17,539 research outputs found

    Generalized time-frequency coherency for assessing neural interactions in electrophysiological recordings

    Get PDF
    Time-frequency coherence has been widely used to quantify statistical dependencies in bivariate data and has proven to be vital for the study of neural interactions in electrophysiological recordings. Conventional methods establish time-frequency coherence by smoothing the cross and power spectra using identical smoothing procedures. Smoothing entails a trade-off between time-frequency resolution and statistical consistency and is critical for detecting instantaneous coherence in single-trial data. Here, we propose a generalized method to estimate time-frequency coherency by using different smoothing procedures for the cross spectra versus power spectra. This novel method has an improved trade-off between time resolution and statistical consistency compared to conventional methods, as verified by two simulated data sets. The methods are then applied to single-trial surface encephalography recorded from human subjects for comparative purposes. Our approach extracted robust alpha- and gamma-band synchronization over the visual cortex that was not detected by conventional methods, demonstrating the efficacy of this method

    Comparison of beam generation techniques using a phase only spatial light modulator

    Get PDF
    Whether in art or for QR codes, images have proven to be both powerful and efficient carriers of information. Spatial light modulators allow an unprecedented level of control over the generation of optical fields by using digital holograms. There is no unique way of obtaining a desired light pattern however, leaving many competing methods for hologram generation. In this paper, we test six hologram generation techniques in the creation of a variety of modes as well as a photographic image: rating the methods according to obtained mode quality and power. All techniques compensate for a non-uniform mode profile of the input laser and incorporate amplitude scaling. We find that all methods perform well and stress the importance of appropriate spatial filtering. We expect these results to be of interest to those working in the contexts of microscopy, optical trapping or quantum image creation

    Efficient and optimized identification of generalized Maxwell viscoelastic relaxation spectra

    Get PDF
    Viscoelastic relaxation spectra are essential for predicting and interpreting the mechanical responses of materials and structures. For biological tissues, these spectra must usually be estimated from viscoelastic relaxation tests. Interpreting viscoelastic relaxation tests is challenging because the inverse problem is expensive computationally. We present here an efficient algorithm that enables rapid identification of viscoelastic relaxation spectra. The algorithm was tested against trial data to characterize its robustness and identify its limitations and strengths. The algorithm was then applied to identify the viscoelastic response of reconstituted collagen, revealing an extensive distribution of viscoelastic time constants. © 2015 Elsevier Ltd

    Characterization of process-oriented hydrologic model behavior with temporal sensitivity analysis for flash floods in Mediterranean catchments

    Get PDF
    This paper presents a detailed analysis of 10 flash flood events in the Mediterranean region using the distributed hydrological model MARINE. Characterizing catchment response during flash flood events may provide new and valuable insight into the dynamics involved for extreme catchment response and their dependency on physiographic properties and flood severity. The main objective of this study is to analyze flash-flood-dedicated hydrologic model sensitivity with a new approach in hydrology, allowing model outputs variance decomposition for temporal patterns of parameter sensitivity analysis. Such approaches enable ranking of uncertainty sources for nonlinear and nonmonotonic mappings with a low computational cost. Hydrologic model and sensitivity analysis are used as learning tools on a large flash flood dataset. With Nash performances above 0.73 on average for this extended set of 10 validation events, the five sensitive parameters of MARINE process-oriented distributed model are analyzed. This contribution shows that soil depth explains more than 80% of model output variance when most hydrographs are peaking. Moreover, the lateral subsurface transfer is responsible for 80% of model variance for some catchment-flood events’ hydrographs during slow-declining limbs. The unexplained variance of model output representing interactions between parameters reveals to be very low during modeled flood peaks and informs that model parsimonious parameterization is appropriate to tackle the problem of flash floods. Interactions observed after model initialization or rainfall intensity peaks incite to improve water partition representation between flow components and initialization itself. This paper gives a practical framework for application of this method to other models, landscapes and climatic conditions, potentially helping to improve processes understanding and representation

    A review of RFI mitigation techniques in microwave radiometry

    Get PDF
    Radio frequency interference (RFI) is a well-known problem in microwave radiometry (MWR). Any undesired signal overlapping the MWR protected frequency bands introduces a bias in the measurements, which can corrupt the retrieved geophysical parameters. This paper presents a literature review of RFI detection and mitigation techniques for microwave radiometry from space. The reviewed techniques are divided between real aperture and aperture synthesis. A discussion and assessment of the application of RFI mitigation techniques is presented for each type of radiometer.Peer ReviewedPostprint (published version

    Drying air-induced disturbances in multi-layer coating systems

    Get PDF
    A range of new experimental techniques is developed to quantify drying-air induced disturbances on low viscosity single and multi-layer coating systems. Experiments on prototype slide-bead coating systems show that the surface disturbances take the form of a wavelike pattern and quantify precisely how its amplitude increases rapidly with wet thickness and decreases with viscosity. Heat transfer measurements show that the redistribution of water to form an additional lower viscosity carrier layer while increasing the solids concentration of the upper layer or layers enables the maximum drying rate, for which drying-air induced surface disturbances are acceptably small, to be increased with significant commercial benefits
    corecore