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a b s t r a c t

The original exploitingmodification direction (EMD)method proposed by Zhang andWang
is a novel data hiding technique which can achieve large embedding capacity with less
distortion. The original EMDmethod can hide (2n+ 1)-ary numbers by modifying at most
one least-significant bit (LSB) of n pixel values. The proposed methods in this paper, 2-
EMD and EMD-2, modify at most two pixels of the LSB values. Efficiency of the proposed
methods is shown theoretically and through experiments. The 2-EMD and EMD-2 can hide
even larger numbers than the EMDwith similar distortion under the same conditions. This
paper shows that the EMD-2 is much better than the EMD, and slightly better than 2-EMD
when n is 3, 4 and 5. The way to generate basis vector can be used for the generalization of
the n-EMD and EMD-nwhere n > 1.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Two important issues of data hiding techniques are preserving good image quality and increasing the embedding capacity
altogether at the same time. However, this is an irreconcilable requirement. If we try to reduce image distortion, we have to
sacrifice the embedding capacity. Ifwe increase embedding capacity, image quality getsworse. The first generation approach
has modified the least-significant bit (LSB) values. This simple method is called LSB replacement technique. This method
can embed as many bits as the total number of pixels. However, statistical analysis based on the chi-square test using
neighboring pixel value pairs can detect the presence of a hidden message [1]. Two values whose binary representations
differ only in the LSB level are called a pair of values. For example, two consecutive numbers – 70 (i.e., 01000110 in binary
representation) and 71 (i.e., 01000111 in binary format) – are a pair of values. In general, the frequencies of two neighboring
values are statistically rarely equal in number. However, after the LSB replacement embedding, observation of Westfeld
and Pfitzmann [1] conclude that most of their frequencies are getting closer. If the message to be hidden is really random,
the frequencies of the pairs become nearly equal after embedding message due to its true randomness. If the message is
not random, the pair of values may be normal and does not give us any hint. However, practitioners do not want to hide
plain text. They believe that hiding plain text is more dangerous than cipher text. As a conclusion, the chi-square test is an
effective technique against LSB modification methods.
Therefore, reducing the embedding capacity becomes an alternative solution to reduce image degradation. Tseng et al. [2]

hide as many as blog2(mn+1)c bits of data in anm×n binary image block by changing at most two bits in the block. Matrix
encoding technique in F5 algorithm [3] changes at most one LSB value to embed k bits into p pixels where p = 2k− 1. Thus,
this encoding technique uses a (1, p, k) Hamming code. Modified matrix encoding technique [4] uses a (2, p, k) Hamming
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Table 1
Numbers generated by a basis vector [1, 2] when n is 2 in the EMD.

1 2

0 0 0
1 1 0
2 0 1
3 0 −1
4 −1 0

code tomodify atmost two pixels. Thismodifiedmatrix encoding technique allowsmore degree of freedom than the original
matrix encoding technique.
Zhang andWang [5] has proposed a novel data hiding technique to transform the binary secret data into a streamof secret

digits using a (2n+ 1)-ary notational system. Their embedding method called exploiting modification direction (EMD) uses
n cover pixels to carry one secret digit in the (2n + 1)-ary number system. The maximum possible error of the modified
pixel is±1 because their scheme changes only one LSB value. The pixel segmentation system proposed by Lee et al. [6] can
hide more large numbers by modifying two pixel values. However, image quality gets considerably degraded and worse
than 8 dB.
Two new EMD methods proposed in this paper, 2-EMD and EMD-2, are very simple to implement. The embedding

capacity of these methods is larger than the pixel segmentation method, and much larger than the EMD. However, the
average image quality of the EMD-2 is around 52 dB which is 8 dB higher than the pixel segmentation method, but similar
to the EMD and 2-EMD. The efficiency of the 2-EMD and EMD-2 is compared with the EMD under the same condition.

2. EMD embedding method

The EMDmethod proposed by Zhang andWang [5] is a novel method for hiding data. Each secret digit in a (2n+ 1)-ary
notational system is carried by n cover pixels, where n ≥ 2, and at most one pixel value is increased or decreased by 1 in
the EMDmethod. A group of pixel values is represented as a vector G, where Gn = [g1, g2, . . . , gn]. A vector [g1, g2, . . . , gn]
in an n-dimensional space is mapped to a value f , which is computed by Eq. (1) as a weighted sum modulo (2n+ 1):

f (g1, g2, . . . , gn) =

[
n∑
i=1

(gi · i)

]
mod (2n+ 1). (1)

No modification is needed if a secret digit d equals the extraction function f of the original pixel group. When the secret
data d is not equal to f , we calculate s = d − f mod (2n + 1). If s is not larger than n, we increase the value of gs by 1;
otherwise, we decrease the value of g2n+1−s by 1. Eq. (1) can be represented as an inner product between an image pixel
value vector Gn and a basis vector Bn = [1, 2, . . . , n] such as

f (g1, g2, . . . , gn) = Gn · BTn mod (2n+ 1). (2)

The basis vector for EMD can be easily derived since only one pixel value is changed. Consider a case where n is 2. The
basis vector B2 is given as [1, 2]. Note that the number 0 can be generated by nullifying the basis vector (see Table 1) such as
0 = (0) · 1+ (0) · 2. The number 1 is generated by setting the associated element 1 in the basis vector (i.e., b1) by 1 and also
nullifying the basis vector element 2 (i.e., b2) such as 1 = (1) ·1+ (0) ·2. The coefficients for the basis vector for the number
1, C1, is [1, 0]. On the other hand, 3 can be generated by resetting the first element by 0 and setting the second element by
−1 and taking modulus 5 based on Eq. (2). Thus, C3 is [0, −1]. In other words, (0) · 1 + (−1) · 2 is -2, but [(−2) mod 5]
becomes 3. It is obvious that all five numbers from 0 to 4 can be generated according to Eq. (2) by the linear combination of
the basis elements with their associated coefficients. Note that the five numbers are uniquely decided since we can choose
1 or−1 only once for each case.

3. The proposed EMD-2 scheme

In this section, we shall present our data hiding scheme based on (2w + 1)-ary notational system in a group of pixels.
The proposed data hiding scheme is composed of the embedding and extracting procedures, which are described below.
This paper proposes a novel steganographic embedding method, EMD-2, that fully exploits the modification directions
by allowing at most two pixels to be modified. In this method, modifications in different directions are used to represent
different secret data, leading to a higher embedding efficiency. For the EMD-2 embedding method, the basis vector should
be generated first.

3.1. Basis vector

The EMD-2 allows atmost two pixels to bemodified. Since onemore pixel value is changed comparedwith the EMD, that
changes at most one pixel value, the numbers generated by the new basis vector should be larger than that of the EMD. The



H.J. Kim et al. / Computers and Mathematics with Applications 60 (2010) 319–325 321

Table 2
Numbers generated by a basis vector [1, 3] when n is 2 in the EMD-2.

1 3

0 0 0
1 1 0
2 −1 1
3 0 1
4 1 1
5 −1 −1
6 0 −1
7 1 −1
8 −1 0

Table 3
Numbers generated by a basis vector [1, 2, 6] when n is 3 in the EMD-2.

1 2 6

0 0 0 0
1 1 0 0
2 0 1 0
3 1 1 0
4 0 −1 1
5 −1 0 1
6 0 0 1
7 1 0 1
8 0 1 1
9 0 −1 −1
10 −1 0 −1
11 0 0 −1
12 1 0 −1
13 0 1 −1
14 −1 −1 0
15 0 −1 0
16 −1 0 0

best choice of the basis vector with n = 2 is given as B2 = [1, 3] in the EMD-2. Note that Table 2 shows only nine numbers
generated from 0 to 8. The number 2 is generated by a linear combination of 1 and 3 as 2 = (−1) · 1 + (1) · 3. Negative
numbers are turned into positive numbers by the modulus operation.
The best choice of the basis vector with n = 3 is B3 = [1, 2, 6] in the EMD-2. This basis vector can generate numbers

from 0 to 16. The maximum positive number, 8, is generated as 8 = (0) · 1 + (1) · 2 + (1) · 6 by a linear combination.
Thus, we can have eight positive numbers, also eight negative numbers, and the number 0 as a zero element. Thus, 17-ary
numbers can be generated (see Table 3). It is easy to show that B4 is [1, 2, 6, 11] for 27-ary numbers, B5 is [1, 2, 6, 11, 16]
for 37-ary numbers, and so on. Therefore, as a generalization, Bn becomes [1, 2, 6, . . . , 6+ 5(n− 3)]where n > 2.

3.2. Embedding procedure

In the EMDmethod, at most one bit is increased or decreased in a group of pixel values. Similarly, it is possible to increase
or decrease two pixel values in a group. In order to hide onemore secret bit than the EMDmethod, we need to formulate Eq.
(3), whose role is similar to Eq. (1). Each basis element bi is used as an input to the extraction function f as weighted sum
modulo (2w + 1). The value of w is determined as follows. When n is 2, w is 4; when n is larger than 2, it is formulated as
8+ 5(n− 3). Tables 2 and 3 are used to encode in the proposed (2w+ 1)-ary system. Eqs. (3), (4) and (5) provide the basic
structures for the EMD-2. The extraction function, basis elements, and themodulus value are the keys of the new embedding
procedure.

f (g1, g2, . . . , gn) =

[
n∑
i=1

(gi · bi)

]
mod (2w + 1), (3)

where

[b1, b2, . . . , bn] =
{
[1, 3] n = 2
[1, 2, 6, 11, 16, 21, . . . , 6+ 5(n− 3)] n > 2 (4)

and

w =

{
4 n = 2
8+ 5(n− 3) n > 2. (5)
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The EMD and EMD-2 methods are equivalent to a syndrome coding technique such as Hamming code or BCH code. The
value s is computed by Eq. (6).

s =

{d− f if d ≥ f
(2w + 1)− |d− f | if d < f and n > 2
4− |d− f | if d < f and n = 2.

(6)

The modified pixel value vector G′n can be computed by Eq. (7).

G′n = Gn + Cs, (7)

where Cs is the coefficient vector for the number s associated with the basis vector Bn. Let d be the data to be hidden. How
to use the value s for data embedding is summarized by the following steps.

Step 1: Calculate f value with Gn and the associated basis vector Bn according to Eq. (3).
Step 2: Compute the value s according to Eq. (6).
Step 3: Find the associated coefficient vector Cs and compte the modified pixel value vector G′n as G

′
n = G+ Cs according to

Eq. (7).

The following example illustrates how this embedding procedure works.

Example 1. Assume that the host signal vector G3 is given as [10 5 3]. Since the dimension of the vector n is 3, we can use
Eqs. (3)–(5) to compute f value or Table 3. As a result, the associated basis vector B3 is given as [1 2 6] shown in Table 3.

Step 1: Calculate f value with G3 and the associated basis vector [1 2 6]. In this case, f value is 4 according to Eq. (3). Inner
product of [10 5 3] and [1 2 6] is 38, and 38 mod 17 is 4.

Step 2: Since d is larger than f (i.e., 5 > 4), the value of s is 1 according to Eq. (6).
Step 3: Look up the Table 3 and find the row for the number 1 which is [1 0 0]. In other words, its coefficient vector C1 is [1

0 0]. Thus, according to Eq. (7), the modified pixel value vector becomes [11 5 3].

3.3. The extracting procedure

In order to extract the secret message from the stego image, we need to calculate the f value according to Eq. (3) using
a group of modified pixel values. That is, f is just the embedded message in the stego image. The embedding procedure is
organized to ensure that f is just the embedded message. Thus, the extraction procedure is very simple. The encoder allows
the decoder to recover the hidden message just by computing the value f .

4. The proposed 2-EMD scheme

The 2-EMD scheme embeds data using two consecutive EMDs. Thus, basic properties of the 2-EMD are the same as EMD.
Of course, there are slight differences between EMD and 2-EMD. In case of EMD, we can hide two (2n + 1)-ary numbers
consecutively by flipping at most one pixel value among n pixel values. On the other hand, we can hide one ((2n + 1)2)-
ary number by flipping at most one pixel value among each n pixel values in case of 2-EMD. Since the EMD can hide one
(2n+ 1)-ary number into n pixel values, two consecutive EMDs, (e.g., 2-EMD), can hide one ((2n+ 1)2)-ary number into 2n
pixel values. In this case, we need a simple number representation computation for 2-EMD. First EMD can hide a 2n = 1-ary
numberN1, and second EMD can hide another 2n+1-ary numberN2. In this case, the numberN for 2-EMD can be computed
as N = (2n + 2)N1 + N2, where 0 ≤ N1,N2 ≤ 2n + 1 and 0 ≤ N ≤ (2n + 1)2 − 1. For convenience’s sake, we consider
2-EMD with two blocks, both having n pixel values.

5. Experimental results

The purpose of our scheme is to embed secret data into a cover image such that the stego image still maintains a good
image quality. We apply the 2-EMD and EMD-2 methods to various standard gray scale test images.
Table 4 shows the result of the 2-EMD and EMD-2. Each EMD can change at most one pixel value. Thus, up to two pixel

values can be changed by applying the EMD twice for 2-EMD. In the first stage, the EMD is applied to a block of n1 pixel
values. Next, the same EMD is applied to a block of n2 pixel values. Those blocks are not overlapping each other. On the
other hand, the EMD-2 is applied to a block of n pixel values, where n = n1 + n2. Therefore, EMD-2 can change up to two
pixel values in a block of n pixel values. As a result, both methods can modify up to two pixel values in a block.
For example, EMD-2 with 4 pixels can hide a 27-ary number, while 2- EMD with two pixels each hide a 25-ary number.

One EMD with two pixels can hide a 5-ary number. Therefore, 2-EMD can hide a 25-ary number. When n is small, EMD-2 is
much more efficient than 2-EMD. If we can find a better basis, the EMD-2 can be improved further.
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Table 4
Maximum numbers to be hidden using 2-EMD and EMD-2.

2-EMD EMD-2
n1 n2 Number system nwhere n = n1 + n2 Number system

1 1 9-ary (3× 3) 2 9-ary
1 2 15-ary (3× 3) 3 17-ary
2 2 25-ary (5× 5) 4 27-ary
2 3 35-ary (5× 7) 5 37-ary
3 3 49-ary (7× 7) 6 47-ary
3 4 63-ary (7× 9) 7 57-ary
4 4 81-ary (9× 9) 8 67-ary

In general, the evaluation of data hiding performance depends on the visual quality of stego image and data hiding
capacity. Data hiding capacity is defined as the amount of data that can be hidden under the data hiding mechanism. Zhang
and Wang’s EMD method [5] achieves the embedding rate R given as follows:

R = log2((2n+ 1)/n). (8)

Therefore, the best embedding rate R of the EMD is achieved when n is 2 since R is a monotonically decreasing function. Its
best embedding rate is log2(3/1). It means that the optimal embedding rate is achieved when only one pixel is used. The
embedding rate of EMD-2, R2, is given as follows:

R2 = log2((2w + 1)/n). (9)

Note that R in Eq. (8) converges to 0. On the other hand, the embedding rate function R2 of n is a monotonically increasing
function, which converges to log2(10). Whenw is 4 or n is 2 in Eq. (5), the EMD-2 achieves the embedding rate as log2(9/2).
The embedding rate of 2-EMD, 2R, is given as follows:

2R = log2((2n1 + 1)(2n2 + 1)/n). (10)

Note that 2R in Eq. (10) converges to∞.
Now, assume that wemodify up to two LSB values among four pixels. In this case, the EMD-2 achieves the embedding bit

rate log2(27/4) or 2.75. If 2-EMD for each group of two pixels can achieve the rate log2(25/4) or 2.64 (see Table 4). Therefore,
the embedding rate of the EMD-2 is 1.04 (i.e., 2.75/2.64) times larger than 2-EMD. If we try to modify up to two LSB values
using a group of five pixels, the EMD-2 can hide a 37-ary number, while the 2-EMD can hide a 35-ary number. Thus, EMD-2
still hides a larger number. However, if we try to use a group of six pixel values, the EMD-2 can hide a 47-ary number, while
the 2-EMD can hide a 49-ary number. Thus, it is obvious that the EMD-2 is better than 2-EMDwhen the number of pixels is
less than six.
Nine gray level images, Lena, Baboon, Tiffany, Pepper, Goldhill, Barbara, Boat, Zelda, and Bridge, each of 512 × 512 and

256× 256 pixels, are used as the cover images for image quality comparisons. The peak signal to noise ratio (PSNR) is used
in this paper to evaluate the image quality. The PSNR of a gray level image is defined as follows:

PSNR = 10 · log10
2552

MSE
dB. (11)

The mean squared error (MSE) for an N × N gray scale image is defined as follows:

MSE =
(
1
N

)2 N∑
i=1

N∑
j=1

(xij − xij)2. (12)

Here xij denotes the original pixel value, and xij denotes the modified pixel value at position (i, j). Fig. 1 shows that image
quality is very good and average PSNR values of these images are 52.03 dB when n is 4.
Fig. 2 shows the histograms of the original Lena image and the EMD-2 method. One of the concerns is the fear of the chi-

square test that is used to see if the pair of pixels show any evidence of the presence of hidden data. Fig. 2 shows that no clues
about data hiding can be found. Compared with the original Lena histogram, minor differences are inevitable. Therefore, a
blind test may hardly find such differences. This histogram shows the frequency of pixel values between 50 and 100 only
to highlight the differences visually and clearly. Left- and right-hand side bars are histograms of the original image and its
modified image using EMD-2, respectively.
The pixel segmentationmethod [6] can be represented in a differentway. Thismethod is reformulated as follows. Assume

that two pixels are allowed to be modified up to two bit-depth. This case is equivalent to modifying up to four LSBs of four
pixel values. This approach uses three bits to represent the magnitude of the number to be hidden, and one bit for the sign
of the number. Thus, this system can hide 15-ary numbers. Apparently, this 15-ary number is larger than a 9-ary number
using the EMD. However, the EMDmodifies atmost one LSB value. Thus, comparison of the EMDwith the pixel segmentation
approach is not fair. Instead of spreading the bit-planes, the pixel segmentation method stacks the bit-planes to increase
the bit rate such as log2(15/2) or 2.91. However, maximum expected error is±3 because of the two bits of depth changes. If
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Fig. 1. Images after data embedding using EMD-2 using Lena, Baboon, Tiffany, Pepper, Goldhill, Barbara, Boat, Zelda, and Bridge images.
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Fig. 2. The histogram of the original Lena image (left-hand side bars) and its modified images using the EMD-2 (right-hand side bars).

we spread the bit-depths over four pixel values, the bit rate is equivalent to log2(15)/4, which is still larger than log2(9)/4,
the rate of the EMD, but worse than that of 2-EMD with log2(25)/4 and much worse than that of EMD-2 with log2(27)/4.
Fig. 3 shows that three Lena images look almost the same. Because both 2-EMD, and the EMD-2 modify small number of

LSB values, image quality is very high after data hiding and easy to pass steganalysis. Zhang andWang [5] already prove that
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Fig. 3. Original (Left), EMD stegoed (Center), and EMD-2 stegoed Lena images.

the EMD is robust against steganalysis. 2-EMD is exactly the same as the EMD in mechanism and the EMD-2 is a variant of
the EMD. Therefore, we can say that EMD-2 is as secure as the EMD and 2-EMD.
One remarkable fact found in this paper is the embedding rate of 2-EMD and EMD-2 comparedwith EMD. In case of EMD,

the embedding rate R is monotonically decreasing and a maximum is obtained when only one pixel is used. Using one pixel
in EMD is better than LSB (least-significant bit) modification because the embedding rate of the former is 1 (i.e., log2(2/1))
while that of the latter is 1.585 (i.e., log2(3/1)). The embedding rate functions of 2-EMD and EMD-2 are monotonically
increasing. An optimal embedding rate is achieved with EMD-2 for up to five pixels and with 2-EMD for more than five
pixels.

6. Conclusion

In this paper, we proposed an image hiding scheme based on log2(2(5n− 7)+ 1)-ary number system, where n is larger
than 2. The proposed scheme can be used to embed and extract secret data in an image systematically. The minimum bit
rate is log2(9/2) or 2.17 and the maximum rate is log2(10) or 3.32. This approach is better than the EMD [5] method in
terms of the embedding bit rate when n is any positive number. In addition, we proposed a variant of EMD, the 2-EMD,
which is the same as the EMD. The 2-EMD is better than EMD-2 when the number of pixels used is 3, 4, and 5. The EMD-2
is always better than the pixel segmentation method [6] for all n. The image quality of 2-EMD is the same as that of EMD,
and is slightly better than EMD-2, but much better than the pixel segmentation method. Theoretically and experimentally
these facts have been demonstrated in this paper. By comparing 2-EMD and EMD-2, it is obvious that it is crucial to select a
good basis. The way to generate a basis vector can be used for the generalization of the proposed method for EMD-n, where
n > 2. n-EMD with n > 1 also deserves attention.
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