4,557 research outputs found

    Algorithms to Approximate Column-Sparse Packing Problems

    Full text link
    Column-sparse packing problems arise in several contexts in both deterministic and stochastic discrete optimization. We present two unifying ideas, (non-uniform) attenuation and multiple-chance algorithms, to obtain improved approximation algorithms for some well-known families of such problems. As three main examples, we attain the integrality gap, up to lower-order terms, for known LP relaxations for k-column sparse packing integer programs (Bansal et al., Theory of Computing, 2012) and stochastic k-set packing (Bansal et al., Algorithmica, 2012), and go "half the remaining distance" to optimal for a major integrality-gap conjecture of Furedi, Kahn and Seymour on hypergraph matching (Combinatorica, 1993).Comment: Extended abstract appeared in SODA 2018. Full version in ACM Transactions of Algorithm

    Faster Deterministic Algorithms for Packing, Matching and tt-Dominating Set Problems

    Full text link
    In this paper, we devise three deterministic algorithms for solving the mm-set kk-packing, mm-dimensional kk-matching, and tt-dominating set problems in time Oβˆ—(5.44mk)O^*(5.44^{mk}), Oβˆ—(5.44(mβˆ’1)k)O^*(5.44^{(m-1)k}) and Oβˆ—(5.44t)O^*(5.44^{t}), respectively. Although recently there has been remarkable progress on randomized solutions to those problems, our bounds make good improvements on the best known bounds for deterministic solutions to those problems.Comment: ISAAC13 Submission. arXiv admin note: substantial text overlap with arXiv:1303.047

    Monomial Testing and Applications

    Full text link
    In this paper, we devise two algorithms for the problem of testing qq-monomials of degree kk in any multivariate polynomial represented by a circuit, regardless of the primality of qq. One is an Oβˆ—(2k)O^*(2^k) time randomized algorithm. The other is an Oβˆ—(12.8k)O^*(12.8^k) time deterministic algorithm for the same qq-monomial testing problem but requiring the polynomials to be represented by tree-like circuits. Several applications of qq-monomial testing are also given, including a deterministic Oβˆ—(12.8mk)O^*(12.8^{mk}) upper bound for the mm-set kk-packing problem.Comment: 17 pages, 4 figures, submitted FAW-AAIM 2013. arXiv admin note: substantial text overlap with arXiv:1302.5898; and text overlap with arXiv:1007.2675, arXiv:1007.2678, arXiv:1007.2673 by other author

    Improved Online Algorithms for Knapsack and GAP in the Random Order Model

    Get PDF
    The knapsack problem is one of the classical problems in combinatorial optimization: Given a set of items, each specified by its size and profit, the goal is to find a maximum profit packing into a knapsack of bounded capacity. In the online setting, items are revealed one by one and the decision, if the current item is packed or discarded forever, must be done immediately and irrevocably upon arrival. We study the online variant in the random order model where the input sequence is a uniform random permutation of the item set. We develop a randomized (1/6.65)-competitive algorithm for this problem, outperforming the current best algorithm of competitive ratio 1/8.06 [Kesselheim et al. SIAM J. Comp. 47(5)]. Our algorithm is based on two new insights: We introduce a novel algorithmic approach that employs two given algorithms, optimized for restricted item classes, sequentially on the input sequence. In addition, we study and exploit the relationship of the knapsack problem to the 2-secretary problem. The generalized assignment problem (GAP) includes, besides the knapsack problem, several important problems related to scheduling and matching. We show that in the same online setting, applying the proposed sequential approach yields a (1/6.99)-competitive randomized algorithm for GAP. Again, our proposed algorithm outperforms the current best result of competitive ratio 1/8.06 [Kesselheim et al. SIAM J. Comp. 47(5)]
    • …
    corecore