105 research outputs found

    Discrete Distributions in the Tardos Scheme, Revisited

    Full text link
    The Tardos scheme is a well-known traitor tracing scheme to protect copyrighted content against collusion attacks. The original scheme contained some suboptimal design choices, such as the score function and the distribution function used for generating the biases. Skoric et al. previously showed that a symbol-symmetric score function leads to shorter codes, while Nuida et al. obtained the optimal distribution functions for arbitrary coalition sizes. Later, Nuida et al. showed that combining these results leads to even shorter codes when the coalition size is small. We extend their analysis to the case of large coalitions and prove that these optimal distributions converge to the arcsine distribution, thus showing that the arcsine distribution is asymptotically optimal in the symmetric Tardos scheme. We also present a new, practical alternative to the discrete distributions of Nuida et al. and give a comparison of the estimated lengths of the fingerprinting codes for each of these distributions.Comment: 5 pages, 2 figure

    Dynamic Traitor Tracing for Arbitrary Alphabets: Divide and Conquer

    Get PDF
    We give a generic divide-and-conquer approach for constructing collusion-resistant probabilistic dynamic traitor tracing schemes with larger alphabets from schemes with smaller alphabets. This construction offers a linear tradeoff between the alphabet size and the codelength. In particular, we show that applying our results to the binary dynamic Tardos scheme of Laarhoven et al. leads to schemes that are shorter by a factor equal to half the alphabet size. Asymptotically, these codelengths correspond, up to a constant factor, to the fingerprinting capacity for static probabilistic schemes. This gives a hierarchy of probabilistic dynamic traitor tracing schemes, and bridges the gap between the low bandwidth, high codelength scheme of Laarhoven et al. and the high bandwidth, low codelength scheme of Fiat and Tassa.Comment: 6 pages, 1 figur

    Optimal sequential fingerprinting: Wald vs. Tardos

    Full text link
    We study sequential collusion-resistant fingerprinting, where the fingerprinting code is generated in advance but accusations may be made between rounds, and show that in this setting both the dynamic Tardos scheme and schemes building upon Wald's sequential probability ratio test (SPRT) are asymptotically optimal. We further compare these two approaches to sequential fingerprinting, highlighting differences between the two schemes. Based on these differences, we argue that Wald's scheme should in general be preferred over the dynamic Tardos scheme, even though both schemes have their merits. As a side result, we derive an optimal sequential group testing method for the classical model, which can easily be generalized to different group testing models.Comment: 12 pages, 10 figure

    Capacities and Capacity-Achieving Decoders for Various Fingerprinting Games

    Full text link
    Combining an information-theoretic approach to fingerprinting with a more constructive, statistical approach, we derive new results on the fingerprinting capacities for various informed settings, as well as new log-likelihood decoders with provable code lengths that asymptotically match these capacities. The simple decoder built against the interleaving attack is further shown to achieve the simple capacity for unknown attacks, and is argued to be an improved version of the recently proposed decoder of Oosterwijk et al. With this new universal decoder, cut-offs on the bias distribution function can finally be dismissed. Besides the application of these results to fingerprinting, a direct consequence of our results to group testing is that (i) a simple decoder asymptotically requires a factor 1.44 more tests to find defectives than a joint decoder, and (ii) the simple decoder presented in this paper provably achieves this bound.Comment: 13 pages, 2 figure

    Asymptotics of Fingerprinting and Group Testing: Capacity-Achieving Log-Likelihood Decoders

    Get PDF
    We study the large-coalition asymptotics of fingerprinting and group testing, and derive explicit decoders that provably achieve capacity for many of the considered models. We do this both for simple decoders (fast but suboptimal) and for joint decoders (slow but optimal), and both for informed and uninformed settings. For fingerprinting, we show that if the pirate strategy is known, the Neyman-Pearson-based log-likelihood decoders provably achieve capacity, regardless of the strategy. The decoder built against the interleaving attack is further shown to be a universal decoder, able to deal with arbitrary attacks and achieving the uninformed capacity. This universal decoder is shown to be closely related to the Lagrange-optimized decoder of Oosterwijk et al. and the empirical mutual information decoder of Moulin. Joint decoders are also proposed, and we conjecture that these also achieve the corresponding joint capacities. For group testing, the simple decoder for the classical model is shown to be more efficient than the one of Chan et al. and it provably achieves the simple group testing capacity. For generalizations of this model such as noisy group testing, the resulting simple decoders also achieve the corresponding simple capacities.Comment: 14 pages, 2 figure

    Optimal symmetric Tardos traitor tracing schemes

    Get PDF
    For the Tardos traitor tracing scheme, we show that by combining the symbol-symmetric accusation function of Skoric et al. with the improved analysis of Blayer and Tassa we get further improvements. Our construction gives codes that are up to 4 times shorter than Blayer and Tassa's, and up to 2 times shorter than the codes from Skoric et al. Asymptotically, we achieve the theoretical optimal codelength for Tardos' distribution function and the symmetric score function. For large coalitions, our codelengths are asymptotically about 4.93% of Tardos' original codelengths, which also improves upon results from Nuida et al.Comment: 16 pages, 1 figur

    Efficient Probabilistic Group Testing Based on Traitor Tracing

    Get PDF
    Inspired by recent results from collusion-resistant traitor tracing, we provide a framework for constructing efficient probabilistic group testing schemes. In the traditional group testing model, our scheme asymptotically requires T ~ 2 K ln N tests to find (with high probability) the correct set of K defectives out of N items. The framework is also applied to several noisy group testing and threshold group testing models, often leading to improvements over previously known results, but we emphasize that this framework can be applied to other variants of the classical model as well, both in adaptive and in non-adaptive settings.Comment: 8 pages, 3 figures, 1 tabl

    On the Saddle-point Solution and the Large-Coalition Asymptotics of Fingerprinting Games

    Full text link
    We study a fingerprinting game in which the number of colluders and the collusion channel are unknown. The encoder embeds fingerprints into a host sequence and provides the decoder with the capability to trace back pirated copies to the colluders. Fingerprinting capacity has recently been derived as the limit value of a sequence of maximin games with mutual information as their payoff functions. However, these games generally do not admit saddle-point solutions and are very hard to solve numerically. Here under the so-called Boneh-Shaw marking assumption, we reformulate the capacity as the value of a single two-person zero-sum game, and show that it is achieved by a saddle-point solution. If the maximal coalition size is k and the fingerprinting alphabet is binary, we show that capacity decays quadratically with k. Furthermore, we prove rigorously that the asymptotic capacity is 1/(k^2 2ln2) and we confirm our earlier conjecture that Tardos' choice of the arcsine distribution asymptotically maximizes the mutual information payoff function while the interleaving attack minimizes it. Along with the asymptotic behavior, numerical solutions to the game for small k are also presented.Comment: submitted to IEEE Trans. on Information Forensics and Securit

    Asymptotically false-positive-maximizing attack on non-binary Tardos codes

    Full text link
    We use a method recently introduced by Simone and Skoric to study accusation probabilities for non-binary Tardos fingerprinting codes. We generalize the pre-computation steps in this approach to include a broad class of collusion attack strategies. We analytically derive properties of a special attack that asymptotically maximizes false accusation probabilities. We present numerical results on sufficient code lengths for this attack, and explain the abrupt transitions that occur in these results

    Dynamic Traitor Tracing Schemes, Revisited

    Get PDF
    We revisit recent results from the area of collusion-resistant traitor tracing, and show how they can be combined and improved to obtain more efficient dynamic traitor tracing schemes. In particular, we show how the dynamic Tardos scheme of Laarhoven et al. can be combined with the optimized score functions of Oosterwijk et al. to trace coalitions much faster. If the attack strategy is known, in many cases the order of the code length goes down from quadratic to linear in the number of colluders, while if the attack is not known, we show how the interleaving defense may be used to catch all colluders about twice as fast as in the dynamic Tardos scheme. Some of these results also apply to the static traitor tracing setting where the attack strategy is known in advance, and to group testing.Comment: 7 pages, 1 figure (6 subfigures), 1 tabl
    • …
    corecore