15,128 research outputs found

    Single camera pose estimation using Bayesian filtering and Kinect motion priors

    Full text link
    Traditional approaches to upper body pose estimation using monocular vision rely on complex body models and a large variety of geometric constraints. We argue that this is not ideal and somewhat inelegant as it results in large processing burdens, and instead attempt to incorporate these constraints through priors obtained directly from training data. A prior distribution covering the probability of a human pose occurring is used to incorporate likely human poses. This distribution is obtained offline, by fitting a Gaussian mixture model to a large dataset of recorded human body poses, tracked using a Kinect sensor. We combine this prior information with a random walk transition model to obtain an upper body model, suitable for use within a recursive Bayesian filtering framework. Our model can be viewed as a mixture of discrete Ornstein-Uhlenbeck processes, in that states behave as random walks, but drift towards a set of typically observed poses. This model is combined with measurements of the human head and hand positions, using recursive Bayesian estimation to incorporate temporal information. Measurements are obtained using face detection and a simple skin colour hand detector, trained using the detected face. The suggested model is designed with analytical tractability in mind and we show that the pose tracking can be Rao-Blackwellised using the mixture Kalman filter, allowing for computational efficiency while still incorporating bio-mechanical properties of the upper body. In addition, the use of the proposed upper body model allows reliable three-dimensional pose estimates to be obtained indirectly for a number of joints that are often difficult to detect using traditional object recognition strategies. Comparisons with Kinect sensor results and the state of the art in 2D pose estimation highlight the efficacy of the proposed approach.Comment: 25 pages, Technical report, related to Burke and Lasenby, AMDO 2014 conference paper. Code sample: https://github.com/mgb45/SignerBodyPose Video: https://www.youtube.com/watch?v=dJMTSo7-uF

    PPF - A Parallel Particle Filtering Library

    Full text link
    We present the parallel particle filtering (PPF) software library, which enables hybrid shared-memory/distributed-memory parallelization of particle filtering (PF) algorithms combining the Message Passing Interface (MPI) with multithreading for multi-level parallelism. The library is implemented in Java and relies on OpenMPI's Java bindings for inter-process communication. It includes dynamic load balancing, multi-thread balancing, and several algorithmic improvements for PF, such as input-space domain decomposition. The PPF library hides the difficulties of efficient parallel programming of PF algorithms and provides application developers with the necessary tools for parallel implementation of PF methods. We demonstrate the capabilities of the PPF library using two distributed PF algorithms in two scenarios with different numbers of particles. The PPF library runs a 38 million particle problem, corresponding to more than 1.86 GB of particle data, on 192 cores with 67% parallel efficiency. To the best of our knowledge, the PPF library is the first open-source software that offers a parallel framework for PF applications.Comment: 8 pages, 8 figures; will appear in the proceedings of the IET Data Fusion & Target Tracking Conference 201

    A New Reduction Scheme for Gaussian Sum Filters

    Full text link
    In many signal processing applications it is required to estimate the unobservable state of a dynamic system from its noisy measurements. For linear dynamic systems with Gaussian Mixture (GM) noise distributions, Gaussian Sum Filters (GSF) provide the MMSE state estimate by tracking the GM posterior. However, since the number of the clusters of the GM posterior grows exponentially over time, suitable reduction schemes need to be used to maintain the size of the bank in GSF. In this work we propose a low computational complexity reduction scheme which uses an initial state estimation to find the active noise clusters and removes all the others. Since the performance of our proposed method relies on the accuracy of the initial state estimation, we also propose five methods for finding this estimation. We provide simulation results showing that with suitable choice of the initial state estimation (based on the shape of the noise models), our proposed reduction scheme provides better state estimations both in terms of accuracy and precision when compared with other reduction methods

    Challenges with bearings only tracking for missile guidance systems and how to cope with them.

    Get PDF
    This paper addresses the problem of closed loop missile guidance using bearings and target angular extent information. Comparison is performed between particle filtering methods and derivative free methods. The extent information characterizes target size and we show how this can help compensate for observability problems. We demonstrate that exploiting angular extent information improves filter estimation accuracy. The performance of the filters has been studied over a testing scenario with a static target, with respect to accuracy, sensitivity to perturbations in initial conditions and in different seeker modes (active, passive and semi-active)

    Semi-independent resampling for particle filtering

    Full text link
    Among Sequential Monte Carlo (SMC) methods,Sampling Importance Resampling (SIR) algorithms are based on Importance Sampling (IS) and on some resampling-based)rejuvenation algorithm which aims at fighting against weight degeneracy. However %whichever the resampling technique used this mechanism tends to be insufficient when applied to informative or high-dimensional models. In this paper we revisit the rejuvenation mechanism and propose a class of parameterized SIR-based solutions which enable to adjust the tradeoff between computational cost and statistical performances
    • …
    corecore