1,732 research outputs found

    Enhancing Self-Security in Wireless Adhoc Networks Using Multi-hop Authentication

    Get PDF
    Department of Computer Scienc

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: vehicular ad-hoc networks, security and caching, TCP in ad-hoc networks and emerging applications. It is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Collaborative Caching for efficient and Robust Certificate Authority Services in Mobile Ad-Hoc Networks

    Get PDF
    Security in Mobile Ad-Hoc Network (MANET) is getting a lot of attention due to its inherent vulnerability to a wide spectrum of attacks. Threats exist in every layer of MANET stack, and different solutions have been adapted for each security problem. Additionally, availability is an important criterion in most MANET solutions, but many security frameworks did not consider it. Public-Key Infrastructure (PKI) is no exception, and its deployment in MANET needs major design and implementation modifications that can fit constraints unique to this environment. Our focus in this dissertation is to adapt and increase the availability of Certificate Authority (CA) services, as a major PKI entity, in MANET. Several attempts have been proposed to deal with the problem of deploying CA in MANET to provide a generic public-key framework, but each either ends up sacrificing system security or availability. Here, the main goal of our work is to provide a solution that addresses performance and security issues of providing MANET-based PKI. Particularly, we would like to maintain the availability of the services provided by CA while keeping the network\u27s packet overhead as low as possible. In this dissertation, we present a MANET-based framework suitable for exchanging public-key certificates by collaborative caching between MANET clients. We show that our system can meet the challenges of providing robust and secure CA services in MANET. Augmented by simulation results, we demonstrate quantitatively the feasibility of our work as we were able to reduce network overhead associated with threshold based CA queries up to 92% as compared to related work in addition to having a very short response time. The dependency on CA servers has been reduced, and the system was able to tolerate as much as two-third inoperative CA servers without noticeable decrease in the service performance

    A comprehensive survey of V2X cybersecurity mechanisms and future research paths

    Get PDF
    Recent advancements in vehicle-to-everything (V2X) communication have notably improved existing transport systems by enabling increased connectivity and driving autonomy levels. The remarkable benefits of V2X connectivity come inadvertently with challenges which involve security vulnerabilities and breaches. Addressing security concerns is essential for seamless and safe operation of mission-critical V2X use cases. This paper surveys current literature on V2X security and provides a systematic and comprehensive review of the most relevant security enhancements to date. An in-depth classification of V2X attacks is first performed according to key security and privacy requirements. Our methodology resumes with a taxonomy of security mechanisms based on their proactive/reactive defensive approach, which helps identify strengths and limitations of state-of-the-art countermeasures for V2X attacks. In addition, this paper delves into the potential of emerging security approaches leveraging artificial intelligence tools to meet security objectives. Promising data-driven solutions tailored to tackle security, privacy and trust issues are thoroughly discussed along with new threat vectors introduced inevitably by these enablers. The lessons learned from the detailed review of existing works are also compiled and highlighted. We conclude this survey with a structured synthesis of open challenges and future research directions to foster contributions in this prominent field.This work is supported by the H2020-INSPIRE-5Gplus project (under Grant agreement No. 871808), the ”Ministerio de Asuntos Económicos y Transformacion Digital” and the European Union-NextGenerationEU in the frameworks of the ”Plan de Recuperación, Transformación y Resiliencia” and of the ”Mecanismo de Recuperación y Resiliencia” under references TSI-063000-2021-39/40/41, and the CHIST-ERA-17-BDSI-003 FIREMAN project funded by the Spanish National Foundation (Grant PCI2019-103780).Peer ReviewedPostprint (published version

    Enhancing Firefly Algorithm for better Network lifetime optimization in Healthcare Monitoring System - Cloud Computing Environment

    Get PDF
    The Internet of Things (IoT), a new phenomenon in the technology industry, is mostly responsible for updating healthcare systems by gathering and analyzing patient physiological data through wearable technology and sensor networks. It is difficult to process so much data from so many IoT devices in such a short amount of time. Maximizing the network lifetime is one of the most significant tasks faced by any wireless sensor network. The objective of the study described in this paper was to apply swarm intelligence metaheuristics to optimize the cluster head selection. In order to extend the lifetime of the WSN, we have implemented both the original firefly algorithm (FA) and the proposal for the revised FA. Additionally, According to the proposed study, sensitive data is created and stored by IoT devices, which are vulnerable to attack, and data processing is handled by the edge server. Standard security algorithms like AES, DES, and RSA make it difficult for the majority of IoT devices to function successfully because of their restricted resources. For real-time processing, visualization, and diagnosis, the real-time data is subsequently sent to a distant cloud server

    Secure Key Management in the Cloud

    Get PDF
    We consider applications involving a number of servers in the cloud that go through a sequence of online periods where the servers communicate, separated by offline periods where the servers are idle. During the offline periods, we assume that the servers need to securely store sensitive information such as cryptographic keys. Applications like this include many cases where secure multiparty computation is outsourced to the cloud, and in particular a number of online auctions and benchmark computations with confidential inputs. We consider fully autonomous servers that switch between online and offline periods without communicating with anyone from outside the cloud, and semi-autonomous servers that need a limited kind of assistance from outside the cloud when doing the transition. We study the levels of security one can - and cannot - obtain in this model, propose light-weight protocols achieving maximal security, and report on their practical performance

    Mobile Ad hoc Networking: Imperatives and Challenges

    Get PDF
    Mobile ad hoc networks (MANETs) represent complex distributed systems that comprise wireless mobile nodes that can freely and dynamically self-organize into arbitrary and temporary, "ad-hoc" network topologies, allowing people and devices to seamlessly internetwork in areas with no pre-existing communication infrastructure, e.g., disaster recovery environments. Ad hoc networking concept is not a new one, having been around in various forms for over 20 years. Traditionally, tactical networks have been the only communication networking application that followed the ad hoc paradigm. Recently, the introduction of new technologies such as the Bluetooth, IEEE 802.11 and Hyperlan are helping enable eventual commercial MANET deployments outside the military domain. These recent evolutions have been generating a renewed and growing interest in the research and development of MANET. This paper attempts to provide a comprehensive overview of this dynamic field. It first explains the important role that mobile ad hoc networks play in the evolution of future wireless technologies. Then, it reviews the latest research activities in these areas, including a summary of MANET\u27s characteristics, capabilities, applications, and design constraints. The paper concludes by presenting a set of challenges and problems requiring further research in the future
    corecore