13,829 research outputs found

    A personalized and context-aware news offer for mobile devices

    Get PDF
    For classical domains, such as movies, recommender systems have proven their usefulness. But recommending news is more challenging due to the short life span of news content and the demand for up-to-date recommendations. This paper presents a news recommendation service with a content-based algorithm that uses features of a search engine for content processing and indexing, and a collaborative filtering algorithm for serendipity. The extension towards a context-aware algorithm is made to assess the information value of context in a mobile environment through a user study. Analyzing interaction behavior and feedback of users on three recommendation approaches shows that interaction with the content is crucial input for user modeling. Context-aware recommendations using time and device type as context data outperform traditional recommendations with an accuracy gain dependent on the contextual situation. These findings demonstrate that the user experience of news services can be improved by a personalized context-aware news offer

    A Probabilistic Approach for Item Based Collaborative Filtering

    Get PDF
    In this era, it is essential to know the customer’s necessity before they know it themselves. The Recommendation system is a sub-class of machine learning which deals with the user data to offer relevant content or product to the user based on their taste. This paper aims to develop an integrated recommendation system using statistical theory and methods. Therefore, the conventional Item Based Collaborative filtering integrated the probabilistic approach and the pseudo-probabilistic approach is proposed to update the k-NN approach. Here we synthesize the data using the Monte-Carlo approach with the binomial and the multinomial distribution. Then we examine the performance of the proposed methodologies on the synthetic data using the RMSE calculation

    Learning informative priors from heterogeneous domains to improve recommendation in cold-start user domains

    Full text link
    © 2016 ACM. In the real-world environment, users have sufficient experience in their focused domains but lack experience in other domains. Recommender systems are very helpful for recommending potentially desirable items to users in unfamiliar domains, and cross-domain collaborative filtering is therefore an important emerging research topic. However, it is inevitable that the cold-start issue will be encountered in unfamiliar domains due to the lack of feedback data. The Bayesian approach shows that priors play an important role when there are insufficient data, which implies that recommendation performance can be significantly improved in cold-start domains if informative priors can be provided. Based on this idea, we propose a Weighted Irregular Tensor Factorization (WITF) model to leverage multi-domain feedback data across all users to learn the cross-domain priors w.r.t. both users and items. The features learned from WITF serve as the informative priors on the latent factors of users and items in terms of weighted matrix factorization models. Moreover, WITF is a unified framework for dealing with both explicit feedback and implicit feedback. To prove the effectiveness of our approach, we studied three typical real-world cases in which a collection of empirical evaluations were conducted on real-world datasets to compare the performance of our model and other state-of-the-art approaches. The results show the superiority of our model over comparison models

    Comparison of group recommendation algorithms

    Get PDF
    In recent years recommender systems have become the common tool to handle the information overload problem of educational and informative web sites, content delivery systems, and online shops. Although most recommender systems make suggestions for individual users, in many circumstances the selected items (e.g., movies) are not intended for personal usage but rather for consumption in groups. This paper investigates how effective group recommendations for movies can be generated by combining the group members' preferences (as expressed by ratings) or by combining the group members' recommendations. These two grouping strategies, which convert traditional recommendation algorithms into group recommendation algorithms, are combined with five commonly used recommendation algorithms to calculate group recommendations for different group compositions. The group recommendations are not only assessed in terms of accuracy, but also in terms of other qualitative aspects that are important for users such as diversity, coverage, and serendipity. In addition, the paper discusses the influence of the size and composition of the group on the quality of the recommendations. The results show that the grouping strategy which produces the most accurate results depends on the algorithm that is used for generating individual recommendations. Therefore, the paper proposes a combination of grouping strategies which outperforms each individual strategy in terms of accuracy. Besides, the results show that the accuracy of the group recommendations increases as the similarity between members of the group increases. Also the diversity, coverage, and serendipity of the group recommendations are to a large extent dependent on the used grouping strategy and recommendation algorithm. Consequently for (commercial) group recommender systems, the grouping strategy and algorithm have to be chosen carefully in order to optimize the desired quality metrics of the group recommendations. The conclusions of this paper can be used as guidelines for this selection process

    Consumer-side Fairness in Recommender Systems: A Systematic Survey of Methods and Evaluation

    Full text link
    In the current landscape of ever-increasing levels of digitalization, we are facing major challenges pertaining to scalability. Recommender systems have become irreplaceable both for helping users navigate the increasing amounts of data and, conversely, aiding providers in marketing products to interested users. The growing awareness of discrimination in machine learning methods has recently motivated both academia and industry to research how fairness can be ensured in recommender systems. For recommender systems, such issues are well exemplified by occupation recommendation, where biases in historical data may lead to recommender systems relating one gender to lower wages or to the propagation of stereotypes. In particular, consumer-side fairness, which focuses on mitigating discrimination experienced by users of recommender systems, has seen a vast number of diverse approaches for addressing different types of discrimination. The nature of said discrimination depends on the setting and the applied fairness interpretation, of which there are many variations. This survey serves as a systematic overview and discussion of the current research on consumer-side fairness in recommender systems. To that end, a novel taxonomy based on high-level fairness interpretation is proposed and used to categorize the research and their proposed fairness evaluation metrics. Finally, we highlight some suggestions for the future direction of the field.Comment: Draft submitted to Springer (November 2022

    Disentangled Graph Social Recommendation

    Full text link
    Social recommender systems have drawn a lot of attention in many online web services, because of the incorporation of social information between users in improving recommendation results. Despite the significant progress made by existing solutions, we argue that current methods fall short in two limitations: (1) Existing social-aware recommendation models only consider collaborative similarity between items, how to incorporate item-wise semantic relatedness is less explored in current recommendation paradigms. (2) Current social recommender systems neglect the entanglement of the latent factors over heterogeneous relations (e.g., social connections, user-item interactions). Learning the disentangled representations with relation heterogeneity poses great challenge for social recommendation. In this work, we design a Disentangled Graph Neural Network (DGNN) with the integration of latent memory units, which empowers DGNN to maintain factorized representations for heterogeneous types of user and item connections. Additionally, we devise new memory-augmented message propagation and aggregation schemes under the graph neural architecture, allowing us to recursively distill semantic relatedness into the representations of users and items in a fully automatic manner. Extensive experiments on three benchmark datasets verify the effectiveness of our model by achieving great improvement over state-of-the-art recommendation techniques. The source code is publicly available at: https://github.com/HKUDS/DGNN.Comment: Accepted by IEEE ICDE 202
    • …
    corecore