1,038 research outputs found

    Primary User Emulation Attacks: A Detection Technique Based on Kalman Filter

    Full text link
    Cognitive radio technology addresses the problem of spectrum scarcity by allowing secondary users to use the vacant spectrum bands without causing interference to the primary users. However, several attacks could disturb the normal functioning of the cognitive radio network. Primary user emulation attacks are one of the most severe attacks in which a malicious user emulates the primary user signal characteristics to either prevent other legitimate secondary users from accessing the idle channels or causing harmful interference to the primary users. There are several proposed approaches to detect the primary user emulation attackers. However, most of these techniques assume that the primary user location is fixed, which does not make them valid when the primary user is mobile. In this paper, we propose a new approach based on the Kalman filter framework for detecting the primary user emulation attacks with a non-stationary primary user. Several experiments have been conducted and the advantages of the proposed approach are demonstrated through the simulation results.Comment: 14 pages, 9 figure

    Spectrum sharing security and attacks in CRNs: a review

    Get PDF
    Cognitive Radio plays a major part in communication technology by resolving the shortage of the spectrum through usage of dynamic spectrum access and artificial intelligence characteristics. The element of spectrum sharing in cognitive radio is a fundament al approach in utilising free channels. Cooperatively communicating cognitive radio devices use the common control channel of the cognitive radio medium access control to achieve spectrum sharing. Thus, the common control channel and consequently spectrum sharing security are vital to ensuring security in the subsequent data communication among cognitive radio nodes. In addition to well known security problems in wireless networks, cognitive radio networks introduce new classes of security threats and challenges, such as licensed user emulation attacks in spectrum sensing and misbehaviours in the common control channel transactions, which degrade the overall network operation and performance. This review paper briefly presents the known threats and attacks in wireless networks before it looks into the concept of cognitive radio and its main functionality. The paper then mainly focuses on spectrum sharing security and its related challenges. Since spectrum sharing is enabled through usage of the common control channel, more attention is paid to the security of the common control channel by looking into its security threats as well as protection and detection mechanisms. Finally, the pros and cons as well as the comparisons of different CR - specific security mechanisms are presented with some open research issues and challenges

    Byzantine Attack and Defense in Cognitive Radio Networks: A Survey

    Full text link
    The Byzantine attack in cooperative spectrum sensing (CSS), also known as the spectrum sensing data falsification (SSDF) attack in the literature, is one of the key adversaries to the success of cognitive radio networks (CRNs). In the past couple of years, the research on the Byzantine attack and defense strategies has gained worldwide increasing attention. In this paper, we provide a comprehensive survey and tutorial on the recent advances in the Byzantine attack and defense for CSS in CRNs. Specifically, we first briefly present the preliminaries of CSS for general readers, including signal detection techniques, hypothesis testing, and data fusion. Second, we analyze the spear and shield relation between Byzantine attack and defense from three aspects: the vulnerability of CSS to attack, the obstacles in CSS to defense, and the games between attack and defense. Then, we propose a taxonomy of the existing Byzantine attack behaviors and elaborate on the corresponding attack parameters, which determine where, who, how, and when to launch attacks. Next, from the perspectives of homogeneous or heterogeneous scenarios, we classify the existing defense algorithms, and provide an in-depth tutorial on the state-of-the-art Byzantine defense schemes, commonly known as robust or secure CSS in the literature. Furthermore, we highlight the unsolved research challenges and depict the future research directions.Comment: Accepted by IEEE Communications Surveys and Tutoiral

    Prevention of Emulation Attack in Cognitive Radio Networks Using Integrated Authentication

    Get PDF
    Security is the prominent problem in emerging cognitive radio. Protecting the chief user’s and sub-ordinate user’s right to use the spectrum results in the correct cognitive radio operation. The major user emulation attack is a physical layer attack which disrupts the secondary user’s operation. An Advanced Encryption Standard scheme is used in this work that aims to defeat the chief User Emulation Attack by the correct detection of the chief user. The reference signal is encrypted and transmitted along with the Digital TV signal. Using a shared secret the receiver regenerates the reference and the cross association and the auto correlation are calculated which helps in the accurate detection of the chief user as well as the malicious user. The simulations were carried out and the results show that the detection scheme results in zero misdetection and also false alarm which is below a set threshold

    A Jamming Attacks Detection Approach Based on CNN based Quantum Leap Method for Wireless Sensor Network

    Get PDF
    The wireless sensor network is the most significant largest communication device. WSN has been interfacing with various wireless applications. Because the wireless application needs faster communication and less interruption, the main problem of jamming attacks on wireless networks is that jamming attack detection using various machine learning methods has been used. The reasons for jamming detection may be user behaviour-based and network traffic and energy consumption. The previous machine learning system could not present the jamming attack detection accuracy because the feature selection model of Chi-Squared didn’t perform well for jamming attack detections which determined takes a large dataset to be classified to find the high accuracy for jamming attack detection. To resolve this problem, propose a CNN-based quantum leap method that detects high accuracy for jamming attack detections the WSN-DS dataset collected by the Kaggle repository. Pre-processing using the Z-score Normalization technique will be applied, performing data deviations and assessments from the dataset, and collecting data and checking or evaluating data. Fisher’s Score is used to select the optimal feature of a jamming attack. Finally, the proposed CNN-based quantum leap is used to classify the jamming attacks. The CNN-based quantum leap simulation shows the output for jamming attacks with high precision, high detection, and low false alarm detection

    Detection of PUE- Attack in Cognitive Radio Networks

    Get PDF
    Cognitive Radios (CR) are the radios that are widely used in the wireless networks. It is a software based air interface network . Due to the air interface, the probability of attacks increases. In cognitive radio network, an attack can be defined as an activity that can cause interference to the primary users or licensed users. Primary User Emulation Attack(PUEA) is a major threat to the spectrum. In this paper to prevent from the PUE Attack firstly Distance Ratio Test(DRT) is used which is a transmitter verification procedure based on location verification is used which calculates the received signal strength(RSS) of the signal. Results are compared by plotting False negative ratio(FNR) with measurement and modeling error. Results shows improved value of FNR. Another method that is used is Time difference of arrival(TDOA) and Frequency difference of arrival( FDOA) which helps on determining the location of target. The parameters that are calculated are: time difference of arrival, frequency deviation and direction cosine of target movement. Simulation results were carried out with the help of Graphic User Interface(GUI) through MATLAB. Simulation results in this paper are better from the previous results and achieves high accuracy on transmitter location verification in CR network, which can improve the ability to resist PUE attack. DOI: 10.17762/ijritcc2321-8169.150611

    PUE attack detection in CWSN using collaboration and learning behavior

    Get PDF
    Cognitive Wireless Sensor Network (CWSN) is a new paradigm which integrates cognitive features in traditional Wireless Sensor Networks (WSNs) to mitigate important problems such as spectrum occupancy. Security in Cognitive Wireless Sensor Networks is an important problem because these kinds of networks manage critical applications and data. Moreover, the specific constraints of WSN make the problem even more critical. However, effective solutions have not been implemented yet. Among the specific attacks derived from new cognitive features, the one most studied is the Primary User Emulation (PUE) attack. This paper discusses a new approach, based on anomaly behavior detection and collaboration, to detect the PUE attack in CWSN scenarios. A nonparametric CUSUM algorithm, suitable for low resource networks like CWSN, has been used in this work. The algorithm has been tested using a cognitive simulator that brings important results in this area. For example, the result shows that the number of collaborative nodes is the most important parameter in order to improve the PUE attack detection rates. If the 20% of the nodes collaborates, the PUE detection reaches the 98% with less than 1% of false positives
    corecore