5 research outputs found

    An Efficient Light-weight LSB steganography with Deep learning Steganalysis

    Full text link
    Active research is going on to securely transmit a secret message or so-called steganography by using data-hiding techniques in digital images. After assessing the state-of-the-art research work, we found, most of the existing solutions are not promising and are ineffective against machine learning-based steganalysis. In this paper, a lightweight steganography scheme is presented through graphical key embedding and obfuscation of data through encryption. By keeping a mindset of industrial applicability, to show the effectiveness of the proposed scheme, we emphasized mainly deep learning-based steganalysis. The proposed steganography algorithm containing two schemes withstands not only statistical pattern recognizers but also machine learning steganalysis through feature extraction using a well-known pre-trained deep learning network Xception. We provided a detailed protocol of the algorithm for different scenarios and implementation details. Furthermore, different performance metrics are also evaluated with statistical and machine learning performance analysis. The results were quite impressive with respect to the state of the arts. We received 2.55% accuracy through statistical steganalysis and machine learning steganalysis gave maximum of 49.93~50% correctly classified instances in good condition.Comment: Accepted pape

    Introducing a New Evaluation Criteria for EMD-Base Steganography Method

    Full text link
    Steganography is a technique to hide the presence of secret communication. When one of the communication elements is under the influence of the enemy, it can be used. The main measure to evaluate steganography methods in a certain capacity is security. Therefore, in a certain capacity, reducing the amount of changes in the cover media, creates a higher embedding efficiency and thus more security of an steganography method. Mostly, security and capacity are in conflict with each other, the increase of one lead to the decrease of the other. The presence of a single criterion that represents security and capacity at the same time be useful in comparing steganography methods. EMD and the relevant methods are a group of steganography techniques, which optimize the amount of changes resulting from embedding (security). The present paper is aimed to provide an evaluation criterion for this group of steganography methods. In this study, after a general review and comparison of EMD-based steganography techniques, we present a method to compare them exactly, from the perspective of embedding efficiency. First, a formula is presented to determine the value of embedding efficiency, which indicates the effect of one or more changes on one or more pixels. The results demonstrate that the proposed embedding efficiency formula shows the performance of the methods better when several changes are made on a pixel compared to the existing criteria. In the second step, we have obtained an upper bound, which determines the best efficiency for each certain capacity. Finally, based on the introduced bound, another evaluation criterion for a better comparison of the methods is presented

    Application and Theory of Multimedia Signal Processing Using Machine Learning or Advanced Methods

    Get PDF
    This Special Issue is a book composed by collecting documents published through peer review on the research of various advanced technologies related to applications and theories of signal processing for multimedia systems using ML or advanced methods. Multimedia signals include image, video, audio, character recognition and optimization of communication channels for networks. The specific contents included in this book are data hiding, encryption, object detection, image classification, and character recognition. Academics and colleagues who are interested in these topics will find it interesting to read

    Improved modification direction methods

    Get PDF
    AbstractThe original exploiting modification direction (EMD) method proposed by Zhang and Wang is a novel data hiding technique which can achieve large embedding capacity with less distortion. The original EMD method can hide (2n+1)-ary numbers by modifying at most one least-significant bit (LSB) of n pixel values. The proposed methods in this paper, 2-EMD and EMD-2, modify at most two pixels of the LSB values. Efficiency of the proposed methods is shown theoretically and through experiments. The 2-EMD and EMD-2 can hide even larger numbers than the EMD with similar distortion under the same conditions. This paper shows that the EMD-2 is much better than the EMD, and slightly better than 2-EMD when n is 3, 4 and 5. The way to generate basis vector can be used for the generalization of the n-EMD and EMD-n where n>1
    corecore