87 research outputs found

    Spread spectrum-based video watermarking algorithms for copyright protection

    Get PDF
    Merged with duplicate record 10026.1/2263 on 14.03.2017 by CS (TIS)Digital technologies know an unprecedented expansion in the last years. The consumer can now benefit from hardware and software which was considered state-of-the-art several years ago. The advantages offered by the digital technologies are major but the same digital technology opens the door for unlimited piracy. Copying an analogue VCR tape was certainly possible and relatively easy, in spite of various forms of protection, but due to the analogue environment, the subsequent copies had an inherent loss in quality. This was a natural way of limiting the multiple copying of a video material. With digital technology, this barrier disappears, being possible to make as many copies as desired, without any loss in quality whatsoever. Digital watermarking is one of the best available tools for fighting this threat. The aim of the present work was to develop a digital watermarking system compliant with the recommendations drawn by the EBU, for video broadcast monitoring. Since the watermark can be inserted in either spatial domain or transform domain, this aspect was investigated and led to the conclusion that wavelet transform is one of the best solutions available. Since watermarking is not an easy task, especially considering the robustness under various attacks several techniques were employed in order to increase the capacity/robustness of the system: spread-spectrum and modulation techniques to cast the watermark, powerful error correction to protect the mark, human visual models to insert a robust mark and to ensure its invisibility. The combination of these methods led to a major improvement, but yet the system wasn't robust to several important geometrical attacks. In order to achieve this last milestone, the system uses two distinct watermarks: a spatial domain reference watermark and the main watermark embedded in the wavelet domain. By using this reference watermark and techniques specific to image registration, the system is able to determine the parameters of the attack and revert it. Once the attack was reverted, the main watermark is recovered. The final result is a high capacity, blind DWr-based video watermarking system, robust to a wide range of attacks.BBC Research & Developmen

    Privacy-preserving information hiding and its applications

    Get PDF
    The phenomenal advances in cloud computing technology have raised concerns about data privacy. Aided by the modern cryptographic techniques such as homomorphic encryption, it has become possible to carry out computations in the encrypted domain and process data without compromising information privacy. In this thesis, we study various classes of privacy-preserving information hiding schemes and their real-world applications for cyber security, cloud computing, Internet of things, etc. Data breach is recognised as one of the most dreadful cyber security threats in which private data is copied, transmitted, viewed, stolen or used by unauthorised parties. Although encryption can obfuscate private information against unauthorised viewing, it may not stop data from illegitimate exportation. Privacy-preserving Information hiding can serve as a potential solution to this issue in such a manner that a permission code is embedded into the encrypted data and can be detected when transmissions occur. Digital watermarking is a technique that has been used for a wide range of intriguing applications such as data authentication and ownership identification. However, some of the algorithms are proprietary intellectual properties and thus the availability to the general public is rather limited. A possible solution is to outsource the task of watermarking to an authorised cloud service provider, that has legitimate right to execute the algorithms as well as high computational capacity. Privacypreserving Information hiding is well suited to this scenario since it is operated in the encrypted domain and hence prevents private data from being collected by the cloud. Internet of things is a promising technology to healthcare industry. A common framework consists of wearable equipments for monitoring the health status of an individual, a local gateway device for aggregating the data, and a cloud server for storing and analysing the data. However, there are risks that an adversary may attempt to eavesdrop the wireless communication, attack the gateway device or even access to the cloud server. Hence, it is desirable to produce and encrypt the data simultaneously and incorporate secret sharing schemes to realise access control. Privacy-preserving secret sharing is a novel research for fulfilling this function. In summary, this thesis presents novel schemes and algorithms, including: • two privacy-preserving reversible information hiding schemes based upon symmetric cryptography using arithmetic of quadratic residues and lexicographic permutations, respectively. • two privacy-preserving reversible information hiding schemes based upon asymmetric cryptography using multiplicative and additive privacy homomorphisms, respectively. • four predictive models for assisting the removal of distortions inflicted by information hiding based respectively upon projection theorem, image gradient, total variation denoising, and Bayesian inference. • three privacy-preserving secret sharing algorithms with different levels of generality

    A Novel Block-based Watermarking Scheme Using the SVD Transform

    Get PDF
    In this paper, a block-based watermarking scheme based on the Singular Value Decomposition (SVD) is proposed. Our watermark, a pseudo-random Gaussian sequence, is embedded by modifying the angles formed by the right singular vectors of each block of the original image. The orthogonality property of the right singular vector matrix is preserved during the embedding process. Several experiments have been carried out to test the performance of the proposed scheme against different attack scenarios. We conclude that the proposed scheme is resistant against common signal processing operations and attacks, while it preserves the quality of the original image

    A Localized Geometric-Distortion Resilient Digital Watermarking Scheme Using Two Kinds of Complementary Feature Points

    Get PDF
    With the rapid development of digital multimedia and internet techniques in the last few years, more and more digital images are being distributed to an ever-growing number of people for sharing, studying, or other purposes. Sharing images digitally is fast and cost-efficient thus highly desirable. However, most of those digital products are exposed without any protection. Thus, without authorization, such information can be easily transferred, copied, and tampered with by using digital multimedia editing software. Watermarking is a popular resolution to the strong need of copyright protection of digital multimedia. In the image forensics scenario, a digital watermark can be used as a tool to discriminate whether original content is tampered with or not. It is embedded on digital images as an invisible message and is used to demonstrate the proof by the owner. In this thesis, we propose a novel localized geometric-distortion resilient digital watermarking scheme to embed two invisible messages to images. Our proposed scheme utilizes two complementary watermarking techniques, namely, local circular region (LCR)-based techniques and block discrete cosine transform (DCT)-based techniques, to hide two pseudo-random binary sequences in two kinds of regions and extract these two sequences from their individual embedding regions. To this end, we use the histogram and mean statistically independent of the pixel position to embed one watermark in the LCRs, whose centers are the scale invariant feature transform (SIFT) feature points themselves that are robust against various affine transformations and common image processing attacks. This watermarking technique combines the advantages of SIFT feature point extraction, local histogram computing, and blind watermark embedding and extraction in the spatial domain to resist geometric distortions. We also use Watson’s DCT-based visual model to embed the other watermark in several rich textured 80×80 regions not covered by any embedding LCR. This watermarking technique combines the advantages of Harris feature point extraction, triangle tessellation and matching, the human visual system (HVS), the spread spectrum-based blind watermark embedding and extraction. The proposed technique then uses these combined features in a DCT domain to resist common image processing attacks and to reduce the watermark synchronization problem at the same time. These two techniques complement each other and therefore can resist geometric and common image processing attacks robustly. Our proposed watermarking approach is a robust watermarking technique that is capable of resisting geometric attacks, i.e., affine transformation (rotation, scaling, and translation) attacks and other common image processing (e.g., JPEG compression and filtering operations) attacks. It demonstrates more robustness and better performance as compared with some peer systems in the literature

    Robust digital watermarking techniques for multimedia protection

    Get PDF
    The growing problem of the unauthorized reproduction of digital multimedia data such as movies, television broadcasts, and similar digital products has triggered worldwide efforts to identify and protect multimedia contents. Digital watermarking technology provides law enforcement officials with a forensic tool for tracing and catching pirates. Watermarking refers to the process of adding a structure called a watermark to an original data object, which includes digital images, video, audio, maps, text messages, and 3D graphics. Such a watermark can be used for several purposes including copyright protection, fingerprinting, copy protection, broadcast monitoring, data authentication, indexing, and medical safety. The proposed thesis addresses the problem of multimedia protection and consists of three parts. In the first part, we propose new image watermarking algorithms that are robust against a wide range of intentional and geometric attacks, flexible in data embedding, and computationally fast. The core idea behind our proposed watermarking schemes is to use transforms that have different properties which can effectively match various aspects of the signal's frequencies. We embed the watermark many times in all the frequencies to provide better robustness against attacks and increase the difficulty of destroying the watermark. The second part of the thesis is devoted to a joint exploitation of the geometry and topology of 3D objects and its subsequent application to 3D watermarking. The key idea consists of capturing the geometric structure of a 3D mesh in the spectral domain by computing the eigen-decomposition of the mesh Laplacian matrix. We also use the fact that the global shape features of a 3D model may be reconstructed using small low-frequency spectral coefficients. The eigen-analysis of the mesh Laplacian matrix is, however, prohibitively expensive. To lift this limitation, we first partition the 3D mesh into smaller 3D sub-meshes, and then we repeat the watermark embedding process as much as possible in the spectral coefficients of the compressed 3D sub-meshes. The visual error of the watermarked 3D model is evaluated by computing a nonlinear visual error metric between the original 3D model and the watermarked model obtained by our proposed algorithm. The third part of the thesis is devoted to video watermarking. We propose robust, hybrid scene-based MPEG video watermarking techniques based on a high-order tensor singular value decomposition of the video image sequences. The key idea behind our approaches is to use the scene change analysis to embed the watermark repeatedly in a fixed number of the intra-frames. These intra-frames are represented as 3D tensors with two dimensions in space and one dimension in time. We embed the watermark information in the singular values of these high-order tensors, which have good stability and represent the video properties. Illustration of numerical experiments with synthetic and real data are provided to demonstrate the potential and the much improved performance of the proposed algorithms in multimedia watermarking

    Secured Mechanism Towards Integrity of Digital Images Using DWT, DCT, LSB and Watermarking Integrations

    Get PDF
    "Watermarking" is one method in which digital information is buried in a carrier signal; the hidden information should be related to the carrier signal. There are many different types of digital watermarking, including traditional watermarking that uses visible media (such as snaps, images, or video), and a signal may be carrying many watermarks. Any signal that can tolerate noise, such as audio, video, or picture data, can have a digital watermark implanted in it. A digital watermark must be able to withstand changes that can be made to the carrier signal in order to protect copyright information in media files. The goal of digital watermarking is to ensure the integrity of data, whereas steganography focuses on making information undetectable to humans. Watermarking doesn't alter the original digital image, unlike public-key encryption, but rather creates a new one with embedded secured aspects for integrity. There are no residual effects of encryption on decrypted documents. This work focuses on strong digital image watermarking algorithms for copyright protection purposes. Watermarks of various sorts and uses were discussed, as well as a review of current watermarking techniques and assaults. The project shows how to watermark an image in the frequency domain using DCT and DWT, as well as in the spatial domain using the LSB approach. When it comes to noise and compression, frequency-domain approaches are far more resilient than LSB. All of these scenarios necessitate the use of the original picture to remove the watermark. Out of the three, the DWT approach has provided the best results. We can improve the resilience of our watermark while having little to no extra influence on image quality by embedding watermarks in these places.

    Digital audio watermarking for broadcast monitoring and content identification

    Get PDF
    Copyright legislation was prompted exactly 300 years ago by a desire to protect authors against exploitation of their work by others. With regard to modern content owners, Digital Rights Management (DRM) issues have become very important since the advent of the Internet. Piracy, or illegal copying, costs content owners billions of dollars every year. DRM is just one tool that can assist content owners in exercising their rights. Two categories of DRM technologies have evolved in digital signal processing recently, namely digital fingerprinting and digital watermarking. One area of Copyright that is consistently overlooked in DRM developments is 'Public Performance'. The research described in this thesis analysed the administration of public performance rights within the music industry in general, with specific focus on the collective rights and broadcasting sectors in Ireland. Limitations in the administration of artists' rights were identified. The impact of these limitations on the careers of developing artists was evaluated. A digital audio watermarking scheme is proposed that would meet the requirements of both the broadcast and collective rights sectors. The goal of the scheme is to embed a standard identifier within an audio signal via modification of its spectral properties in such a way that it would be robust and perceptually transparent. Modification of the audio signal spectrum was attempted in a variety of ways. A method based on a super-resolution frequency identification technique was found to be most effective. The watermarking scheme was evaluated for robustness and found to be extremely effective in recovering embedded watermarks in music signals using a semi-blind decoding process. The final digital audio watermarking algorithm proposed facilitates the development of other applications in the domain of broadcast monitoring for the purposes of equitable royalty distribution along with additional applications and extension to other domains

    Wavelet Domain Watermark Detection and Extraction using the Vector-based Hidden Markov Model

    Get PDF
    Multimedia data piracy is a growing problem in view of the ease and simplicity provided by the internet in transmitting and receiving such data. A possible solution to preclude unauthorized duplication or distribution of digital data is watermarking. Watermarking is an identifiable piece of information that provides security against multimedia piracy. This thesis is concerned with the investigation of various image watermarking schemes in the wavelet domain using the statistical properties of the wavelet coefficients. The wavelet subband coefficients of natural images have significantly non-Gaussian and heavy-tailed features that are best described by heavy-tailed distributions. Moreover the wavelet coefficients of images have strong inter-scale and inter-orientation dependencies. In view of this, the vector-based hidden Markov model is found to be best suited to characterize the wavelet coefficients. In this thesis, this model is used to develop new digital image watermarking schemes. Additive and multiplicative watermarking schemes in the wavelet domain are developed in order to provide improved detection and extraction of the watermark. Blind watermark detectors using log-likelihood ratio test, and watermark decoders using the maximum likelihood criterion to blindly extract the embedded watermark bits from the observation data are designed. Extensive experiments are conducted throughout this thesis using a number of databases selected from a wide variety of natural images. Simulation results are presented to demonstrate the effectiveness of the proposed image watermarking scheme and their superiority over some of the state-of-the-art techniques. It is shown that in view of the use of the hidden Markov model characterize the distributions of the wavelet coefficients of images, the proposed watermarking algorithms result in higher detection and decoding rates both before and after subjecting the watermarked image to various kinds of attacks
    • …
    corecore