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Improved Convergence Analysis of Stochastic 
Gradient Adaptive Filters Using 

the Sign Algorithm 
V. JOHN MATHEWS, MEMBER, IEEE, AND SUNG HO CHO 

Abstract-Convergence analysis of stochastic gradient adaptive fil
ters using the sign algorithm is presented in this paper. The methods 
of analysis currently available in literature assume that the input sig
nals to the filter are white. This restriction is removed for Gaussian 
signals in our analysis. Expressions for the second moment of the coef
ficient vector and the steady-state error power are also derived. Sim
ulation results are presented, and the theoretical and empirical curves 
show a very good match. 

1. INTRODUCTION 

STOCHASTIC gradient adaptive filters using nonlinear 
correlation multipliers have received a great deal of 

attention recently [1], [2], [4]-[6], [11], [14], [15]. In 
this paper we are concerned only with adaptation' using 
the sign algorithm, where the coefficient vector is updated 
using 

H(n + 1) = H(n) + p,X(n) sign (e(n)), (1) 

where H (n) is the vector of N coefficient values at time 
n, X (n) is the primary input vector to the filter, p, is a 
time-invariant convergence parameter, and e(n) is the er
ror in estimating the reference input d (n) using the pri
mary input vector X (n ), i. e. , 

e(n) = d(n) - HT(n) X(n), (2) 

where ( . ) T denotes the transpose of ( . ). 
. Earlier analyses of the system described by (1) and (2) 

assume that the input signals are zero mean and white [4], 
[6]. In patiicular, the input correlation matrix is assumed 
to be diagonal, with 

R)JX = E{ X(n) XT(n)} = (J~I. (3) 

In many practical situations, this assumption is grossly 
violated and the convergence curves using the above 
model tend to show faster than true convergence, espe
cially when the eigenvalue spread for the input autocor
relation matrix is large (see Fig. 1). 

In this paper we will undo the whiteness assumption for 
the input data signals. We will assume that the primary 
and reference input signals are jointly Gaussian, zero 
mean signals. As in many convergence analyses of this 
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Fig. 1. Comparison of the theoretical and simulation results for the mean 
behavior of the filter coefficients: (1) simulation results, (2) mean values 
predicted by (15), and (3) mean values predicted by white signal as
sumption. 

type [10], [12], we will also assume that the input pairs 
{ X (n ), d (n ) } are mutually uncorrelated for different val
ues of n. (Note that we are not restricting the nature of 
the input autocorrelation matrix Rxx.) H(n) is then un
correlated with {X (n ), d (n ) }, since H (n) depends only 
on inputs at time n - 1 and before. This assumption is 
not true in general, but it produces results that are very 
close to the true behavior of the system if p, is chosen to 
be small [10]. The analyses that do not use this assump
tion can be found in [3] and [7] for least mean square 
(LMS) adaptive filters. 

0096-3518/87/0400-0450$01.00 © 1987 IEEE 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276284831?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


MATHEWS AND CHO: CONVERGENCE ANALYSIS OF STOCHASTIC GRADIENT ADAPTIVE FILTERS 451 

The rest ofthe paper is organized as follows. In Section 
II, we present the convergence analysis of the sign algo
rithm assuming jointly Gaussian input signals. In this sec
tion,. we also derive expressions for the second moment 
of the coefficient vector and also the steady-state error 
power. A simulation example that verifies the expressions 
derived is presented in Section III. Concluding remarks 
are made in Section IV. 

II. CONVERGENCE ANALYSIS 

We start by evaluating the statistical expectation of both 
sides of (1). This gives 

E { H (n + 1)} = E { H (n)} + JL E { X (n) sign (e (n ) ) } . 

(4) 

Since d (n) and X (n) are zero mean. and jointly Gaussian, 
the error sequence, conditioned on the coefficient vector 
H (n), is also zero mean and Gaussian [say, with variance 
(J; I H (n )]. We can then use the fact [9] that for an arbitrary 
Borel function G ( . ), and Gaussian X and e 

E{XG(e)} = E{Xe} E-I{e 2
} E{eG(e)}, (5) 

and express E { X (n) sign (e (n ) ) } as 

E { X ( n) sign (e ( n ) ) } 

= E { E [ X ( n) sign (e ( n ) ) I H ( n ) l} 

~ E r ~ \ /{X(n l e(nlIH(nl }} l~; (JelH n 

(6) 

where we have made use of the fact that the mean absolute 
value of a Gaussian random variable with zero mean and 
variance (J2 is (.J2hr) (J. In this analysis we will approx
imate the standard deviation of the error sequence, con
ditioned on the coefficient vector by the unconditional 
standard deviation of the error sequences, i.e., 

(7) 

This approximation is valid for small values of JL. Now 
(6) can be rewritten as 

- E { X ( n) sign (e (n »)} = ~ _(1 ) E { X (n) e (n)} . ~; (Ie n 

Expanding for e (n) using (2), 

E{X(n) e(n)} = E{ X(n) d(n)} 

(8) 

-E{X(n)XT(n)H(n)}. (9) 

Under the assumption that X (n) is uncorrelated with 
H(n), equation (9) becomes 

E{X(n) e(n)} = RXd - RxxE{H(n)} , (10) 

where RXd is the cross-correlation vector of X (n) and 
d (n ). Substituting (10) and (8) in (4) we get 

E{H(n+ 1)} 

JL ~. = E{H(n)} + -(-) - (RXd - RxxE{H(n)}). (11) 
(Je n 7r 

Let us define the misalignment vector V (n) as 

V(n) = H(n) - Hopt , 

where 

(12) 

Hopt = RxiRxd (13) 

is the optimum coefficient vector. Also, let 

K(n) = E{VCn) VT(n)} (14) 

define a second moment of the misalignment vector. At 
this point it is convenient to rewrite (11) using the mis
alignment vector V(n). Using (12), (11) can be equiva
lently expressed as 

E{V(n + Il} ~ (1- a,(nl ~Rxx) E{V(nl}. 
(15) 

It is easy to show that the misalignment vector will con
verge to the zero vector if the convergence constant JL is 
chosen so that 

r,:;- (Je (n ) 
o < JL < 'V27r -A.-' 

I 

(16) 

where Ai (i = 1, 2, . . . , N) are the eigenvalues of the 
autocorrelation matrix Rxx. A more restrictive, but suffi
cient and simpler, condition forlhe convergence (in mean) 
of the system is 

r,:;- .;r:;;. ( ) o < Jl < 'V27r { } , 17 
tr Rxx 

where 

~min = E{d2(n)} - R3cdHopt (18) 

is the minimum mean-squared estimation error, and tr { . } 
denotes the trace of { . }. An inspection of (16) will im
mediately show that if the convergence does occur, the 
root mean-squared estimation error (J e (n ) at time n is such 
that 

() 
JLAmax 

(Je n > r,:;-' 
'V27r 

(19) 

We now need an expression for (Je(n) to complete the 
analysis. For this, 

(J; (n ) 

= E{e 2 (n)} 

= E{ (d(n) - HT(n) X(n))(d(n) - HT(n) X(n»)T} 

= E{d 2 (n)} - 2E{HT(n)} R;d + E{HT(n) X(n) 

. XT(n) H(n)} 

= ~min + E{ VT(n) X(n) XT(n) V(n)} 

= ~min + tr {RxxK(n)}: (20) 
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where we have once again made use of the fact that H (n ) 
and {X(n), d(n)} are uncorrelated. To evaluate (Te(n), 
we also need to know K(n). An expression for K(n) is 
derived next. 

A. Second Moment Behavior o/the Weights 
From (1) 

E{(HoPI + V(n + l»)(Hopt + V(n + l»)T} 
= E{(HoPI + V(n»)(Hopt + V(n»)T} + p.2RXX 

+ p.E{(HoP! + V(n»)XT(n) sign (e(n»)} 

+ p.E{X(n)(Hopt + V(n)/ sign (e(n»)}. 

(21) 

Equation (21) can be simplified as 

K(n + 1) = K(n) + p.2RXX 

+ p.E{ yen) XT(n) sign (e(n»)} 

+ p.E{X(n) VT(n) sign (e(n»)}. (22) 

The expectations in the third and fourth terms of the right
hand side of (22) can be evaluated as follows: 

E { V( n) XT (n) sign (e (n)) } 

E{E[V(n) XT(n) sign (e(n»)! V(n)}} 

E {V(.) ~ \) EIXT(n) e(')1 V(.) ljl l ~; (TelH n 

( ~ 1 [T T :~ = E iV(n) - () RXd -(HOPI + Yen») Rxx]. 
'lr (TelH n 

l ) 

~ -E [ V(n) VT(n)R", ~ \ )} (23) l ~; (TelH n 

~ ~ _(1 ) K(n)Rxx. (24) ~; (Je n 

Similarly, 

E{X(n) VT(n) sign [e(n)l} 

~ 1 
- -(-) RxxK(n). 
'If (Te n 

(25) 

Substituting (24) and (25) in (22) will yield 

K(. + 1) = K(n+ - P~ u,;.) R",] 

+ R",[ p'l- P~ .,;.) K(.) 1 (26) 

Note that in going from (23) to (24), we have once again 
made use of the approximation in (7). Closed-form 
expressions for the limiting (steady-state) values of the 
second moment matrix and error power are derived next. 

Let (Te( 00) and K( 00) denote the limiting values of 
(T e (n) and K (n ), respectively. We will now show that 
K( 00) exists for sufficiently small values of p,. Using (20), 
since K(n) converges, u;(n) also does. 

Let Q be an orthonormal matrix that diagonalizes Rxx. 
Pre- and postmultiplying both sides of (26) by QT and Q, 
respectively, we get 

K'(n + I) 

where 

K'(n) = QTK(n)Q, (28) 

A QTRxxQ:::::: diag [AI' A2' .. ,. , AN]' (29) 

We are then able to decompose the matrix equation (27) 
into the scalar form as 

Kij(n + 1) = (1 - "~.,;n) [A, +Ail) 

where 

. Kij(n) + p. 2}../)(i - j), (30) 

[

1, if i = j 
5(i - j) = 

0, otherwise, 
(31) 

and Kij is the (i, j )th element of K'. Note that K' (n) is a 
, symmetric matrix. 

Mean square convergence of the. weight vector will oc
cur if p. belongs to the range 

r;:;- uA n) 
o < p. < v21r A + A' 

I 1 

(32) 

As before, a sufficient, but more stringent, condition for 
mean square convergence is 

(33) 

Once again, it is easy to see that if mean-squared conver
gence does occur, 

(34) 

for all n. 
To find the steady-state error, we can solve for (Te( 00) 

and K ( 00 ) from (20) and (26) after taking the limits as n 
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goes to 00. In the limit, (26) becomes 

K(oo) ~ K(oo) [I - ~$; U,/OO) RXX] 

+ RXX[ ~ 'I - ~ $; U,r'OO) K( 00 ) l 
which gives 

K( 00) ~ ~~ U,~oo) I, 
Using (36) in (20) after taking the limits, we get 

a;( 00) = ~min + tr {RxxK( oo)} 

= ~min + aae ( 00), 

where 

a =,~ G (f Ai)' 2~2 i=1 

(35) 

(36) 

(37) 

(38) 

Solving for ae ( 00) in (37) and retaining the positive root, 
we get 

a + ..Ja2 + 4~min 
ae ( 00) = 2 . (39) 

If J1- is very small, the steady-state error power can be 
approximated as 

u~(OO) ~ <m'" + ~~ (,~J~.) .J<m'"' (40) 

Equation (40) is obtained by squaring (39) and ignoring 
all terms containing J1- 2. 

Remarks: 
1) For very small values of J1-, we can approximate 

E{HT(n)X(n)Xrcn)H(n)} in (20) as . 

E{HT(n) X(n) XT(n) H(n)} 

=:; E{ HT(n)} RxxE{H(n)}. (41) 

In (41), the basic assumption is that the variations in the 
weight vector are much smaller than the mean value of 
the weight vector itself. Under this assumption, the 
expression for the error power (20) can be approximated 
by' , 

a;(n) =:; ~min + E{ VT(n)} RxxE{ V(n)}. (42) 

Ifwe substitute (42) in (15) and also assume that the input 
signals to' the adaptive filter are white, the expression de
rived for the convergence of the weight vector (15) is the 
same as that given by [6]. . 

2) For the LMS algorithm [12], E {V(n + I)} and 
a;( 00) are given by [13] 

E { V( n + 1)} = (I - J1-Rxx) E { V( n ) } , (43 ) 

and 

u;( 00) ~ <m'" + ~ <m'" (,~J~) (44) 

To have the same steady-state mean-squared error for both 
the LMS and sign algorithms, we must choose the con
vergence constant J1-s for the sign algorithm to be 

~s ~ ~,$;'hm'"' (45) 

where J1-L is the convergence constant for the LMS algo
rithm. For J1- = J1-s = J1-L .J2!1r .J~min.., (15) becomes 

{ } 
( 
2~ ) { } E V(n + 1) = 1-;: aAn) J1-LRXX E V(n) . 

. (46) 

Since..J~min:::;; ae(n),wehavethat(2!1r)(..J~min!(Je(n» 
< 1, implying that the sign algorithm will always con
verge slower than the LMS algorithm when the steady
state errors are the same. This result agrees with those in 
[4] and [6]. However, for the same value of J1-, it IS pos
sible that the sign algorithm can converge faster than the 
LMS algorithm [14], [15]. Also, if J1- is very small, the 
difference in steady-state errors between the two methods 
may not be very large. 

Ill. A SIMULATION EXAMPLE 

For verifying the expressions derived in Section II, we 
chose a third-order predictor for a third-order autoregres
sive signal described by 

x(n) = 0.9x(n - 1) - O.lx(n - 2) 

- 0.2x(n - 3) + Hn), (47) 

where ~ (n) is a white, zero mean Gaussian signal with 
variance such that the variance of x (n) is 1. Note that the 
eigenvalue ratio of the signal is 16.32. The results pre
sented are comparisons of the theoretical curves with en
semble averages of 900 independent simulations using 
10000 data samples each. The convergence constant was 
chosen to be 0.005. Fig. 1 shows plots ofthe mean values 
of the weights. For comparison, we have also plotted the 
theoretical curves obtained using the white input signal 
assumption [6]. We can see that the results of Section II 
agree with those of the simulations fairly closely, while 
the white noise assumptiqn gives misleading results in this 
case. The diagonal elements of the K (n) matrix and their 
steady-state values obta~ned using our theoretical model 
[(36) and (39)] and also simulation experiments are com
pared in Fig. 2 and Table I, respectively. Here, the steady
state values for the simulation are obtained as the mean 
values of the last 5000 samples of the corresponding 
curves. Once again, the theoretical and empirical results 
show very close match. (Note that in Fig. 2 both curves 
are always positive. We used negative values for the ver
tical axis only for ease of displaying the results.) 



454 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL ASSP-35, NO.4, APRIL 1987 

(K(n)} 1 1 

0.9 

(a) 

2 

-0.1 

0 Time(n) 10000 

{K(n)) 2,2 

0.07 

(b) ~ 
-0.01 

0 Time(n) 10000 

{K(n)} 3,3 

0.05 

(c) 

1 

\/?--
-0.005 

0 Time(n) 10000 

Fig. 2. Comparison of the theoretical and simulation results for the mean
squared beha.vi9r of the filter coefficients: (1) simulation curve and (2) 
theoretical curve. 

TABLE I 
COMPAIUSON OF THE T!iEORETlCA~ AND SIMU~ATION RESU~TS FOR THE 

STEADy-STATE MEAN-SQUARED VALUES OF THE MISALIGNMENT VECTOR 

{K(OO)}I,I 
{K(oo) h2 
{K(oo)h,3 

Theoretical 
Result 

0.002006 
0.002006 
0.002006 

IV. CONCLUSIONS 

Simulation 
Result 

0.002110 
0.002023 
0.001998 

In this paper, we presented convergence analysis for the 
sign algorithm when the signals involved are Gaussian. 
Expressions for the expected value of the weight vector, 
its second moments, and also the steady-state error power 
were derived. These derivations were done without mak
ing any assumptions on the nature of the autocorrelation 
matrix ofthe input vector and, because of this, the expres
sions developed show a much better match with simula
tion results than previously published results [4], [6] 
which assumed that the input signals were white. 
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