9,776 research outputs found

    Improved convergence analysis of stochastic gradient adaptive filters using the sign algorithm

    Get PDF
    Journal ArticleAbstract-Convergence analysis of stochastic gradient adaptive filters using the sign algorithm is presented in this paper. The methods of analysis currently available in literature assume that the input signals to the filter are white. This restriction is removed for Gaussian signals in our analysis. Expressions for the second moment of the coefficient vector and the steady-state error power are also derived. Simulation results are presented, and the theoretical and empirical curves show a very good match

    A Novel Family of Adaptive Filtering Algorithms Based on The Logarithmic Cost

    Get PDF
    We introduce a novel family of adaptive filtering algorithms based on a relative logarithmic cost. The new family intrinsically combines the higher and lower order measures of the error into a single continuous update based on the error amount. We introduce important members of this family of algorithms such as the least mean logarithmic square (LMLS) and least logarithmic absolute difference (LLAD) algorithms that improve the convergence performance of the conventional algorithms. However, our approach and analysis are generic such that they cover other well-known cost functions as described in the paper. The LMLS algorithm achieves comparable convergence performance with the least mean fourth (LMF) algorithm and extends the stability bound on the step size. The LLAD and least mean square (LMS) algorithms demonstrate similar convergence performance in impulse-free noise environments while the LLAD algorithm is robust against impulsive interferences and outperforms the sign algorithm (SA). We analyze the transient, steady state and tracking performance of the introduced algorithms and demonstrate the match of the theoretical analyzes and simulation results. We show the extended stability bound of the LMLS algorithm and analyze the robustness of the LLAD algorithm against impulsive interferences. Finally, we demonstrate the performance of our algorithms in different scenarios through numerical examples.Comment: Submitted to IEEE Transactions on Signal Processin

    Performance Analysis of l_0 Norm Constraint Least Mean Square Algorithm

    Full text link
    As one of the recently proposed algorithms for sparse system identification, l0l_0 norm constraint Least Mean Square (l0l_0-LMS) algorithm modifies the cost function of the traditional method with a penalty of tap-weight sparsity. The performance of l0l_0-LMS is quite attractive compared with its various precursors. However, there has been no detailed study of its performance. This paper presents all-around and throughout theoretical performance analysis of l0l_0-LMS for white Gaussian input data based on some reasonable assumptions. Expressions for steady-state mean square deviation (MSD) are derived and discussed with respect to algorithm parameters and system sparsity. The parameter selection rule is established for achieving the best performance. Approximated with Taylor series, the instantaneous behavior is also derived. In addition, the relationship between l0l_0-LMS and some previous arts and the sufficient conditions for l0l_0-LMS to accelerate convergence are set up. Finally, all of the theoretical results are compared with simulations and are shown to agree well in a large range of parameter setting.Comment: 31 pages, 8 figure
    • …
    corecore