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Abstract
The knapsack problem is one of the classical problems in combinatorial optimization: Given a set
of items, each specified by its size and profit, the goal is to find a maximum profit packing into a
knapsack of bounded capacity. In the online setting, items are revealed one by one and the decision,
if the current item is packed or discarded forever, must be done immediately and irrevocably upon
arrival. We study the online variant in the random order model where the input sequence is a
uniform random permutation of the item set.

We develop a randomized (1/6.65)-competitive algorithm for this problem, outperforming the
current best algorithm of competitive ratio 1/8.06 [Kesselheim et al. SIAM J. Comp. 47(5)]. Our
algorithm is based on two new insights: We introduce a novel algorithmic approach that employs
two given algorithms, optimized for restricted item classes, sequentially on the input sequence. In
addition, we study and exploit the relationship of the knapsack problem to the 2-secretary problem.

The generalized assignment problem (GAP) includes, besides the knapsack problem, several
important problems related to scheduling and matching. We show that in the same online setting,
applying the proposed sequential approach yields a (1/6.99)-competitive randomized algorithm for
GAP. Again, our proposed algorithm outperforms the current best result of competitive ratio 1/8.06
[Kesselheim et al. SIAM J. Comp. 47(5)].
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1 Introduction

Many real-world problems can be considered resource allocation problems. For example,
consider the loading of cargo planes with (potential) goods of different weights. Each item
raises a certain profit for the airline if it is transported; however, not all goods can be loaded
due to airplane weight restrictions. Clearly, the dispatcher seeks for a maximum profit packing
fulfilling the capacity constraint. This example from [24] illustrates the knapsack problem:
Given a set of n items, specified by a size and a profit value, and a resource (called knapsack)
of fixed capacity, the goal is to find a subset of items (called packing) with maximum total

1 A part of this work was done when the author was at Technical University of Munich.
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profit and whose total size does not exceed the capacity. Besides being a fundamental and
extensively studied problem in combinatorial optimization, knapsack problems arise in many
and various practical settings. We refer the readers to textbooks [24, 35] and to the surveys
of previous work in [14,19] for further references.

In the generalized assignment problem (GAP) [35], resources of different capacities are
given, and the size and the profit of an item depend on the resource to which it is assigned.
The GAP includes many prominent problems, such as the (multiple) knapsack problem [13],
weighted bipartite matching [28], AdWords [36], and the display ads problem [17]. Further
applications of GAP are outlined in the survey articles [11,41].

We study online variants of the knapsack and GAP problems. Here, n items are presented
sequentially, and the decision for each item must be made immediately upon arrival. In
fact, many real-world optimization problems occur as online problems, as often decisions
must be made under uncertain conditions. For example, consider the introducing logistics
example, if the airline needs to answer customer requests immediately without knowing
future requests. The online knapsack problem has been studied in particular in the context
of online auctions [9, 45].

Typically, the performance measure for online algorithms is the competitive ratio, which
is defined as the ratio between the values of the algorithmic solution and an optimal offline
solution for a worst-case input. It can be shown that, even for the knapsack problem, the
general online setting admits no algorithms with bounded competitive ratio [34,45]. However,
most hardness results are based on a worst-case input presented in adversarial order. In the
random order model, the performance of an algorithm is evaluated for a worst-case input,
but the adversary has no control over the input order; the input sequence is drawn uniformly
at random among all permutations. This model is known from the secretary problem [15,31]
and its generalizations [7, 12,18]; it has been successfully applied to other online problems,
for example, scheduling and packing [1,16,20,25,27,39], graph problems [8,26,33], facility
location [37], budgeted allocation [38], and submodular welfare maximization [30].

1.1 Related Work
Online knapsack problem. The problem was first studied by Marchetti-Spaccamela and
Vercellis [34], who showed that no deterministic online algorithm for this problem can obtain
a constant competitive ratio. Moreover, Chakrabarty et al. [45] demonstrated that this fact
cannot be overcome by randomization.

Given such hardness results, several relaxations have been introduced and investigated.
Most relevant to our work are results in the random order model. Introduced as the secretary
knapsack problem [6], Babaioff et al. developed a randomized algorithm of competitive ratio
1/(10e) < 1/27. Kesselheim et al. [27] achieved a significant improvement by developing a
(1/8.06)-competitive randomized algorithm for the generalized assignment problem. Finally,
Vaze [43] showed that there exists a deterministic algorithm of competitive ratio 1/(2e) <
1/5.44, assuming that the maximum profit of a single item is small compared to the profit of
the optimal solution.

Apart from the random order model, different further relaxations have been considered.
Marchetti-Spaccamela and Vercellis [34] studied a stochastic model wherein item sizes and
profits are drawn from a fixed distribution. Lueker [32] obtained improved bounds in this
model. Chakrabarty et al. [45] studied the problem when the density (profit-size ratio)
of each item is in a fixed range [L,U ]. Under the further assumption that item sizes are
small compared to the knapsack capacity, Chakrabarty et al. proposed an algorithm of
competitive ratio ln(U/L) + 1 and provided a lower bound of ln(U/L). Another branch of
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research considers removable models, where the algorithm can remove previously packed items.
Removing such items can incur no cost [22,23] or a cancellation cost (buyback model, [4,5,21]).
Recently, Vaze [44] considered the problem under a (weaker) expected capacity constraint.
This variant admits a competitive ratio of 1/4e.

Online GAP. Since all hardness results for online knapsack also hold for online GAP,
research focuses on stochastic variants or modified online settings. Currently, the only result
for the random order model is the previously mentioned (1/8.06)-competitive randomized
algorithm proposed by Kesselheim et al. [27]. To the best of our knowledge, the earliest
paper considering online GAP is due to Feldman et al. [17]. They obtained an algorithm
of competitive ratio tending to 1− 1/e in the free disposal model. In this model, the total
size of items assigned to a resource might exceed its capacity; in addition, no item consumes
more than a small fraction of any resource. A stochastic variant of online GAP was studied
by Alaei et al. [2]. Here, the size of an item is drawn from an individual distribution that is
revealed upon arrival of the item, together with its profit. However, the algorithm learns the
actual item size only after the assignment. If no item consumes more than a (1/k)-fraction
of any resource, the algorithm proposed by Alaei et al. has competitive ratio 1− 1/

√
k.

Online packing LPs. In contrast to GAP, general packing LPs describe problems where
requests can consume more than one resource. The study of online packing LPs was initiated
by Buchbinder and Naor [10] in the adversarial model. In several papers [1, 16, 27, 39]
it has been shown that the random order model admits (1 − ε)-competitive algorithms
assuming large capacity ratios, i.e., when the capacity of any resource is large compared to
the maximum demand for it. Most recently, Kesselheim et al. [27] showed that there is a
(1− ε)-competitive algorithm if B = Ω((log d)/ε2), where B is the capacity ratio and d is
the column sparsity (the maximum number of resources occurring in a single column).

1.2 Our Contributions
As outlined above, for online knapsack and GAP in the adversarial input model, nearly
all previous works attain constant competitive ratios at the cost of either (a) imposing
structural constraints on the input or (b) significantly relaxing the original online model.
Therefore, we study both problems in the random order model, which is less pessimistic than
the adversarial model but still considers worst-case instances without further constraints on
the item properties. For the knapsack problem, our main result is the following.

I Theorem 1.1. There exists a (1/6.65)-competitive randomized algorithm for the online
knapsack problem in the random order model assuming n→∞.

One challenge in the design of knapsack algorithms is that the optimal packing can have, on
a high level, at least two different structures. Either there are few large items, constituting
the majority of the packing’s profit, or there are many small such items. Previous work [6,27]
is based on splitting the input according to item sizes and then employing algorithms tailored
for these restricted instances. However, the algorithms from [6,27] choose a single item type
via an initial random choice, and then pack items of that type exclusively. In contrast, our
approach considers different item types in distinct time intervals, rather than discarding
items of a specific type in advance. More precisely, we develop algorithms AL and AS which
are combined in a novel sequential approach: While large items appearing in early rounds are
packed using AL, algorithm AS is applied to pack small items revealed in later rounds. We
think that this approach may be helpful for other problems in similar online settings as well.

APPROX/RANDOM 2019
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The proposed algorithm AL deals with the knapsack problem where all items consume
more than 1/3 of the capacity (we call this problem 2-KS). The 2-KS problem is closely
related to the k-secretary problem [29] for k = 2. We also develop a general framework that
allows to employ any algorithm for the 2-secretary problem to obtain an algorithm for 2-KS.
As a side product, we obtain a simple (1/3.08)-competitive deterministic algorithm for 2-KS
in the random order model. For items whose size is at most 1/3 of the resource capacity, we
give a simple and efficient algorithm AS . Here, a challenging constraint is that AL and AS
share the same resource, so we need to argue carefully that the decisions of AS are feasible,
given the packing of AL from previous rounds.

Finally, we show that the proposed sequential approach also improves the current best
result for GAP [27] from competitive ratio 1/8.06 to 1/6.99.

I Theorem 1.2. There exists a (1/6.99)-competitive randomized algorithm for the online
generalized assignment problem in the random order model assuming n→∞.

For this problem we use the algorithmic building blocks AL, AS developed in [26,27]. However,
we need to verify that AL, an algorithm for edge-weighted bipartite matching [26], satisfies
the desired properties for the sequential approach. We point out that the assignments of
our algorithm differ structurally from the assignments of the algorithm proposed in [27].
In the assignments of the latter algorithm, all items are either large or small compared to
the capacity of the assigned resource. In our approach, both situations can occur, because
resources are managed independently.

Roadmap. We focus on the result on the knapsack problem (Theorem 1.1) in the first
chapters of this paper. For this purpose, we provide elementary definitions in Section 2.
Our main technical contribution is formally introduced in Section 3: Here, we describe an
algorithmic framework performing two algorithms AL, AS sequentially. In Sections 4 and 5,
we design and analyze the algorithms AL and AS for the knapsack problem. Finally, in
Section 6 we describe how the sequential approach can be applied to GAP. Due to space
constraints, some proofs are deferred to Appendix A (knapsack) and to Appendix B (GAP).

2 Preliminaries

Let [n] := {1, . . . , n}. Further, let Q≥0 and Q>0 denote the set of non-negative and positive
rational numbers, respectively.

Knapsack problem. We are given a set of items I = [n], each item i ∈ I has size si ∈ Q>0
and a profit (value) vi ∈ Q≥0. The goal is to find a maximum profit packing into a knapsack
of size W ∈ Q>0, i.e., a subset M ⊆ I such that

∑
i∈M si ≤W and

∑
i∈M vi is maximized.

W.l.o.g. we can assume si ≤ W for all i ∈ I. In the online variant of the problem, in each
round ` ∈ [n] a single item i is revealed together with its size and profit. The online algorithm
must decide immediately and irrevocably whether to pack i. We call an item visible in round
` if it arrived in round ` or earlier.

Random order performance. We analyze the performance of algorithms in the random
order model. Given a worst case input I, the order in which I is presented is drawn uniformly
at random from the set of all permutations. For an algorithm A, its competitive ratio is
defined as E [A(I)] /OPT(I), where A(I) and OPT(I) denote the profits of the solutions
of A and an optimal offline algorithm, respectively. Here, the expectation is taken over
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Algorithm 1 Sequential approach.

Input :Random permutation π of n items in I, a knapsack of capacity W ,
parameters c, d ∈ (0, 1) with c < d, algorithms AL, AS .

Output :A feasible (integral) knapsack packing.
Let ` be the current round.
if ` ≤ cn then

Sampling phase – discard all items;
if cn+ 1 ≤ ` ≤ dn then

Pack π(`) iff AL packs πL(`);
if dn+ 1 ≤ ` ≤ n then

Pack π(`) iff AS packs πS(`) and the remaining capacity is sufficiently large.

all permutations and random choices of the algorithm. As above, we slightly overload the
notation and also use A as a random variable for the profit of the solution returned by an
algorithm A.

We classify items as large or small, depending on their size compared to W and a
parameter δ ∈ (0, 1) to be determined later.

I Definition 2.1. We say an item i is δ-large if si > δW and δ-small if si ≤ δW . Whenever
δ is clear from the context, we say an item is large or small for short. Based on the given
item set I, we define two modified item sets IL and IS, which are obtained as follows:

IL: Replace each small item by a large item of profit 0
IS: Replace each large item by a small item of profit 0.

Therefore, IL only contains large items and IS only contains small items. We can assume
that no algorithm packs a zero-profit item, thus any algorithmic packing of IL or IS can be
turned into a packing of I having the same profit. Let OPT, OPTL, and OPTS be the total
profits of optimal packings for I, IL, and IS , respectively. A useful upper bound for OPT is

OPT ≤ OPTL + OPTS . (1)

3 Sequential Approach

A common approach in the design of algorithms for secretary problems is to set two phases: a
sampling phase, where all items are rejected, followed by a decision phase, where some items
are accepted according to a decision rule. Typically, this rule is based on the information
gathered in the sampling phase. We take this concept a step further: The key idea of our
sequential approach is to use a part of the sampling phase of one algorithm as decision phase
of another algorithm, which itself can have a sampling phase. This way, two algorithms are
performed in a sequential way, which makes better use of the entire instance. We combine
this idea with using different strategies for small and large items.

Formally, let AL and AS be two online knapsack algorithms and IL and IS be the item
sets constructed according to Definition 2.1. Further, let 0 < c < d < 1 be two parameters
to be specified later. Our proposed algorithm samples the first cn rounds; during this time
no item is packed. From round cn+ 1 to dn, the algorithm considers large items exclusively.
In this interval we follow the decisions of AL. After round dn, the algorithm processes only
small items and follows the decisions of AS . However, it might be the case that an item
accepted by AS cannot be packed because the knapsack capacity is exhausted due to the
packing of AL in earlier rounds. Note that all rounds 1, . . . , dn can be considered as the

APPROX/RANDOM 2019
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Algorithm 2 Algorithm AL for large items.

Input :Random permutation of n (1/3)-large items, a knapsack of capacity W ,
parameters c, d ∈ (0, 1) with c < d.

Output :A feasible (integral) packing of the knapsack.
Let ` be the current round.
if ` ≤ cn then

Sampling phase – discard all items.
Let v∗ be the maximum profit seen up to round cn.
if cn+ 1 ≤ ` ≤ dn then

Pack the first two items of profit higher than v∗, if feasible.
if ` > dn then

Discard all items.

sampling phase for AS . A formal description is given in Algorithm 1. Here, for a given
input sequence π of I, let πL and πS denote the corresponding sequences from IL and IS ,
respectively. Note that π is revealed sequentially and πL, πS can be constructed online. For
any input sequence π, let π(`) denote the item at position ` ∈ [n].

In the final algorithm we set the threshold for small items to δ = 1/3 and use Algorithm 1
with parameters c = 0.42291 and d = 0.64570. Under the assumption n→∞ we can assume
cn, dn ∈ N. We next give a high-level description of the proof of Theorem 1.1.

Proof of Theorem 1.1. Let A be Algorithm 1 and AL, AS be the algorithms developed
in Sections 4 and 5. In the next sections we prove the following results (see Lemmas 4.7
and 5.5): The expected profit from AL in rounds cn+ 1, . . . , dn is at least 1

6.65 OPTL, and
the expected profit from AS in rounds dn+ 1, . . . , n is at least 1

6.65 OPTS . Together with
inequality (1), we obtain

E [A] ≥ E [AL] + E [AS ] ≥ 1
6.65 OPTL + 1

6.65 OPTS ≥
1

6.65 OPT . J

The order in which AL and AS are arranged in Algorithm 1 follows from two observations.
Algorithm AS is powerful if it samples roughly (2/3)n rounds; a part of this long sampling
phase can be used as the decision phase of AL, for which a shorter sampling phase is
sufficient. Moreover, the first algorithm should either pack high-profit items, or should leave
the knapsack empty for the following algorithm with high probability. The algorithm AL we
propose in Section 4 has this property (see Lemma 4.8). In contrast, if AS would precede
AL, the knapsack would be empty at the beginning of AL with very small probability, in
which case we would not benefit from AL.

Finally, note that better algorithms and parameterizations for the respective sub-problems
exist (see Lemma 4.6 and [27]). However, for the overall performance we need algorithms
AL and AS that perform well evaluated in the sequential framework.

4 Large Items

The approach presented in this section is based on the connection between the online knapsack
problem under random arrival order and the k-secretary problem [29]. In the latter problem,
the algorithm can accept up to k items and the goal is to maximize the sum of their profits.
The k-secretary problem generalizes the classical secretary problem [15, 31] and is itself a
special case of the online knapsack problem under random arrival order (if all knapsack items
have size W/k).
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Table 1 Definition of packing types A-M. We use set notation {i, j} if i and j can be packed in
any order, and tuple notation (i, j) if the packing order must be as given.

type content constraint on j probability pX

A {1, 2} - p12 + p21

B {1, 3} - p13 + p31

C {2, 3} - p23 + p32

D (1, j) - p1

E (2, j) - p2

F (3, j) - p3

G (4, j) - p4

H (1, j) j 6= 2 p1 − p12

I (1, j) j 6= 3 p1 − p13

J (2, j) j 6= 1 p2 − p21

K (2, j) j 6= 3 p2 − p23

L (3, j) j 6= 1 p3 − p31

M (3, j) j 6= 2 p3 − p32

In our setting, each large item consumes more than δ = 1/3 of the knapsack capacity. We
call this problem 2-KS, since at most two items can be packed completely. Therefore, any
2-secretary algorithm can be employed to identify high-profit items and pack them if feasible.
Although this idea applies to any δ and corresponding k, the approach seems stronger for
small k: Intuitively, the characteristics of k-KS and k-secretary deviate with growing k, while
1-KS is exactly 1-secretary. Furthermore, the k-secretary problem is for k = 2 rather well
studied [3, 12], while the exact optimal competitive ratios for k ≥ 3 are still unknown.

In the following, let AL be Algorithm 2. This is an adaptation of the algorithm single-
ref developed for the k-secretary problem in [3]. As discussed above, 2-secretary and 2-KS
are similar, but different problems. Therefore, in our setting it is not possible to apply the
existing analysis from [3] or from any other k-secretary algorithm directly.

Assumption. For this section we assume that all profits are distinct. This is without loss of
generality, as ties can be broken by adjusting the profits slightly, using the items’ identifiers.
Further, we assume v1 > v2 > . . . > vn and say that i is the rank of item i.

4.1 Packing Types
As outlined above, in contrast to the 2-secretary problem, not all combinations of two
knapsack items can be packed completely. Therefore, we analyze the probability that AL
selects a feasible set of items whose profit can be bounded from below. We restrict our
analysis to packings where an item i ∈ {1, 2, 3, 4} is packed as the first item and group such
packings into several packing types A-M defined in the following. Although covering more
packings might lead to further insights into the problem and to a stronger result, we expect
the improvement to be marginal.

Let pX be the probability that AL returns a packing of type X ∈ {A, . . . ,M}. In addition,
let pi for i ∈ [n] be the probability that AL packs i as the first item. Finally, let pij for
i, j ∈ [n] be the probability that AL packs i as the first item and j as the second item.

In a packing of type A, the items 1 and 2 are packed in any order. Therefore, pA = p12+p21.
The types B and C are defined analogously using the items {1, 3} and {2, 3}, respectively. In
a packing of type D, the item 1 is accepted as the first item, together with no or any second

APPROX/RANDOM 2019
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cn+1

a

dn

i

kSampling

Item

Pos.

Figure 1 Input sequence considered in Lemma 4.2. The gray dashed slots represent items of rank
greater than a.

item j. This happens with probability pD = p1. Accordingly, we define types E,F, and G
using the items 2,3, and 4, respectively. Finally, for each item i ∈ {1, 2, 3}, we introduce two
further packing types. For i = 1, types H and I characterize packings where the first accepted
item is 1, the second accepted item j is not 2 (type H) and not 3 (type I), respectively.
Therefore, we get pH = p1 − p12 and pI = p1 − p13. Packing types J-K and L-M describe
analogous packings for i = 2 and i = 3, respectively. Table 1 shows all packing types A-M
and their probabilities expressed by pi and pij .

The packing types defined above allow to describe all packings where a specific item
i ∈ {1, 2, 3, 4} is packed as the first item, without covering the same packing multiple times.
For example, packing types A and D (with j = 2) both include the packing (1, 2); however,
we can consider the disjoint packing types A and H.

4.2 Acceptance Probabilities of Algorithm 2
In the following we compute the probabilities pi and pij from Table 1 as functions of c and d.
Throughout the following proofs, we denote the position of an item i in a given permutation
with pos(i) ∈ [n]. Further, let a be the maximum profit item from sampling.

We think of the random permutation as being sequentially constructed. The fact given
below follows from the hypergeometric distribution and becomes helpful in the proofs of
Lemmas 4.2 and 4.3.

I Fact 4.1. Suppose there are N balls in an urn from which M are blue and N −M red.
The probability of drawing K blue balls without replacement in a sequence of length K is
h(N,M,K) :=

(
M
K

)
/
(
N
K

)
.

In the first lemma, we provide the probabilities pi for i ∈ [4] assuming n→∞.

I Lemma 4.2. Assuming n→∞, it holds that

pi =


c ln d

c i = 1
c
(
ln d

c − d+ c
)

i = 2
c
(
ln d

c − 2(d− c) + 1
2 (d2 − c2)

)
i = 3

c
(
ln d

c − 3(d− c) + 3
2 (d2 − c2)− 1

3 (d3 − c3)
)

i = 4 .

Proof. We construct the random permutation by drawing the positions for items sequentially,
starting with the items i and a. For any position k ≥ cn + 1, the permutation fulfills
pos(i) = k and pos(a) ≤ cn with probability 1

n
cn
n−1 = c

n−1 . Next, we draw the remaining
k − 2 items for the slots up to position k. Since i is packed as the first item, all previous
items (except for a) must have rank greater than a (see Figure 1). As these items are drawn
from the remaining n− 2 items (of which n− a have rank greater than a), the probability
for this step is h(n− 2, n− a, k− 2) according to Fact 4.1. Using the law of total probability
for k ∈ {cn+ 1, . . . , dn} and a ∈ {i+ 1, . . . , n} we obtain

pi = c

n− 1

dn∑
k=cn+1

n∑
a=i+1

h(n− 2, n− a, k − 2) = c

n− 1

dn∑
k=cn+1

1(
n−2
k−2
) n∑
a=i+1

(
n− a
k − 2

)
.
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We can simplify this term further by observing

n∑
a=i+1

(
n− a
k − 2

)
=
n−i−1∑
a=0

(
a

k − 2

)
=
(
n− i
k − 1

)
.

Therefore, pi = c
n−1

∑dn
k=cn+1

(
n−i
k−1
)
/
(
n−2
k−2
)
.

Asymptotics. It holds that

lim
n→∞

(
n−i
k−1
)(

n−2
k−2
) = lim

n→∞

(n− i)!
(n− 2)!

(n− k)!
(n− i− k + 1)!

1
k − 1 = (n− k)i−1

ni−2
1
k
.

Hence, lim
n→∞

pi = (c/ni−1)
∑dn
k=cn+1 f(k) where f(k) := (n−k)i−1/k. Since f is monotonically

decreasing in k, we have
∫ dn+1
cn+1 f(k) dk ≤

∑dn
k=cn+1 f(k) ≤

∫ dn
cn

f(k) dk . Let F be a function
such that

∫ b
a
f(k) dk = F (b) − F (a) for 0 < a < b. As it holds that lim

n→∞
F (dn + 1) −

F (dn) = lim
n→∞

F (cn + 1) − F (cn) = 0, the above bounds are asymptotically tight, i.e.,

lim
n→∞

∑dn
k=cn+1 f(k) = F (dn)− F (cn). Below we give functions F for i ∈ [4].

i f(k) F (k) F (dn)− F (cn)

1 1
k

ln k ln d
c

2 n−k
k

n ln k − k n ln d
c
− dn + cn

3 (n−k)2

k
n2 ln k − 2nk + k2

2 n2 ln d
c
− 2n(dn− cn) + d2n2−c2n2

2

4 (n−k)3

k
n3 ln k − 3n2k + 3

2 nk2 − k3

3 n3 ln d
c
− 3n3(d− c) + 3

2 n3(d2 − c2)− 1
3 n3(d3 − c3)

The claims follow by multiplying the respective terms with c/ni−1. J

Next, we analyze the probabilities pij for i 6= j and i, j ∈ [3]. The next lemma deals with
the cases where j = i+ 1.

I Lemma 4.3. For n→∞ it holds that

p12 = c

(
d− c ln d

c
− c
)
,

p23 = c

(
d− c ln d

c
− c− d2

2 + cd− c2

2

)
.

The proof of Lemma 4.3 is technically similar to the proof of Lemma 4.2 and thus deferred
to Appendix A. It remains to analyze the probabilities p13, p31, p21, and p32. Interestingly,
they all reduce to the two probabilities considered in Lemma 4.3. The following two lemmas
should be intuitively clear from the description of Algorithm 2. For completeness, we give
formal proofs in Appendix A.

I Lemma 4.4. For any two items i and j it holds that pij = pji.

I Lemma 4.5. For any three items i < k < j it holds that pij = pkj.

Therefore, we have p13 = p23 by Lemma 4.5 and p31 = p13, p21 = p12, and p32 = p23 by
Lemma 4.4.
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4.3 Analysis
Let T be the set of items in the optimal packing of IL. This set may contain a single item,
may be a two-item subset of {1, 2, 3}, or may be a two-item subset containing an item j ≥ 4.
In the following we analyze the performance of Algorithm 2 for each case.

Single-item case. Let case 1 be the case where T = {1}. In case 1, E [AL] ≥ pD OPTL.

Two-item cases. In cases 2–4, we consider packings of the form T = {i, j} with 1 ≤ i <

j ≤ 3. We define cases 2, 3, and 4 as T = {1, 2}, T = {1, 3}, and T = {2, 3}, respectively.
We want to consider all algorithmic packings whose profit can be bounded in terms of
OPTL = vi + vj . For this purpose, for each case 2-4 we build three groups of feasible packing
types, according to whether the profit of a packing is OPTL, at least vi, or in the interval
(vi, vj ]. We ensure that no packing is counted multiple times by (a) choosing appropriate
packing types and (b) grouping these packing types in a disjoint way, according to their
profit. Let αw be the probability that the algorithm returns the optimal packing in case
w ∈ {2, 3, 4}. It holds that α2 = pA, α3 = pB, and α4 = pC. In addition, let βw be the
probability that an item k ≤ i is packed as the first item in case w ∈ {2, 3, 4}. We have
β2 = pH, β3 = pI, and β4 = pD + pK. Finally, let γw be the probability that an item k with
i < k ≤ j is packed as the first item in case w ∈ {2, 3, 4}. It holds that γ2 = pJ, γ3 = pE + pL,
and γ4 = pM.

Finally, we define case 5 as T = {i, j} with i ≥ 1, j ≥ 4, and i < j. In this case, note
that packings of type D contain an item of value at least vi, and packings of type E, F, and
G contain an item of value at least vj . Hence, we can slightly abuse the notation and set
α5 = 0, β5 = pD, and γ5 = pE + pF + pG, such that it holds that

E [AL] ≥ αw(vi + vj) + βwvi + γwvj in case w ∈ {2, 3, 4, 5} .

To bound this term against OPTL = vi + vj , consider the following two cases: If βw ≥ γw,
we obtain from Chebyshev’s sum inequality βwvi + γwvj ≥ 1

2 (βw + γw) (vi + vj). If βw < γw,
we trivially have βwvi + γwvj > βw(vi + vj). Thus, we obtain

E [AL] ≥
(
αw + min

{
βw + γw

2 , βw

})
OPTL in case w ∈ {2, 3, 4, 5} . (2)

The competitive ratio of AL is the minimum over all cases 1-5. We obtain the following
two lemmas. If the algorithm is allowed to use the entire input sequence (d = 1), AL has a
competitive ratio of 1/3.08.

I Lemma 4.6. With c = 0.23053 and d = 1, algorithm AL satisfies E [AL] ≥ 1
3.08 OPTL.

Note that 2-KS includes the secretary problem (case 1); thus, no algorithm for 2-KS can
have a better competitive ratio than 1/e < 1/2.71. In the final algorithm we set d < 1 to
benefit from AS . The next lemma has already been used to prove Theorem 1.1 in Section 3.

I Lemma 4.7. With c = 0.42291 and d = 0.64570, algorithm AL satisfies E [AL] ≥
1

6.65 OPTL.

Proof of Lemmas 4.6 and 4.7. For the overall competitive ratio, we build the minimum
over all cases. According to inequality (2), the competitive ratios for the two-item cases
depend on βw ≥ γw or βw < γw. However, for the parameter pairs (c, d) = (0.23053, 1) from



S. Albers, A. Khan, and L. Ladewig 22:11

Table 2 Competitive ratios of Algorithm 2 for the parameters from Lemmas 4.6 and 4.7 in
different cases. Bold values indicate the minimum over all cases and thus the competitive ratio.

two-item cases

c d case 1 case 2 case 3 case 4 case 5

Lemma 4.6 0.23053 1 0.33827 0.34898 0.32705 0.32705 0.32471
Lemma 4.7 0.42291 0.64570 0.17897 0.15039 0.16033 0.16033 0.16231

Lemma 4.6 and (c, d) = (0.42291, 0.64570) from Lemma 4.7 we have βw ≥ γw for any case
w ∈ {2, 3, 4, 5}. This follows from a technical lemma provided in Appendix A (Lemma A.1).
Hence, inequality (2) simplifies to E [AL] ≥

(
αw + βw+γw

2

)
OPTL in case w ∈ {2, 3, 4, 5}.

Using the definitions of pX from Table 1 and the symmetry property of Lemma 4.4 we get

E [AL] /OPTL ≥



p1 case 1
p12 + (p1 + p2)/2 case 2
p13 + (p1 + p2 + p3)/2 case 3
p23 + (p1 + p2 + p3)/2 case 4
(p1 + p2 + p3 + p4)/2 case 5 .

(3)

Note that the algorithm attains the same competitive ratio in case 3 and 4, since p13 = p23.
Table 2 shows the competitive ratios for all five cases obtained from Equation (3). For the
overall competitive ratio, we have

E [AL] ≥ min
{
p1, p12 + p1 + p2

2 , p23 + p1 + p2 + p3

2 ,
p1 + p2 + p3 + p4

2

}
OPTL .

Hence, the competitive ratios are 0.32471 ≥ 1/3.08 and 0.15039 ≥ 1/6.65 for Lemma 4.6 and
Lemma 4.7, respectively. J

Recall that in Algorithm 1, we can only benefit from AS if AL has not filled the knapsack
completely. Thus, the following property is crucial in the final analysis.

I Lemma 4.8. With probability of at least c/d, no item is packed by AL.

Proof. Fix any set of dn items arriving in rounds 1, . . . , dn. The most profitable item v∗

from this set arrives in the sampling phase with probability c/d. If this event occurs, no item
in rounds cn+ 1, . . . , dn beats v∗ and AL will not select any item. J

We finally note that our approach from Section 4.1 provides a general framework to obtain
algorithms for 2-KS using secretary algorithms with two choices. Although stronger algorithms
than Algorithm 2 exist for the 2-secretary objective [3,12] and similar objectives [40,42], it is
not clear if they would improve the performance of the overall algorithm. More sophisticated
algorithms may use weaker thresholds to accept the first item, which decreases the probability
considered in Lemma 4.8. This, in turn, reduces the expected profit gained from AS , as
described above.

5 Small Items

For small items, we use solutions for the fractional problem variant and obtain an integral
packing via randomized rounding. This approach has been applied successfully to packing
LPs [27]; however, for the knapsack problem it is not required to solve LP relaxations in each
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round (as in [27]). Instead, here, we build upon solutions of the classical greedy algorithm,
which is well-known to be optimal for the fractional knapsack problem. Particularly, this
algorithm is both efficient in running time and easy to analyze.

We next formalize the greedy solution for any set T of items. Let the density of an item
be the ratio of its profit to its size. Consider any list L containing the items from T ordered
by non-increasing density. We define the rank ρ(i) of item i as its position in L and σ(l) as
the item at position l in L. Thus, σ(l) = ρ−1(l) denotes the l-th densest item. Let k be such
that

∑k−1
i=1 sσ(i) < W ≤

∑k
i=1 sσ(i). The fraction of item i in the greedy solution α is now

defined as

αi =


1 if ρ(i) < k(
W −

∑k−1
i=1 sσ(i)

)
/si if ρ(i) = k

0 else ,

i.e., we pack the k − 1 densest items integrally and fill the remaining space by the maximum
feasible fraction of the k-th densest item. Let OPT(T ) and OPT∗(T ) denote the profits
of optimal integral and fractional packings of T , respectively. It is not hard to see that α
satisfies

∑
i∈T αivi = OPT∗(T ) ≥ OPT(T ) and

∑
i∈T αisi = W .

5.1 Algorithm
The algorithm AS for small items, which is formally defined in Algorithm 3, works as follows.
After a sampling phase of dn rounds, in each round ` ≥ dn+ 1 the algorithm computes a
greedy solution x(`) for IS(`). Here, IS(`) denotes the subset of IS revealed up to round `.
The algorithm packs the current online item i with probability x(`)

i . However, generally, this
can only be done if the remaining capacity of the knapsack is at least δW ≥ si.

Note that in case of an integral coefficient x(`)
i ∈ {0, 1}, the packing step is completely

deterministic. Moreover, in any greedy solution x(`), there is at most one item i with
fractional coefficient x(`)

i ∈ (0, 1). Therefore, in expectation, there is only a small number of
rounds where the algorithm actually requests randomness.

I Observation 5.1. Let X denote the number of rounds where Algorithm 3 packs an item
with probability xi ∈ (0, 1). It holds that E [X] ≤ ln(1/d) ≤ 0.44.

Proof. Consider any round ` and let x(`) be the greedy knapsack solution computed by
Algorithm 3. By definition of x(`), at most one of the ` visible items has a fractional coefficient
x

(`)
i ∈ (0, 1). The probability that this item i arrives in round ` is 1/` in a random permutation.

Let X` be an indicator variable for the event that Algorithm 3 packs an item at random in
round `. By the above argument, we have Pr [X` = 1] ≤ 1/`. Since Algorithm 3 selects items
starting in round dn+1, we obtain E [X] =

∑n
`=dn+1 E [X`] ≤

∑n
`=dn+1

1
` ≤ ln 1

d ≤ 0.44 . J

Note that Algorithm 2 and the sequential approach (Algorithm 1) are deterministic algorithms.
Therefore, our overall algorithm requests randomness in expectation in less than one round.

5.2 Analysis
Let α be the greedy (offline) solution for IS and set ∆ = 1

1−δ . Recall that in round dn+ 1,
the knapsack might already have been filled by AL with large items in previous rounds. For
now, we assume an empty knapsack after round dn and define this event as ξ. In the final
analysis, we will use the fact that Pr [ξ] can be bounded from below, which is according
to Lemma 4.8.
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Algorithm 3 Algorithm AS for small items.

Input :Random permutation of n (1/3)-small items, a knapsack of capacity W ,
parameter d ∈ (0, 1).

Output :A feasible (integral) packing of the knapsack.
Let ` be the current round and i be the online item of round `.
if ` ≤ dn then

Sampling phase – discard all items.
if dn+ 1 ≤ ` ≤ n then

Let x(`) be the greedy solution for IS(`).
if the remaining capacity is at least δW then

Pack i with probability x(`)
i .

I Lemma 5.2. Let i ∈ IS and Ei(`) be the event that the item i is packed by AS in round `.
For ` ≥ dn+ 1, it holds that Pr [Ei(`) | ξ] ≥ 1

nαi(1−∆ ln `
dn ).

Proof. In a random permutation, item i arrives in round ` with probability 1/n. In round
` ≥ dn+ 1, the algorithm decides to pack i with probability x(`)

i . Note that the rank of item
i in IS(`) is less or equal to its rank in IS . According to the greedy solution’s definition,
this implies x(`)

i ≥ αi. Finally, the δ-small item i can be packed successfully if the current
resource consumption X is at most (1− δ)W . In the following, we investigate the expectation
of X to give a probability bound using Markov’s inequality at the end of this proof.

Let Xk be the resource consumption in round k < `. By assumption, the knapsack is
empty after round dn, we have X =

∑`−1
k=dn+1Xk. Let Q be the set of k visible items in

round k. The set Q can be seen as uniformly drawn from all k-item subsets and any item
j ∈ Q is the current online item of round k with probability 1/k. The algorithm packs any
item j with probability x(k)

j , thus

E [Xk] =
∑
j∈Q

Pr [j occurs in round k] sjx(k)
j = 1

k

∑
j∈Q

sjx
(k)
j ≤ W

k
,

where the last inequality holds because x(k) is a feasible solution for a knapsack of sizeW . By
the linearity of expectation and the previous equation, the expected resource consumption up
to round ` is E [X] =

∑`−1
k=dn+1 E [Xk] ≤

∑`−1
k=dn+1

W
k ≤W ln `

dn . Using Markov’s inequality,
we obtain finally

Pr [X < (1− δ)W ] = 1−Pr [X ≥ (1− δ)W ] ≥ 1− E [X]
(1− δ)W ≥ 1−∆ ln `

dn
. J

Using Lemma 5.2 we easily obtain the total probability that a specific item will be packed.

I Lemma 5.3. Let i ∈ IS and Ei be the event that the item i is packed by AS. It holds that
Pr [Ei | ξ] ≥ αi

(
(1− d)(1 + ∆)−∆ ln 1

d

)
.

Proof. Summing the probabilities from Lemma 5.2 over all rounds ` ≥ dn+ 1 gives

Pr [Ei | ξ] =
n∑

`=dn+1
Pr [Ei(`) | ξ] ≥

n∑
`=dn+1

1
n
αi

(
1−∆ ln `

dn

)

= 1
n
αi

(
n− dn−∆

n∑
`=dn+1

ln `

dn

)
= αi

(
1− d− ∆

n

n∑
`=dn+1

ln `

dn

)
.
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Since ln `
dn is monotonically increasing in `, we can bound the last sum by the corresponding

integral:
n∑

`=dn+1
ln `

dn
≤
∫ n+1

`=dn+1
ln `

dn
d` = (n+1) ln n+ 1

dn
−(n+1)−(dn+1) ln dn+ 1

dn
+(dn+1) .

This implies limn→∞
∆
n

∑n
`=dn+1 ln `

dn ≤ ∆
(
ln 1

d − 1 + d
)
. Rearranging terms gives the

claim. J

The following lemma bounds the expected profit of the packing of AS , assuming ξ.

I Lemma 5.4. It holds that E [AS | ξ] ≥
(
(1− d)(1 + ∆)−∆ ln 1

d

)
OPTS.

Proof. Let β = (1− d)(1 + ∆)−∆ ln 1
d . By Lemma 5.3, the probability that an item i gets

packed is Pr [Ei | ξ] ≥ αiβ. Therefore,

E [AS | ξ] =
∑
i∈IS

Pr [Ei | ξ] vi ≥
∑
i∈IS

αiβvi ≥ βOPTS . J

The conditioning on ξ can be resolved using Lemma 4.8. Thus we obtain the following lemma,
which is the second pillar in the proof of Theorem 1.1 and concludes this section.

I Lemma 5.5. With c = 0.42291 and d = 0.64570, we have E [AS ] ≥ 1
6.65 OPTS.

Proof. By Lemma 4.8, the probability for an empty knapsack after round dn is Pr [ξ] ≥ c
d .

Thus, from Lemma 5.4 with ∆ = 1
1−1/3 = 3

2 , we obtain

E [AS ] = Pr [ξ] E [AS | ξ] = c

d

(
5
2(1− d)− 3

2 ln 1
d

)
OPTS ≥

1
6.65 OPTS . J

6 Extension to GAP

In this section we show that the sequential approach introduced in Section 3 can be easily
adapted to GAP, yielding a (1/6.99)-competitive randomized algorithm. We first define the
problem formally.

GAP. We are given a set of items I = [n] and a set of resources R = [m] of capacities
Wr ∈ Q>0 for r ∈ R. If item i ∈ I is assigned to resource r ∈ R, this raises profit (value)
vi,r ∈ Q≥0, but consumes si,r ∈ Q>0 of the resource’s capacity. The goal is to assign each
item to at most one resource such that the total profit is maximized and no resource exceeds
its capacity. We call the tuple (vi,r, si,r) an option of item i and w.l.o.g. assume that options
for all resources exist. This can be ensured by introducing dummy options with vi,r = 0. In
the online version of the problem, in each round an item is revealed together with its set
of options. The online algorithm must decide immediately and irrevocably, if the item is
assigned. If so, it has to specify the resource according to one of its options.

Again, we construct restricted instances IL and IS according to the following definition,
which generalizes Definition 2.1. Let δ ∈ (0, 1).

I Definition 6.1. We call an option (vi,r, si,r) δ-large if si,r > δWr and δ-small if si,r ≤ δWr.
Whenever δ is clear from the context, we say an option is large or small for short. Based on
a given instance I for GAP, we define two modified instances IL and IS which are obtained
from I as follows.

IL: Replace each small option (vi,r, si,r) by the large option (0,Wr).
IS: Replace each large option (vi,r, si,r) by the small option (0, δ).
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Thus, IL only contains large options and IS only contains small options. However, by
construction no algorithm will assign an item according to a zero-profit option. We define
OPT, OPTL, and OPTS accordingly. Note that the inequality OPT ≤ OPTL + OPTS holds
also for GAP.

The sequential framework of Algorithm 1 can be adapted in a straightforward manner
by replacing terms like packing with assignment to resource r. Here, we set the threshold
parameter to δ = 1/2. In the following subsections, we specify algorithms AL and AS for
(1/2)-large and (1/2)-small options, respectively.

6.1 Large Options
If each item consumes more than one half of a resource, no two items can be assigned to this
resource. Thus, we obtain the following matching problem.

Edge-weighted bipartite matching problem. Given a bipartite graph G = (L ∪R,E) and
a weighting function w : E → Q≥0, the goal is to find a bipartite matching M ⊆ E such
that w(M) :=

∑
e∈M w(e) is maximal. In the online version, the (offline) nodes from R and

the number n = |L| are known in advance, whereas the nodes from L are revealed online
together with their incident edges. In the case of GAP, L is the set of items, R is the set
of resources, and the weight of an edge e = {l, r} is w(e) = vl,r, i.e., the profit gained from
assigning item l to resource r.

Under random arrival order, Kesselheim et al. [26] developed an optimal (1/e)-competitive
algorithm for this problem. Adapting this algorithm to the sequential approach with
parameters c and d leads to the following algorithm AL: After sampling the first cn nodes,
in each round ` the algorithm computes a maximum edge-weighted matching M (`) for the
graph revealed up to this round. Let l ∈ L be the online vertex of round `. If l is matched in
M (`) to some node r ∈ R, we call e(`) = {l, r} the tentative edge of round `. Now, if r is still
unmatched and ` ≤ dn, the tentative edge is added to the matching.

A formal description of this algorithm is given in Appendix B.1. The proof of the
approximation guarantee relies mainly on the following two lemmas; for completeness, we
give the proofs from [26] in Appendix B.1. The first lemma shows that the expected weight
of any tentative edge can be bounded from below.

I Lemma 6.2 ([26]). In any round `, the tentative edge (if it exists) has expected weight
E
[
w(e(`))

]
≥ 1

n OPTL.

However, we only gain the weight of the tentative edge e(`) = {l, r} if it can be added
to the matching, i.e., if r has not been matched previously. The next lemma bounds the
probability for this event from below.

I Lemma 6.3 ([26]). Let ξ(r, `) be the event that the offline vertex r ∈ R is unmatched after
round `. It holds that Pr [ξ(r, `)] ≥ cn

` .

Using Lemmas 6.2 and 6.3, we can bound the competitive ratio of AL in the following
lemma. Note that we obtain the optimal algorithm from [26] for c = 1/e and d = 1.

I Lemma 6.4. For n→∞, it holds that E [AL] ≥ c ln d
c OPTL.

Proof. Let A` be the gain of the matching weight in round `. As the tentative edge
e(`) = {l, r} can only be added if r has not been matched in a previous round, we have
E [A`] = E

[
w(e(`))

]
Pr [ξ(r, `)] for the event ξ(r, `) from Lemma 6.3. Therefore, from

APPROX/RANDOM 2019



22:16 Online Knapsack and GAP in the Random Order Model

Lemmas 6.2 and 6.3 we have E [A`] ≥ 1
n OPTL cn

` = c
` OPTL. Summing over all rounds from

cn+ 1 to dn yields

E [AL] =
dn∑

`=cn+1
E [A`] ≥

(
c

dn∑
`=cn+1

1
`

)
OPTL ≥ c ln dn+ 1

cn+ 1 OPTL .

Here, in the last step we used the fact
∑dn
`=cn+1

1
` ≥

∫ dn+1
cn+1

1
` d` = ln dn+1

cn+1 . The claim follows
by limn→∞ ln dn+1

cn+1 = ln d
c . J

6.2 Small Options
For δ-small options we use the LP-based algorithm AS from [27, Sec. 3.3]. On a high level,
this algorithm works as follows: After a sampling phase of dn rounds, in each round ` the
algorithm computes an optimal fractional solution for the instance revealed so far and uses
the coefficients as probabilities for an integral assignment. In Appendix B.2 we prove the
following lemma, where ∆ = 1

1−δ .

I Lemma 6.5. For n→∞, it holds that E [AS ] ≥ c
d

(
(1 + ∆)(1− d)−∆ ln 1

d

)
OPTS.

Note that we obtain basically the same competitive ratio as in Lemma 5.4. Since Lemma 6.5
already addresses possible resource consumption due to assignments made by AL in earlier
rounds, the factor c/d arises (see Lemma 6.3).

6.3 Proof of Theorem 1.2
Finally, we prove our main theorem for GAP.

Proof of Theorem 1.2. We set the threshold between large and small options to δ = 1/2
and consider Algorithm 1 with the algorithms AL and AS as defined previously. By
Lemma 6.4, the expected gain of profit in rounds cn + 1, . . . , dn is E [AL] ≥ c ln d

c OPTL.
Further, we gain E [AS ] ≥ c

d

(
(1 + ∆)(1− d)−∆ ln 1

d

)
OPTS with ∆ = 2 in the following

rounds, according to Lemma 6.5. For parameters c = 0.5261 and d = 0.6906, we obtain
c ln d

c ≥
c
d

(
3(1− d)− 2 ln 1

d

)
and thus, using OPTL + OPTS ≥ OPT,

E [AL] + E [AS ] ≥ c

d

(
3(1− d)− 2 ln 1

d

)
(OPTL + OPTS) ≥ 1

6.99 OPT . J
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Figure 2 Input sequence considered in Lemma 4.3. The gray dashed slots represent items of rank
greater than a.

A Missing Proofs for the Knapsack Result

Proof of Lemma 4.3. Let i ∈ [n− 1] and j = i+ 1. The proof follows the same structure as
the proof of Lemma 4.2. Again, we construct the permutation by drawing the positions for
items i, j, a first and afterwards all remaining items with position up to pos(j). Fix positions
k = pos(i) and l = pos(j). Again, pos(a) ≤ cn must hold by definition of a. The probability
that a random permutation satisfies these three position constraints is β := 1

n
1

n−1
cn
n−2 . All

remaining items up to position l must have rank greater than a (see Figure 2). Thus we
need to draw l − 3 items from a set of n− 3 remaining items, from which n− a have rank
greater than a. This happens with probability h(n− 3, n− a, l − 3). Using the law of total
probability for cn+ 1 ≤ k < l ≤ dn and a ∈ {j + 1, . . . , n}, we obtain

pij = β

dn−1∑
k=cn+1

dn∑
l=k+1

n∑
a=j+1

h(n− 3, n− a, l − 3)

= β

dn−1∑
k=cn+1

dn∑
l=k+1

1(
n−3
l−3
) n∑
a=j+1

(
n− a
l − 3

)
= β

dn−1∑
k=cn+1

dn∑
l=k+1

(
n−j
l−2
)(

n−3
l−3
) ,

where in the last step we used the equality
∑n
a=j+1

(
n−a
l−3
)

=
∑n−j−1
a=0

(
a
l−3
)

=
(
n−j
l−2
)
.

We next consider the asymptotic setting n → ∞. For this purpose, we define Q(l) =(
n−j
l−2
)
/
(
n−3
l−3
)
. For (i, j) = (1, 2) we have Q(l) =

(
n−2
l−2
)
/
(
n−3
l−3
)

= n−2
l−2 . The sum

∑dn
l=k+1

n−2
l−2

converges to n ln dn
k for n → ∞. Further, lim

n→∞

∑dn−1
k=cn+1 n ln dn

k = n (F (dn)− F (cn)) for
F (x) := x ln dn

x + x. Hence,

lim
n→∞

p12 = lim
n→∞

βn

(
dn ln dn

dn
+ dn− cn ln dn

cn
− cn

)
= c

(
d− c ln d

c
− c
)
.

In the case (i, j) = (2, 3) it holds that Q(l) =
(
n−3
l−2
)
/
(
n−3
l−3
)

= n−l
l−2 and we have

lim
n→∞

∑dn
l=k+1

n−l
l−2 = n ln dn

k − dn + k. Let F (x) := nx
(
ln dn

x − d+ 1
)

+ x2

2 . Again, by
bounding the sum by the corresponding integral we obtain

lim
n→∞

dn∑
k=cn+1

n ln dn
k
− dn+ k

= F (dn)− F (cn)

= dn2
(

ln dn
dn
− d+ 1

)
+ d2n2

2 − cn2
(

ln dn
cn
− d+ 1

)
− c2n2

2

= n2
(
−d2 + d+ d2

2 − c ln d
c

+ cd− c− c2

2

)
= n2

(
d− c ln d

c
− c− d2

2 + cd− c2

2

)
.

Multiplying the last term with lim
n→∞

β = c/n2 gives the claim for p23. J
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Proof of Lemma 4.4. Suppose i is accepted first and j is accepted as the second item in
the input sequence π. Consider the sequence π′ obtained from π by swapping i with j. Since
j and i are the first two elements beating the best sampling item in π′, Algorithm 2 will
select j and i on input π′. Hence, the number of permutations must be the same for both
events, which implies the claim. J

Proof of Lemma 4.5. The argument is similar to the proof of Lemma 4.4. Consider any
input sequence π where i is selected first and j second. We know that the best item a from
sampling has profit va < vj < vi and thus any item k with i < k < j must occur after j.
Let π′ be the sequence obtained from π by swapping i with k. Now, i is behind k and j,
thus Algorithm 2 will accept k and j. Again, this proves pij = pkj since the numbers of
corresponding permutations are equal. J

The next lemma is used in the proof of Lemma 4.7 to show that for the given lists of
parameters, we have βw ≥ γw.

I Lemma A.1. Let f(x) = 2 ln x− 6x+ 2x2 − x3

3 . For parameters c,d with f(c) ≥ f(d) it
holds that βw ≥ γw where 2 ≤ w ≤ 5.

Proof. The function f is chosen in a way that f(c) ≥ f(d) is equivalent to β5 ≥ γ5. This
can be verified easily, using β5 = pD = p1, γ5 = pE + pF + pG = p2 + p3 + p4, and Lemma 4.2.
Therefore, the claim for w = 5 holds by assumption. For 2 ≤ w ≤ 4, the claims follow
immediately from f(c) ≥ f(d) and the symmetry property of Lemma 4.4:

β2 = pH = p1 − p12 = p1 − p21 ≥ p2 − p21 = pJ = γ2

β3 = pI = p1 − p13 = p1 − p31 ≥ p2 + p3 − p31 = pE + pL = γ3

β4 = pD + pK = p1 + p2 − p23 ≥ p1 − p32 ≥ p3 − p32 = pM = γ4 . J

B Missing Proofs for the GAP Result

B.1 Large Options

Algorithm 4 Algorithm for edge-weighted bipartite matching from [26] (extended by our
parameters c, d).

Input :Offline vertex set R, number of online vertices n = |L|,
parameters c, d ∈ (0, 1) with c < d.

Output :Matching M .
Set M = ∅.
Let ` be the current round and l be the online vertex of round `.
if 1 ≤ ` ≤ cn then

Sampling phase – do not add any edge.
if cn+ 1 ≤ ` ≤ dn then

Let M (`) be a maximum-weight matching for the graph in round `.
Let e(`) ∈M (`) be the edge incident to l.
if M ∪ e(`) is a matching then

Add e(`) to M .
if ` > dn then

Do not add any edge.
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Proof of Lemma 6.2. Let e(`) be the tentative edge of round ` and let Q ⊆ L with |Q| = ` be
the set of visible vertices from this round. Since each vertex from Q has the same probability
of 1/` to arrive in round `, we have

E
[
w(e(`))

]
=

∑
e={l,r}∈M(`)

Pr [l arrives in round `]w(e) = 1
`
w(M (`)) . (4)

Let M∗ = M (n) be a maximum weight (offline) matching and M∗Q = {e = {l, r} ∈M∗ | l ∈
Q}. We have w(M (`)) ≥ w(M∗Q), since M (`) is an optimal and M∗Q a feasible matching for
the graph revealed in round `. As Q can be seen as uniformly drawn among all `-element
subsets, each vertex l has probability `/n to be in Q. It follows

E
[
w(M (`))

]
≥ E

[
w(M∗Q)

]
=

∑
e={l,r}∈M∗

Pr [l ∈ Q]w(e) = `

n
w(M∗) . (5)

Combining (4) and (5) concludes the proof. J

Proof of Lemma 6.3. In each round k, the vertex r can only be matched if it is incident to
the tentative edge e(k) ∈M (k) of this round, i.e., e(k) = {l, r} where l ∈ L is the online vertex
of round k. As l can be seen as uniformly drawn among all k visible nodes (particularly,
independent from the order of the previous k − 1 items), l has probability 1/k to arrive in
round k. Consequently, r is not matched in round k with probability 1− 1/k. This argument
applies to all rounds cn+ 1, . . . , `. Therefore,

Pr [ξ(r, `)] ≥
∏̀

k=cn+1
1− 1

k
=

∏̀
k=cn+1

k − 1
k

= cn

`
. J

B.2 Small Options
For δ-small options we use the LP-based algorithm from [27, Sec. 3.3] and analyze it within
our algorithmic framework. In order to make this paper self-contained, we give a linear
program for GAP (LP 1), the algorithm, and its corresponding proofs.

maximize
∑
i∈IS
r∈R

vi,rxi,r

subject to
∑
i∈IS

si,rxi,r ≤Wr ∀r ∈ R

∑
r∈R

xi,r ≤ 1 ∀i ∈ IS

xi,r ∈ {0, 1} ∀(i, r) ∈ IS ×R (LP 1)

Let AS be Algorithm 5. After a sampling phase of dn rounds, in each round ` the
algorithm computes an optimal solution x(`) of the relaxation of LP 1 for IS(`). Here, IS(`)
denotes the instance of small options revealed so far. Now, the decision to which resource
the current online item i is assigned, if at all, is made by randomized rounding using x(`):
Resource r ∈ R is chosen with probability x(`)

i,r and the item stays unassigned with probability
1−

∑
r∈R x

(`)
i,r . Note that it is only feasible to assign the item to the chosen resource if its

remaining capacity is at least δWr.
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Algorithm 5 GAP algorithm for small options from [27, Sec. 3.3].

Input :Random order sequence of small options,
parameter d ∈ (0, 1).

Output : Integral GAP assignment.
Let ` be the current round and i be the online item of round `.
if 1 ≤ ` ≤ dn then

Sampling phase – do not assign any item.
if dn+ 1 ≤ ` ≤ n then

Let x(`) be an optimal fractional solution of LP 1 for IS(`).
Choose a resource r (possibly none), where r has probability x(`)

i,r .
if the remaining capacity of r is at least δWr then

Assign i to r.

To analyze Algorithm 5, we consider the gain of profit in round ` ≥ dn+ 1, denoted by
A`. For this purpose, let i(`) be the item of that round and r(`) the resource chosen by the
algorithm. Now, it holds that E [A`] = E

[
vi(`),r(`)

]
Pr
[
i(`) can be assigned to r(`)], where

in the first term, the expectation is over the item arriving in round ` and the resource chosen
by the algorithm. The latter term only depends on the resource consumption of r(`) in earlier
rounds. In the next two lemmas we give lower bounds for both terms.

I Lemma B.1 ([27, Sec. 3.3]). For any round ` ≥ dn+1, it holds that E
[
vi(`),r(`)

]
≥ 1

n OPTS.

Proof. The proof is similar to Lemma 6.2. As we consider a fixed round `, we write i and r
instead of i(`) and r(`) for ease of presentation. Further, we write v(α) :=

∑
j∈IS

∑
s∈R αj,svj,s

for the profit of a fractional assignment α.
Fix any set Q of ` visible items in round `. Let x(n) be an optimal (offline) solution to

the relaxation of LP 1. Further, let x(n)|Q denote the restriction of x(n) to the items in
Q, i.e., (x(n)|Q)j,s = x

(n)
j,s if j ∈ Q and (x(n)|Q)j,s = 0 if j /∈ Q. Since x(n)|Q is a feasible

and x(`) is an optimal solution for Q, we have E
[
v(x(`))

]
≥ E

[
v(x(n) |Q)

]
. As in a random

permutation each item has the same probability of `/n to be in Q, it holds that

E
[
v(x(`))

]
≥ E

[
v(x(n) |Q)

]
=
∑
j∈IS

∑
s∈R

Pr [j ∈ Q]x(n)
j,s vj,s = `

n
v(x(n)) = `

n
OPTS . (6)

Similarly, each item from Q is the current online item i with probability 1/`. The resource s,
to which an item j gets assigned, is determined by randomized rounding using x(`)

j,s. Therefore
we get

E [vi,r] =
∑
j∈Q

∑
s∈R

Pr [j = i, s = r] vj,s =
∑
j∈Q

∑
s∈R

1
`
x

(`)
j,svj,s = 1

`
v(x(`)) . (7)

Combining (6) and (7) gives the claim. J

Hence, by the previous lemma the expected gain of profit in each round is a (1/n)-fraction
of OPTS , supposing the remaining resource capacity is large enough. The probability for
the latter event is considered in the following lemma. Here, a crucial property is that we
deal with δ-small options. Let ∆ = 1

1−δ .

I Lemma B.2. For any round ` ≥ dn + 1, we have Pr
[
i(`) can be assigned to r(`)] ≥

c
d

(
1−∆ ln `

dn

)
.
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Proof. Let ξ be the event that no item is assigned to r after round dn. Note that ξ does
not necessarily hold, since AL might already have assigned items to r in earlier rounds. By
Lemma 6.3, Pr [ξ] ≥ c

d . Therefore, it remains to show Pr
[
i(`) can be assigned to r(`) | ξ

]
≥

1−∆ ln `
dn .

For this purpose, assume that ξ holds and let X denote the resource consumption of r
after round `− 1. Further, let Xk be the resource consumption of r in round k < `. We have
X =

∑`−1
k=dn+1Xk. Let Q be the set of k visible items in round k. The set Q can be seen

as uniformly drawn from all k-item subsets and any item j ∈ Q is the current online item
of round k with probability 1/k. Now, the algorithm assigns any item j to resource r with
probability x(k)

j,r , thus

E [Xk] =
∑
j∈Q

Pr [j occurs in round k] sj,rx(k)
j,r = 1

k

∑
j∈Q

sj,rx
(k)
j,r ≤

Wr

k
, (8)

where the last inequality follows from the capacity constraint for resource r in LP 1. By
linearity of expectation and inequality (8), the expected resource consumption up to round `
is thus

E [X] =
`−1∑

k=dn+1
E [Xk] ≤

`−1∑
k=dn+1

Wr

k
≤Wr ln `

dn
. (9)

Now, since i(`) is δ-small, X < (1 − δ)Wr implies X + si(`),r(`) ≤ Wr in which case the
assignment is feasible. Using (9) and Markov’s inequality, we obtain

Pr [X < (1− δ)Wr] = 1−Pr [X ≥ (1− δ)Wr] ≥ 1− E [X]
(1− δ)Wr

≥ 1−∆ ln `

dn
. J

Now, the bound on the competitive ratio of AS from Lemma 6.5 follows.

Proof of Lemma 6.5. We add the expected profits in single rounds using Lemmas B.1
and B.2.

E [AS ] =
n∑

`=dn+1
E [A`] =

n∑
`=dn+1

E
[
vi(`),r(`)

]
Pr
[
i(`) can be assigned to r(`)

]
≥

n∑
`=dn+1

1
n

OPTS
c

d

(
1−∆ ln `

dn

)
= c

dn

(
n∑

`=dn+1
1−∆ ln `

dn

)
OPTS

= c

dn

(
n− dn−∆

n∑
`=dn+1

ln `

dn

)
OPTS .

Since `
dn is monotone increasing in `, we have

∑n
`=dn+1 ln `

dn ≤
∫ n+1
dn+1 ln `

dn d` and this integral
evaluates to (n+1) ln n+1

dn+1−(n+1)−(dn+1) ln dn+1
dn +(dn+1). For n→∞, this approaches

n ln 1
d − n+ dn. Hence, we have lim

n→∞
E [AS ] ≥ c

d

(
(1 + ∆)(1− d)−∆ ln 1

d

)
OPTS . J
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