1,051 research outputs found

    Improved Lower Bounds for Online Hypercube Packing

    Get PDF
    Packing a given sequence of items into as few bins as possible in an online fashion is a widely studied problem. We improve lower bounds for packing hypercubes into bins in two or more dimensions, once for general algorithms (in two dimensions) and once for an important subclass, so-called Harmonic-type algorithms (in two or more dimensions). Lastly, we show that two adaptions of the ideas from the best known one-dimensional packing algorithm to square packing also do not help to break the barrier of 2

    A tight lower bound for an online hypercube packing problem and bounds for prices of anarchy of a related game

    Full text link
    We prove a tight lower bound on the asymptotic performance ratio ρ\rho of the bounded space online dd-hypercube bin packing problem, solving an open question raised in 2005. In the classic dd-hypercube bin packing problem, we are given a sequence of dd-dimensional hypercubes and we have an unlimited number of bins, each of which is a dd-dimensional unit hypercube. The goal is to pack (orthogonally) the given hypercubes into the minimum possible number of bins, in such a way that no two hypercubes in the same bin overlap. The bounded space online dd-hypercube bin packing problem is a variant of the dd-hypercube bin packing problem, in which the hypercubes arrive online and each one must be packed in an open bin without the knowledge of the next hypercubes. Moreover, at each moment, only a constant number of open bins are allowed (whenever a new bin is used, it is considered open, and it remains so until it is considered closed, in which case, it is not allowed to accept new hypercubes). Epstein and van Stee [SIAM J. Comput. 35 (2005), no. 2, 431-448] showed that ρ\rho is Ω(logd)\Omega(\log d) and O(d/logd)O(d/\log d), and conjectured that it is Θ(logd)\Theta(\log d). We show that ρ\rho is in fact Θ(d/logd)\Theta(d/\log d). To obtain this result, we elaborate on some ideas presented by those authors, and go one step further showing how to obtain better (offline) packings of certain special instances for which one knows how many bins any bounded space algorithm has to use. Our main contribution establishes the existence of such packings, for large enough dd, using probabilistic arguments. Such packings also lead to lower bounds for the prices of anarchy of the selfish dd-hypercube bin packing game. We present a lower bound of Ω(d/logd)\Omega(d/\log d) for the pure price of anarchy of this game, and we also give a lower bound of Ω(logd)\Omega(\log d) for its strong price of anarchy

    Coloring translates and homothets of a convex body

    Full text link
    We obtain improved upper bounds and new lower bounds on the chromatic number as a linear function of the clique number, for the intersection graphs (and their complements) of finite families of translates and homothets of a convex body in \RR^n.Comment: 11 pages, 2 figure

    Rotated sphere packing designs

    Full text link
    We propose a new class of space-filling designs called rotated sphere packing designs for computer experiments. The approach starts from the asymptotically optimal positioning of identical balls that covers the unit cube. Properly scaled, rotated, translated and extracted, such designs are excellent in maximin distance criterion, low in discrepancy, good in projective uniformity and thus useful in both prediction and numerical integration purposes. We provide a fast algorithm to construct such designs for any numbers of dimensions and points with R codes available online. Theoretical and numerical results are also provided

    Online algorithms for 1-space bounded multi dimensional bin packing and hypercube packing

    Get PDF
    In this paper, we study 1-space bounded multi-dimensional bin packing and hypercube packing. A sequence of items arrive over time, each item is a d-dimensional hyperbox (in bin packing) or hypercube (in hypercube packing), and the length of each side is no more than 1. These items must be packed without overlapping into d-dimensional hypercubes with unit length on each side. In d-dimensional space, any two dimensions i and j define a space P ij. When an item arrives, we must pack it into an active bin immediately without any knowledge of the future items, and 90 {ring operator}-rotation on any plane P ij is allowed. The objective is to minimize the total number of bins used for packing all these items in the sequence. In the 1-space bounded variant, there is only one active bin for packing the current item. If the active bin does not have enough space to pack the item, it must be closed and a new active bin is opened. For d-dimensional bin packing, an online algorithm with competitive ratio 4 d is given. Moreover, we consider d-dimensional hypercube packing, and give a 2 d+1-competitive algorithm. These two results are the first study on 1-space bounded multi dimensional bin packing and hypercube packing. © 2012 The Author(s).published_or_final_versionSpringer Open Choice, 28 May 201
    corecore