3,361 research outputs found

    A Decoding Algorithm for LDPC Codes Over Erasure Channels with Sporadic Errors

    Get PDF
    none4An efficient decoding algorithm for low-density parity-check (LDPC) codes on erasure channels with sporadic errors (i.e., binary error-and-erasure channels with error probability much smaller than the erasure probability) is proposed and its performance analyzed. A general single-error multiple-erasure (SEME) decoding algorithm is first described, which may be in principle used with any binary linear block code. The algorithm is optimum whenever the non-erased part of the received word is affected by at most one error, and is capable of performing error detection of multiple errors. An upper bound on the average block error probability under SEME decoding is derived for the linear random code ensemble. The bound is tight and easy to implement. The algorithm is then adapted to LDPC codes, resulting in a simple modification to a previously proposed efficient maximum likelihood LDPC erasure decoder which exploits the parity-check matrix sparseness. Numerical results reveal that LDPC codes under efficient SEME decoding can closely approach the average performance of random codes.noneG. Liva; E. Paolini; B. Matuz; M. ChianiG. Liva; E. Paolini; B. Matuz; M. Chian

    Reed-Muller codes for random erasures and errors

    Full text link
    This paper studies the parameters for which Reed-Muller (RM) codes over GF(2)GF(2) can correct random erasures and random errors with high probability, and in particular when can they achieve capacity for these two classical channels. Necessarily, the paper also studies properties of evaluations of multi-variate GF(2)GF(2) polynomials on random sets of inputs. For erasures, we prove that RM codes achieve capacity both for very high rate and very low rate regimes. For errors, we prove that RM codes achieve capacity for very low rate regimes, and for very high rates, we show that they can uniquely decode at about square root of the number of errors at capacity. The proofs of these four results are based on different techniques, which we find interesting in their own right. In particular, we study the following questions about E(m,r)E(m,r), the matrix whose rows are truth tables of all monomials of degree r\leq r in mm variables. What is the most (resp. least) number of random columns in E(m,r)E(m,r) that define a submatrix having full column rank (resp. full row rank) with high probability? We obtain tight bounds for very small (resp. very large) degrees rr, which we use to show that RM codes achieve capacity for erasures in these regimes. Our decoding from random errors follows from the following novel reduction. For every linear code CC of sufficiently high rate we construct a new code CC', also of very high rate, such that for every subset SS of coordinates, if CC can recover from erasures in SS, then CC' can recover from errors in SS. Specializing this to RM codes and using our results for erasures imply our result on unique decoding of RM codes at high rate. Finally, two of our capacity achieving results require tight bounds on the weight distribution of RM codes. We obtain such bounds extending the recent \cite{KLP} bounds from constant degree to linear degree polynomials

    Combinatorial Alphabet-Dependent Bounds for Locally Recoverable Codes

    Full text link
    Locally recoverable (LRC) codes have recently been a focus point of research in coding theory due to their theoretical appeal and applications in distributed storage systems. In an LRC code, any erased symbol of a codeword can be recovered by accessing only a small number of other symbols. For LRC codes over a small alphabet (such as binary), the optimal rate-distance trade-off is unknown. We present several new combinatorial bounds on LRC codes including the locality-aware sphere packing and Plotkin bounds. We also develop an approach to linear programming (LP) bounds on LRC codes. The resulting LP bound gives better estimates in examples than the other upper bounds known in the literature. Further, we provide the tightest known upper bound on the rate of linear LRC codes with a given relative distance, an improvement over the previous best known bounds.Comment: To appear in IEEE Transactions on Information Theor
    corecore