61 research outputs found

    Reduced complexity detection for massive MIMO-OFDM wireless communication systems

    Get PDF
    PhD ThesisThe aim of this thesis is to analyze the uplink massive multiple-input multipleoutput with orthogonal frequency-division multiplexing (MIMO-OFDM) communication systems and to design a receiver that has improved performance with reduced complexity. First, a novel receiver is proposed for coded massive MIMO-OFDM systems utilizing log-likelihood ratios (LLRs) derived from complex ratio distributions to model the approximate effective noise (AEN) probability density function (PDF) at the output of a zero-forcing equalizer (ZFE). These LLRs are subsequently used to improve the performance of the decoding of low-density parity-check (LDPC) codes and turbo codes. The Neumann large matrix approximation is employed to simplify the matrix inversion in deriving the PDF. To verify the PDF of the AEN, Monte-Carlo simulations are used to demonstrate the close-match fitting between the derived PDF and the experimentally obtained histogram of the noise in addition to the statistical tests and the independence verification. In addition, complexity analysis of the LLR obtained using the newly derived noise PDF is considered. The derived LLR can be time consuming when the number of receive antennas is very large in massive MIMO-OFDM systems. Thus, a reduced complexity approximation is introduced to this LLR using Newton’s interpolation with different orders and the results are compared to exact simulations. Further simulation results over time-flat frequency selective multipath fading channels demonstrated improved performance over equivalent systems using the Gaussian approximation for the PDF of the noise. By utilizing the PDF of the AEN, the PDF of the signal-to-noise ratio (SNR) is obtained. Then, the outage probability, the closed-form capacity and three approximate expressions for the channel capacity are derived based on that PDF. The system performance is further investigated by exploiting the PDF of the AEN to derive the bit error rate (BER) for the massive MIMO-OFDM system with different M-ary modulations. Then, the pairwise error probability (PEP) is derived to obtain the upper-bounds for the convolutionally coded and turbo coded massive MIMO-OFDM systems for different code generators and receive antennas. Furthermore, the effect of the fixed point data representation on the performance of the massive MIMO-OFDM systems is investigated using reduced detection implementations for MIMO detectors. The motivation for the fixed point analysis is the need for a reduced complexity detector to be implemented as an optimum massive MIMO detector with low precision. Different decomposition schemes are used to build the linear detector based on the IEEE 754 standard in addition to a user-defined precision for selected detectors. Simulations are used to demonstrate the behaviour of several matrix inversion schemes under reduced bit resolution. The numerical results demonstrate improved performance when using QR-factorization and pivoted LDLT decomposition schemes at reduced precision.Iraqi Government and the Iraqi Ministry of Higher Education and Scientific researc

    Joint Activity Detection, Channel Estimation, and Data Decoding for Grant-free Massive Random Access

    Full text link
    In the massive machine-type communication (mMTC) scenario, a large number of devices with sporadic traffic need to access the network on limited radio resources. While grant-free random access has emerged as a promising mechanism for massive access, its potential has not been fully unleashed. In particular, the common sparsity pattern in the received pilot and data signal has been ignored in most existing studies, and auxiliary information of channel decoding has not been utilized for user activity detection. This paper endeavors to develop advanced receivers in a holistic manner for joint activity detection, channel estimation, and data decoding. In particular, a turbo receiver based on the bilinear generalized approximate message passing (BiG-AMP) algorithm is developed. In this receiver, all the received symbols will be utilized to jointly estimate the channel state, user activity, and soft data symbols, which effectively exploits the common sparsity pattern. Meanwhile, the extrinsic information from the channel decoder will assist the joint channel estimation and data detection. To reduce the complexity, a low-cost side information-aided receiver is also proposed, where the channel decoder provides side information to update the estimates on whether a user is active or not. Simulation results show that the turbo receiver is able to reduce the activity detection, channel estimation, and data decoding errors effectively, while the side information-aided receiver notably outperforms the conventional method with a relatively low complexity

    Design and Analysis of GFDM-Based Wireless Communication Systems

    Get PDF
    Le multiplexage généralisé par répartition en fréquence (GFDM), une méthode de traitement par blocs de modulation multiporteuses non orthogonales, est une candidate prometteuse pour les technologies de forme d'onde pour les systèmes sans fil au-delà de la cinquième génération (5G). La capacité du GFDM à ajuster de manière flexible la taille du bloc et le type de filtres de mise en forme des impulsions en fait une méthode appropriée pour répondre à plusieurs exigences importantes, comme une faible latence, un faible rayonnement hors bande (OOB) et des débits de données élevés. En appliquant aux systèmes GFDM la technique des systèmes à entrées multiples et sorties multiples (MIMO), la technique de MIMO massif ou des codes de contrôle de parité à faible densité (LDPC), il est possible d'améliorer leurs performances. Par conséquent, l'étude de ces systèmes combinés sont d'une grande importance théorique et pratique. Dans cette thèse, nous étudions les systèmes de communication sans fil basés sur le GFDM en considérant trois aspects. Tout d'abord, nous dérivons une borne d'union sur le taux d'erreur sur les bits (BER) pour les systèmes MIMO-GFDM, technique qui est basée sur des probabilités d'erreur par paires exactes (PEP). La PEP exacte est calculée en utilisant la fonction génératrice de moments(MGF) pour les détecteurs à maximum de vraisemblance (ML). La corrélation spatiale entre les antennes et les erreurs d'estimation de canal sont prises en compte dans l'environnement de canal étudié. Deuxièmement, les estimateurs et les précodeurs de canal de faible complexité basés sur une expansion polynomiale sont proposés pour les systèmes MIMO-GFDM massifs. Des pilotes sans interférence sont utilisés pour l'estimation du canal basée sur l'erreur quadratique moyenne minimale(MMSE) pour lutter contre l'influence de la non-orthogonalité entre les sous-porteuses dans le GFDM. La complexité de calcul cubique peut être réduite à une complexité d'ordre au carré en utilisant la technique d'expansion polynomiale pour approximer les inverses de matrices dans l'estimation MMSE conventionnelle et le précodage. De plus, nous calculons les limites de performance en termes d'erreur quadratique moyenne (MSE) pour les estimateurs proposés, ce qui peut être un outil utile pour prédire la performance des estimateurs dans la région de Eₛ/N₀ élevé. Une borne inférieure de Cramér-Rao(CRLB) est dérivée pour notre modèle de système et agit comme une référence pour les estimateurs. La complexité de calcul des estimateurs de canal proposés et des précodeurs et les impacts du degré du polynôme sont également étudiés. Enfin, nous analysons les performances de la probabilité d'erreur des systèmes GFDM combinés aux codes LDPC. Nous dérivons d'abord les expressions du ratio de vraisemblance logarithmique (LLR) initiale qui sont utilisées dans le décodeur de l'algorithme de somme de produits (SPA). Ensuite, basé sur le seuil de décodage, nous estimons le taux d'erreur de trame (FER) dans la région de bas E[indice b]/N₀ en utilisant le BER observé pour modéliser les variations du canal. De plus, une borne inférieure du FER du système est également proposée basée sur des ensembles absorbants. Cette borne inférieure peut agir comme une estimation du FER dans la région de E[indice b]/N₀ élevé si l'ensemble absorbant utilisé est dominant et que sa multiplicité est connue. La quantification a également un impact important sur les performances du FER et du BER. Des codes LDPC basés sur un tableau et construit aléatoirement sont utilisés pour supporter les analyses de performances. Pour ces trois aspects, des simulations et des calculs informatiques sont effectués pour obtenir des résultats numériques connexes, qui vérifient les méthodes proposées.8 372162\u a Generalized frequency division multiplexing (GFDM) is a block-processing based non-orthogonal multi-carrier modulation scheme, which is a promising candidate waveform technology for beyond fifth-generation (5G) wireless systems. The ability of GFDM to flexibly adjust the block size and the type of pulse-shaping filters makes it a suitable scheme to meet several important requirements, such as low latency, low out-of-band (OOB) radiation and high data rates. Applying the multiple-input multiple-output (MIMO) technique, the massive MIMO technique, or low-density parity-check (LDPC) codes to GFDM systems can further improve the systems performance. Therefore, the investigation of such combined systems is of great theoretical and practical importance. This thesis investigates GFDM-based wireless communication systems from the following three aspects. First, we derive a union bound on the bit error rate (BER) for MIMO-GFDM systems, which is based on exact pairwise error probabilities (PEPs). The exact PEP is calculated using the moment-generating function (MGF) for maximum likelihood (ML) detectors. Both the spatial correlation between antennas and the channel estimation errors are considered in the investigated channel environment. Second, polynomial expansion-based low-complexity channel estimators and precoders are proposed for massive MIMO-GFDM systems. Interference-free pilots are used in the minimum mean square error (MMSE) channel estimation to combat the influence of non-orthogonality between subcarriers in GFDM. The cubic computational complexity can be reduced to square order by using the polynomial expansion technique to approximate the matrix inverses in the conventional MMSE estimation and precoding. In addition, we derive performance limits in terms of the mean square error (MSE) for the proposed estimators, which can be a useful tool to predict estimators performance in the high Eₛ/N₀ region. A Cramér-Rao lower bound (CRLB) is derived for our system model and acts as a benchmark for the estimators. The computational complexity of the proposed channel estimators and precoders, and the impacts of the polynomial degree are also investigated. Finally, we analyze the error probability performance of LDPC coded GFDM systems. We first derive the initial log-likelihood ratio (LLR) expressions that are used in the sum-product algorithm (SPA) decoder. Then, based on the decoding threshold, we estimate the frame error rate (FER) in the low E[subscript b]/N₀ region by using the observed BER to model the channel variations. In addition, a lower bound on the FER of the system is also proposed based on absorbing sets. This lower bound can act as an estimate of the FER in the high E[subscript b]/N₀ region if the absorbing set used is dominant and its multiplicity is known. The quantization scheme also has an important impact on the FER and BER performances. Randomly constructed and array-based LDPC codes are used to support the performance analyses. For all these three aspects, software-based simulations and calculations are carried out to obtain related numerical results, which verify our proposed methods

    Doctor of Philosophy

    Get PDF
    dissertationThe continuous growth of wireless communication use has largely exhausted the limited spectrum available. Methods to improve spectral efficiency are in high demand and will continue to be for the foreseeable future. Several technologies have the potential to make large improvements to spectral efficiency and the total capacity of networks including massive multiple-input multiple-output (MIMO), cognitive radio, and spatial-multiplexing MIMO. Of these, spatial-multiplexing MIMO has the largest near-term potential as it has already been adopted in the WiFi, WiMAX, and LTE standards. Although transmitting independent MIMO streams is cheap and easy, with a mere linear increase in cost with streams, receiving MIMO is difficult since the optimal methods have exponentially increasing cost and power consumption. Suboptimal MIMO detectors such as K-Best have a drastically reduced complexity compared to optimal methods but still have an undesirable exponentially increasing cost with data-rate. The Markov Chain Monte Carlo (MCMC) detector has been proposed as a near-optimal method with polynomial cost, but it has a history of unusual performance issues which have hindered its adoption. In this dissertation, we introduce a revised derivation of the bitwise MCMC MIMO detector. The new approach resolves the previously reported high SNR stalling problem of MCMC without the need for hybridization with another detector method or adding heuristic temperature scaling terms. Another common problem with MCMC algorithms is an unknown convergence time making predictable fixed-length implementations problematic. When an insufficient number of iterations is used on a slowly converging example, the output LLRs can be unstable and overconfident, therefore, we develop a method to identify rare, slowly converging runs and mitigate their degrading effects on the soft-output information. This improves forward-error-correcting code performance and removes a symptomatic error floor in bit-error-rates. Next, pseudo-convergence is identified with a novel way to visualize the internal behavior of the Gibbs sampler. An effective and efficient pseudo-convergence detection and escape strategy is suggested. Finally, the new excited MCMC (X-MCMC) detector is shown to have near maximum-a-posteriori (MAP) performance even with challenging, realistic, highly-correlated channels at the maximum MIMO sizes and modulation rates supported by the 802.11ac WiFi specification, 8x8 256 QAM. Further, the new excited MCMC (X-MCMC) detector is demonstrated on an 8-antenna MIMO testbed with the 802.11ac WiFi protocol, confirming its high performance. Finally, a VLSI implementation of the X-MCMC detector is presented which retains the near-optimal performance of the floating-point algorithm while having one of the lowest complexities found in the near-optimal MIMO detector literature

    Transmission strategies for broadband wireless systems with MMSE turbo equalization

    Get PDF
    This monograph details efficient transmission strategies for single-carrier wireless broadband communication systems employing iterative (turbo) equalization. In particular, the first part focuses on the design and analysis of low complexity and robust MMSE-based turbo equalizers operating in the frequency domain. Accordingly, several novel receiver schemes are presented which improve the convergence properties and error performance over the existing turbo equalizers. The second part discusses concepts and algorithms that aim to increase the power and spectral efficiency of the communication system by efficiently exploiting the available resources at the transmitter side based upon the channel conditions. The challenging issue encountered in this context is how the transmission rate and power can be optimized, while a specific convergence constraint of the turbo equalizer is guaranteed.Die vorliegende Arbeit beschäftigt sich mit dem Entwurf und der Analyse von effizienten Übertragungs-konzepten für drahtlose, breitbandige Einträger-Kommunikationssysteme mit iterativer (Turbo-) Entzerrung und Kanaldekodierung. Dies beinhaltet einerseits die Entwicklung von empfängerseitigen Frequenzbereichs-entzerrern mit geringer Komplexität basierend auf dem Prinzip der Soft Interference Cancellation Minimum-Mean Squared-Error (SC-MMSE) Filterung und andererseits den Entwurf von senderseitigen Algorithmen, die durch Ausnutzung von Kanalzustandsinformationen die Bandbreiten- und Leistungseffizienz in Ein- und Mehrnutzersystemen mit Mehrfachantennen (sog. Multiple-Input Multiple-Output (MIMO)) verbessern. Im ersten Teil dieser Arbeit wird ein allgemeiner Ansatz für Verfahren zur Turbo-Entzerrung nach dem Prinzip der linearen MMSE-Schätzung, der nichtlinearen MMSE-Schätzung sowie der kombinierten MMSE- und Maximum-a-Posteriori (MAP)-Schätzung vorgestellt. In diesem Zusammenhang werden zwei neue Empfängerkonzepte, die eine Steigerung der Leistungsfähigkeit und Verbesserung der Konvergenz in Bezug auf existierende SC-MMSE Turbo-Entzerrer in verschiedenen Kanalumgebungen erzielen, eingeführt. Der erste Empfänger - PDA SC-MMSE - stellt eine Kombination aus dem Probabilistic-Data-Association (PDA) Ansatz und dem bekannten SC-MMSE Entzerrer dar. Im Gegensatz zum SC-MMSE nutzt der PDA SC-MMSE eine interne Entscheidungsrückführung, so dass zur Unterdrückung von Interferenzen neben den a priori Informationen der Kanaldekodierung auch weiche Entscheidungen der vorherigen Detektions-schritte berücksichtigt werden. Durch die zusätzlich interne Entscheidungsrückführung erzielt der PDA SC-MMSE einen wesentlichen Gewinn an Performance in räumlich unkorrelierten MIMO-Kanälen gegenüber dem SC-MMSE, ohne dabei die Komplexität des Entzerrers wesentlich zu erhöhen. Der zweite Empfänger - hybrid SC-MMSE - bildet eine Verknüpfung von gruppenbasierter SC-MMSE Frequenzbereichsfilterung und MAP-Detektion. Dieser Empfänger besitzt eine skalierbare Berechnungskomplexität und weist eine hohe Robustheit gegenüber räumlichen Korrelationen in MIMO-Kanälen auf. Die numerischen Ergebnisse von Simulationen basierend auf Messungen mit einem Channel-Sounder in Mehrnutzerkanälen mit starken räumlichen Korrelationen zeigen eindrucksvoll die Überlegenheit des hybriden SC-MMSE-Ansatzes gegenüber dem konventionellen SC-MMSE-basiertem Empfänger. Im zweiten Teil wird der Einfluss von System- und Kanalmodellparametern auf die Konvergenzeigenschaften der vorgestellten iterativen Empfänger mit Hilfe sogenannter Korrelationsdiagramme untersucht. Durch semi-analytische Berechnungen der Entzerrer- und Kanaldecoder-Korrelationsfunktionen wird eine einfache Berechnungsvorschrift zur Vorhersage der Bitfehlerwahrscheinlichkeit von SC-MMSE und PDA SC-MMSE Turbo Entzerrern für MIMO-Fadingkanäle entwickelt. Des Weiteren werden zwei Fehlerschranken für die Ausfallwahrscheinlichkeit der Empfänger vorgestellt. Die semi-analytische Methode und die abgeleiteten Fehlerschranken ermöglichen eine aufwandsgeringe Abschätzung sowie Optimierung der Leistungsfähigkeit des iterativen Systems. Im dritten und abschließenden Teil werden Strategien zur Raten- und Leistungszuweisung in Kommunikationssystemen mit konventionellen iterativen SC-MMSE Empfängern untersucht. Zunächst wird das Problem der Maximierung der instantanen Summendatenrate unter der Berücksichtigung der Konvergenz des iterativen Empfängers für einen Zweinutzerkanal mit fester Leistungsallokation betrachtet. Mit Hilfe des Flächentheorems von Extrinsic-Information-Transfer (EXIT)-Funktionen wird eine obere Schranke für die erreichbare Ratenregion hergeleitet. Auf Grundlage dieser Schranke wird ein einfacher Algorithmus entwickelt, der für jeden Nutzer aus einer Menge von vorgegebenen Kanalcodes mit verschiedenen Codierraten denjenigen auswählt, der den instantanen Datendurchsatz des Mehrnutzersystems verbessert. Neben der instantanen Ratenzuweisung wird auch ein ausfallbasierter Ansatz zur Ratenzuweisung entwickelt. Hierbei erfolgt die Auswahl der Kanalcodes für die Nutzer unter Berücksichtigung der Einhaltung einer bestimmten Ausfallwahrscheinlichkeit (outage probability) des iterativen Empfängers. Des Weiteren wird ein neues Entwurfskriterium für irreguläre Faltungscodes hergeleitet, das die Ausfallwahrscheinlichkeit von Turbo SC-MMSE Systemen verringert und somit die Zuverlässigkeit der Datenübertragung erhöht. Eine Reihe von Simulationsergebnissen von Kapazitäts- und Durchsatzberechnungen werden vorgestellt, die die Wirksamkeit der vorgeschlagenen Algorithmen und Optimierungsverfahren in Mehrnutzerkanälen belegen. Abschließend werden außerdem verschiedene Maßnahmen zur Minimierung der Sendeleistung in Einnutzersystemen mit senderseitiger Singular-Value-Decomposition (SVD)-basierter Vorcodierung untersucht. Es wird gezeigt, dass eine Methode, welche die Leistungspegel des Senders hinsichtlich der Bitfehlerrate des iterativen Empfängers optimiert, den konventionellen Verfahren zur Leistungszuweisung überlegen ist

    Algorithm Development and VLSI Implementation of Energy Efficient Decoders of Polar Codes

    Get PDF
    With its low error-floor performance, polar codes attract significant attention as the potential standard error correction code (ECC) for future communication and data storage. However, the VLSI implementation complexity of polar codes decoders is largely influenced by its nature of in-series decoding. This dissertation is dedicated to presenting optimal decoder architectures for polar codes. This dissertation addresses several structural properties of polar codes and key properties of decoding algorithms that are not dealt with in the prior researches. The underlying concept of the proposed architectures is a paradigm that simplifies and schedules the computations such that hardware is simplified, latency is minimized and bandwidth is maximized. In pursuit of the above, throughput centric successive cancellation (TCSC) and overlapping path list successive cancellation (OPLSC) VLSI architectures and express journey BP (XJBP) decoders for the polar codes are presented. An arbitrary polar code can be decomposed by a set of shorter polar codes with special characteristics, those shorter polar codes are referred to as constituent polar codes. By exploiting the homogeneousness between decoding processes of different constituent polar codes, TCSC reduces the decoding latency of the SC decoder by 60% for codes with length n = 1024. The error correction performance of SC decoding is inferior to that of list successive cancellation decoding. The LSC decoding algorithm delivers the most reliable decoding results; however, it consumes most hardware resources and decoding cycles. Instead of using multiple instances of decoding cores in the LSC decoders, a single SC decoder is used in the OPLSC architecture. The computations of each path in the LSC are arranged to occupy the decoder hardware stages serially in a streamlined fashion. This yields a significant reduction of hardware complexity. The OPLSC decoder has achieved about 1.4 times hardware efficiency improvement compared with traditional LSC decoders. The hardware efficient VLSI architectures for TCSC and OPLSC polar codes decoders are also introduced. Decoders based on SC or LSC algorithms suffer from high latency and limited throughput due to their serial decoding natures. An alternative approach to decode the polar codes is belief propagation (BP) based algorithm. In BP algorithm, a graph is set up to guide the beliefs propagated and refined, which is usually referred to as factor graph. BP decoding algorithm allows decoding in parallel to achieve much higher throughput. XJBP decoder facilitates belief propagation by utilizing the specific constituent codes that exist in the conventional factor graph, which results in an express journey (XJ) decoder. Compared with the conventional BP decoding algorithm for polar codes, the proposed decoder reduces the computational complexity by about 40.6%. This enables an energy-efficient hardware implementation. To further explore the hardware consumption of the proposed XJBP decoder, the computations scheduling is modeled and analyzed in this dissertation. With discussions on different hardware scenarios, the optimal scheduling plans are developed. A novel memory-distributed micro-architecture of the XJBP decoder is proposed and analyzed to solve the potential memory access problems of the proposed scheduling strategy. The register-transfer level (RTL) models of the XJBP decoder are set up for comparisons with other state-of-the-art BP decoders. The results show that the power efficiency of BP decoders is improved by about 3 times
    • …
    corecore