6 research outputs found

    Unified Framework for the Propagation of Continuous-Time Enclosures for Parametric Nonlinear ODEs

    Get PDF
    Abstract This paper presents a framework for constructing and analyzing enclosures of the reachable set of nonlinear ordinary differential equations (ODEs) using continuous-time setpropagation methods. The focus is on convex enclosures that can be characterized in terms of their support functions. A generalized differential inequality is introduced, whose solutions describe such support functions for a convex enclosure of the reachable set under mild conditions. It is shown that existing continuous-time bounding methods that are based on standard differential inequalities or ellipsoidal set propagation techniques can be recovered as special cases of this generalized differential inequality. A way of extending this approach for the construction of nonconvex enclosures is also described, which relies on Taylor models with convex remainder bounds. This unifying framework provides a means for analyzing the convergence properties of continuous-time enclosure methods. The enclosure techniques and convergence results are illustrated with numerical case studies throughout the paper, including a six-state dynamic model of anaerobic digestion

    Advances in Reachability Analysis for Nonlinear Dynamic Systems

    Get PDF
    Systems of nonlinear ordinary differential equations (ODEs) are used to model an incredible variety of dynamic phenomena in chemical, oil and gas, and pharmaceutical industries. In reality, such models are nearly always subject to significant uncertainties in their initial conditions, parameters, and inputs. This dissertation provides new theoretical and numerical techniques for rigorously enclosing the set of solutions reachable by a given systems of nonlinear ODEs subject to uncertain initial conditions, parameters, and time-varying inputs. Such sets are often referred to as reachable sets, and methods for enclosing them are critical for designing systems that are passively robust to uncertainty, as well as for optimal real-time decision-making. Such enclosure methods are used extensively for uncertainty propagation, robust control, system verification, and optimization of dynamic systems arising in a wide variety of applications. Unfortunately, existing methods for computing such enclosures often provide an unworkable compromise between cost and accuracy. For example, interval methods based on differential inequalities (DI) can produce bounds very efficiently but are often too conservative to be of any practical use. In contrast, methods based on more complex sets can achieve sharp bounds, but are far too expensive for real-time decision-making and scale poorly with problem size. Recently, it has been shown that bounds computed via differential inequalities can often be made much less conservative while maintaining high efficiency by exploiting redundant model equations that are known to hold for all trajectories of interest (e.g., linear relationships among chemical species in a reaction network that hold due to the conservation of mass or elements). These linear relationships are implied by the governing ODEs, and can thus be considered redundant. However, these advances are only applicable to a limited class of system in which pre-existing linear redundant model equations are available. Moreover, the theoretical results underlying these algorithms do not apply to redundant equations that depend on time-varying inputs and rely on assumptions that prove to be very restrictive for nonlinear redundant equations, etc. This dissertation continues a line of research that has recently achieved very promising bounding results using methods based on differential inequalities. In brief, the major contributions can be divided into three categories: (1) In regard to algorithms, this dissertation significantly improves existing algorithms that exploit linear redundant model equations to achieve more accurate and efficient enclosures. It also develops new fast and accurate bounding algorithms that can exploit nonlinear redundant model equations. (2) Considering theoretical contributions, it develops a novel theoretical framework for the introduction of redundant model equations into arbitrary dynamic models to effectively reduce conservatism. The newly developed theories have more generality in terms of application. For example, complex nonlinear constraints that involve states, time derivatives of the system states, and time- varying inputs are allowed to be exploited. (3) A new differential inequalities method called Mean Value Differential Inequalities (MVDI) is developed that can automatically introduce redundant model equations for arbitrary dynamic systems and has a second-order convergence rate reported the first time among DI-based methods

    Global optimisation for dynamic systems using novel overestimation reduction techniques

    Get PDF
    The optimisation of dynamic systems is of high relevance in chemical engineering as many practical systems can be described by ordinary differential equations (ODEs) or differential algebraic equations (DAEs). The current techniques for solving these problems rigorously to global optimality rely mainly on sequential approaches in which a branch and bound framework is used for solving the global optimisation part of the problem and a verified simulator (in which rounding errors are accounted for in the computations) is used for solving the dynamic constraints. The verified simulation part is the main bottleneck since tight bounds are difficult to obtain for high dimensional dynamic systems. Additionally, uncertainty in the form of, for example, intervals is introduced in the parameters of the dynamic constraints which are also the decision variables of the optimisation problem. Nevertheless, in the verified simulation the accumulation of trajectories that do not belong to the exact solution (overestimation) makes the state bounds overconservative and in the worst case they blow up and tend towards ±∞. In this thesis, methods for verified simulation in global optimisation for dynamic systems were investigated. A novel algorithm that uses an interval Taylor series (ITS) method with enhanced overestimation reduction capabilities was developed. These enhancements for the reduction of the overestimation rely on interval contractors (Krawczyk, Newton, ForwardBackward) and model reformulation based on pattern substitution and input scaling. The method with interval contractors was also extended to Taylor Models (TM) for comparison purposes. The two algorithms were tested on several case studies to demonstrate the effectiveness of the methods. The case studies have a different number of state variables and system parameters and they use uncertain amounts in some of the system parameters and initial conditions. Both of the methods were also used in a sequential approach to address the global optimisation for dynamic systems problem subject to uncertainty. The simulation results demonstrated that the ITS method with overestimation reduction techniques provided tighter state bounds with less computational expense than the traditional method. In the case of the forward-backward contractor additional constraints can be introduced that can potentially contribute significantly to the reduction of the overestimation. Similarly, the novel TM method with enhanced overestimation reduction capabilities provided tighter bounds than the TM method alone. On the other hand, the optimisation results showed that the global optimisation algorithm with the novel ITS method with overestimation reduction techniques converged faster to a rigorous solution due to the improved state bounds
    corecore