584 research outputs found

    Improved Bounds for Online Preemptive Matching

    Get PDF
    When designing a preemptive online algorithm for the maximum matching problem, we wish to maintain a valid matching M while edges of the underlying graph are presented one after the other. When presented with an edge e, the algorithm should decide whether to augment the matching M by adding e (in which case e may be removed later on) or to keep M in its current form without adding e (in which case e is lost for good). The objective is to eventually hold a matching M with maximum weight. The main contribution of this paper is to establish new lower and upper bounds on the competitive ratio achievable by preemptive online algorithms: 1. We provide a lower bound of 1+ln 2~1.693 on the competitive ratio of any randomized algorithm for the maximum cardinality matching problem, thus improving on the currently best known bound of e/(e-1)~1.581 due to Karp, Vazirani, and Vazirani [STOC'90]. 2. We devise a randomized algorithm that achieves an expected competitive ratio of 5.356 for maximum weight matching. This finding demonstrates the power of randomization in this context, showing how to beat the tight bound of 3 +2\sqrt{2}~5.828 for deterministic algorithms, obtained by combining the 5.828 upper bound of McGregor [APPROX'05] and the recent 5.828 lower bound of Varadaraja [ICALP'11]

    On Randomized Algorithms for Matching in the Online Preemptive Model

    Full text link
    We investigate the power of randomized algorithms for the maximum cardinality matching (MCM) and the maximum weight matching (MWM) problems in the online preemptive model. In this model, the edges of a graph are revealed one by one and the algorithm is required to always maintain a valid matching. On seeing an edge, the algorithm has to either accept or reject the edge. If accepted, then the adjacent edges are discarded. The complexity of the problem is settled for deterministic algorithms. Almost nothing is known for randomized algorithms. A lower bound of 1.6931.693 is known for MCM with a trivial upper bound of 22. An upper bound of 5.3565.356 is known for MWM. We initiate a systematic study of the same in this paper with an aim to isolate and understand the difficulty. We begin with a primal-dual analysis of the deterministic algorithm due to McGregor. All deterministic lower bounds are on instances which are trees at every step. For this class of (unweighted) graphs we present a randomized algorithm which is 2815\frac{28}{15}-competitive. The analysis is a considerable extension of the (simple) primal-dual analysis for the deterministic case. The key new technique is that the distribution of primal charge to dual variables depends on the "neighborhood" and needs to be done after having seen the entire input. The assignment is asymmetric: in that edges may assign different charges to the two end-points. Also the proof depends on a non-trivial structural statement on the performance of the algorithm on the input tree. The other main result of this paper is an extension of the deterministic lower bound of Varadaraja to a natural class of randomized algorithms which decide whether to accept a new edge or not using independent random choices

    Online Service with Delay

    Full text link
    In this paper, we introduce the online service with delay problem. In this problem, there are nn points in a metric space that issue service requests over time, and a server that serves these requests. The goal is to minimize the sum of distance traveled by the server and the total delay in serving the requests. This problem models the fundamental tradeoff between batching requests to improve locality and reducing delay to improve response time, that has many applications in operations management, operating systems, logistics, supply chain management, and scheduling. Our main result is to show a poly-logarithmic competitive ratio for the online service with delay problem. This result is obtained by an algorithm that we call the preemptive service algorithm. The salient feature of this algorithm is a process called preemptive service, which uses a novel combination of (recursive) time forwarding and spatial exploration on a metric space. We hope this technique will be useful for related problems such as reordering buffer management, online TSP, vehicle routing, etc. We also generalize our results to k>1k > 1 servers.Comment: 30 pages, 11 figures, Appeared in 49th ACM Symposium on Theory of Computing (STOC), 201

    Improved approximation guarantees for weighted matching in the semi-streaming model

    Get PDF
    We study the maximum weight matching problem in the semi-streaming model, and improve on the currently best one-pass algorithm due to Zelke (Proc. of STACS2008, pages 669-680) by devising a deterministic approach whose performance guarantee is 4.91+epsilon. In addition, we study preemptive online algorithms, a sub-class of one-pass algorithms where we are only allowed to maintain a feasible matching in memory at any point in time. All known results prior to Zelke's belong to this sub-class. We provide a lower bound of 4.967 on the competitive ratio of any such deterministic algorithm, and hence show that future improvements will have to store in memory a set of edges which is not necessarily a feasible matching

    Streaming Algorithms for Submodular Function Maximization

    Full text link
    We consider the problem of maximizing a nonnegative submodular set function f:2NR+f:2^{\mathcal{N}} \rightarrow \mathbb{R}^+ subject to a pp-matchoid constraint in the single-pass streaming setting. Previous work in this context has considered streaming algorithms for modular functions and monotone submodular functions. The main result is for submodular functions that are {\em non-monotone}. We describe deterministic and randomized algorithms that obtain a Ω(1p)\Omega(\frac{1}{p})-approximation using O(klogk)O(k \log k)-space, where kk is an upper bound on the cardinality of the desired set. The model assumes value oracle access to ff and membership oracles for the matroids defining the pp-matchoid constraint.Comment: 29 pages, 7 figures, extended abstract to appear in ICALP 201

    Probabilistic alternatives for competitive analysis

    Get PDF
    In the last 20 years competitive analysis has become the main tool for analyzing the quality of online algorithms. Despite of this, competitive analysis has also been criticized: it sometimes cannot discriminate between algorithms that exhibit significantly different empirical behavior or it even favors an algorithm that is worse from an empirical point of view. Therefore, there have been several approaches to circumvent these drawbacks. In this survey, we discuss probabilistic alternatives for competitive analysis.operations research and management science;
    corecore