks Based on Support Vector Machine. Chinese Journal of Electronics, 26(2), 377-384. doi:10.1049/cje.2017.01.013Riekstin, A. C., Januário, G. C., Rodrigues, B. B., Nascimento, V. T., Carvalho, T. C. M. B., & Meirosu, C. (2016). Orchestration of energy efficiency capabilities in networks. Journal of Network and Computer Applications, 59, 74-87. doi:10.1016/j.jnca.2015.06.015Adi, E., Baig, Z., & Hingston, P. (2017). Stealthy Denial of Service (DoS) attack modelling and detection for HTTP/2 services. Journal of Network and Computer Applications, 91, 1-13. doi:10.1016/j.jnca.2017.04.015Stimpfling, T., Bélanger, N., Cherkaoui, O., Béliveau, A., Béliveau, L., & Savaria, Y. (2017). Extensions to decision-tree based packet classification algorithms to address new classification paradigms. Computer Networks, 122, 83-95. doi:10.1016/j.comnet.2017.04.021Singh, D., Nigam, S. P., Agrawal, V. P., & Kumar, M. (2016). Vehicular traffic noise prediction using soft computing approach. Journal of Environmental Management, 183, 59-66. doi:10.1016/j.jenvman.2016.08.053Xia, Y., Chen, W., Liu, X., Zhang, L., Li, X., & Xiang, Y. (2017). Adaptive Multimedia Data Forwarding for Privacy Preservation in Vehicular Ad-Hoc Networks. IEEE Transactions on Intelligent Transportation Systems, 18(10), 2629-2641. doi:10.1109/tits.2017.2653103Tariq, F., & Baig, S. (2017). Machine Learning Based Botnet Detection in Software Defined Networks. International Journal of Security and Its Applications, 11(11), 1-12. doi:10.14257/ijsia.2017.11.11.01Wu, T., Petrangeli, S., Huysegems, R., Bostoen, T., & De Turck, F. (2017). Network-based video freeze detection and prediction in HTTP adaptive streaming. Computer Communications, 99, 37-47. doi:10.1016/j.comcom.2016.08.005Pham, T. N. D., & Yeo, C. K. (2018). Adaptive trust and privacy management framework for vehicular networks. Vehicular Communications, 13, 1-12. doi:10.1016/j.vehcom.2018.04.006Mohamed, M. F., Shabayek, A. E.-R., El-Gayyar, M., & Nassar, H. (2019). An adaptive framework for real-time data reduction in AMI. Journal of King Saud University - Computer and Information Sciences, 31(3), 392-402. doi:10.1016/j.jksuci.2018.02.012Louvieris, P., Clewley, N., & Liu, X. (2013). Effects-based feature identification for network intrusion detection. Neurocomputing, 121, 265-273. doi:10.1016/j.neucom.2013.04.038Verma, P. K., Verma, R., Prakash, A., Agrawal, A., Naik, K., Tripathi, R., … Abogharaf, A. (2016). Machine-to-Machine (M2M) communications: A survey. Journal of Network and Computer Applications, 66, 83-105. doi:10.1016/j.jnca.2016.02.016Hamoud, A. K., Hashim, A. S., & Awadh, W. A. (2018). Predicting Student Performance in Higher Education Institutions Using Decision Tree Analysis. International Journal of Interactive Multimedia and Artificial Intelligence, 5(2), 26. doi:10.9781/ijimai.2018.02.004Lavanya, D. (2012). Ensemble Decision Tree Classifier For Breast Cancer Data. International Journal of Information Technology Convergence and Services, 2(1), 17-24. doi:10.5121/ijitcs.2012.2103Polat, K., & Güneş, S. (2007). Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Applied Mathematics and Computation, 187(2), 1017-1026. doi:10.1016/j.amc.2006.09.022Cayirci, E., Tezcan, H., Dogan, Y., & Coskun, V. (2006). Wireless sensor networks for underwater survelliance systems. Ad Hoc Networks, 4(4), 431-446. doi:10.1016/j.adhoc.2004.10.008Mezzavilla, M., Zhang, M., Polese, M., Ford, R., Dutta, S., Rangan, S., & Zorzi, M. (2018). End-to-End Simulation of 5G mmWave Networks. IEEE Communications Surveys & Tutorials, 20(3), 2237-2263. doi:10.1109/comst.2018.282888

    Multipath TCP in LTE networks

    Get PDF
    The results of experiments with Multipath TCP (Multipath Transmission Control Protocol) in LTE (3GPP Long Term Evolution) networks are presented. Our results show increased resiliency and availability of network Multipath TCP connection. Using multiple sub-flows over diverse network paths inside Multipath TCP session results in greatly increased bandwidth and availability. When Multipath TCP is used the behavior of this protocol is consistent in situation of adding new sub-flow or removing flow on a faulty line. Different strategies for path selection are possible with great impact on Multipath TCP session performance. Network structure consisting of few connections with similar parameters is optimal for full mesh Multipath TCP path topology. In this case the behavior of Multipath TCP predictable

    A Performance Analysis Model of TCP over Multiple Heterogeneous Paths for 5G Mobile Services

    Full text link
    Driven by the primary requirement of emerging 5G mobile services, the demand for concurrent multipath transfer (CMT) is still prominent. Yet, multipath transport protocols are not widely adopted and TCP-based CMT schemes will still be in dominant position in 5G. However, the performance of TCP flow transferred over multiple heterogeneous paths is prone to the link quality asymmetry, the extent of which was revealed to be significant by our field investigation. In this paper, we present a performance analysis model for TCP over multiple heterogeneous paths in 5G scenarios, where both bandwidth and delay asymmetry are taken into consideration. The evaluation adopting parameters from field investigation shows that the proposed model can achieve high accuracy in practical environments. Some interesting inferences can be drawn from the proposed model, such as the dominant factor that affect the performance of TCP over heterogeneous networks, and the criteria of determining the appropriate number of links to be used under different circumstances of path heterogeneity. Thus, the proposed model can provide a guidance to the design of TCP-based CMT solutions for 5G mobile services
    corecore