13 research outputs found

    Speeding-up Dynamic Programming with Representative Sets - An Experimental Evaluation of Algorithms for Steiner Tree on Tree Decompositions

    Full text link
    Dynamic programming on tree decompositions is a frequently used approach to solve otherwise intractable problems on instances of small treewidth. In recent work by Bodlaender et al., it was shown that for many connectivity problems, there exist algorithms that use time, linear in the number of vertices, and single exponential in the width of the tree decomposition that is used. The central idea is that it suffices to compute representative sets, and these can be computed efficiently with help of Gaussian elimination. In this paper, we give an experimental evaluation of this technique for the Steiner Tree problem. A comparison of the classic dynamic programming algorithm and the improved dynamic programming algorithm that employs the table reduction shows that the new approach gives significant improvements on the running time of the algorithm and the size of the tables computed by the dynamic programming algorithm, and thus that the rank based approach from Bodlaender et al. does not only give significant theoretical improvements but also is a viable approach in a practical setting, and showcases the potential of exploiting the idea of representative sets for speeding up dynamic programming algorithms

    Technical Communications of ICLP

    Get PDF
    Abstract Dynamic programming (DP) on tree decompositions is a well studied approach for solving hard problems efficiently. State-of-the-art implementations usually rely on tables for storing information, and algorithms specify how the tuples are manipulated during traversal of the decomposition. However, a major bottleneck of such table-based algorithms is relatively high memory consumption. The goal of the doctoral thesis herein discussed is to mitigate performance and memory shortcomings of such algorithms. The idea is to replace tables with an efficient data structure that no longer requires to enumerate intermediate results explicitly during the computation. To this end, Binary Decision Diagrams (BDDs) and related concepts are studied with respect to their applicability in this setting. Besides native support for efficient storage, from a conceptual point of view BDDs give rise to an alternative approach of how DP algorithms are specified. Instead of tuple-based manipulation operations, the algorithms are specified on a logical level, where sets of models can be conjointly updated. The goal of the thesis is to provide a general tool-set for problems that can be solved efficiently via DP on tree decompositions

    Computing a Minimum-Cost kk-hop Steiner Tree in Tree-Like Metrics

    Get PDF
    We consider the problem of computing a Steiner tree of minimum cost under a kk-hop constraint which requires the depth of the tree to be at most kk. Our main result is an exact algorithm for metrics induced by graphs of bounded treewidth that runs in time nO(k)n^{O(k)}. For the special case of a path, we give a simple algorithm that solves the problem in polynomial time, even if kk is part of the input. The main result can be used to obtain, in quasi-polynomial time, a near-optimal solution that violates the kk-hop constraint by at most one hop for more general metrics induced by graphs of bounded highway dimension

    Secluded Connectivity Problems

    Full text link
    Consider a setting where possibly sensitive information sent over a path in a network is visible to every {neighbor} of the path, i.e., every neighbor of some node on the path, thus including the nodes on the path itself. The exposure of a path PP can be measured as the number of nodes adjacent to it, denoted by N[P]N[P]. A path is said to be secluded if its exposure is small. A similar measure can be applied to other connected subgraphs, such as Steiner trees connecting a given set of terminals. Such subgraphs may be relevant due to considerations of privacy, security or revenue maximization. This paper considers problems related to minimum exposure connectivity structures such as paths and Steiner trees. It is shown that on unweighted undirected nn-node graphs, the problem of finding the minimum exposure path connecting a given pair of vertices is strongly inapproximable, i.e., hard to approximate within a factor of O(2log1ϵn)O(2^{\log^{1-\epsilon}n}) for any ϵ>0\epsilon>0 (under an appropriate complexity assumption), but is approximable with ratio Δ+3\sqrt{\Delta}+3, where Δ\Delta is the maximum degree in the graph. One of our main results concerns the class of bounded-degree graphs, which is shown to exhibit the following interesting dichotomy. On the one hand, the minimum exposure path problem is NP-hard on node-weighted or directed bounded-degree graphs (even when the maximum degree is 4). On the other hand, we present a polynomial algorithm (based on a nontrivial dynamic program) for the problem on unweighted undirected bounded-degree graphs. Likewise, the problem is shown to be polynomial also for the class of (weighted or unweighted) bounded-treewidth graphs

    Ant Colony Optimization for Multi-objective Digital Convergent Product Network

    Get PDF
    Convergent product is an assembly shape concept integrating functions and sub-functions to form a final product. To conceptualize the convergent product problem, a web-based network is considered in which a collection of base functions and sub-functions configure the nodes and each arc in the network is considered to be a link between two nodes. The aim is to find an optimal tree of functionalities in the network adding value to the product in the web environment. First, an algorithm is proposed to assign the links among bases and sub-functions. Then, numerical values as benefits and costs are determined for arcs and nodes, respectively, using a mathematical approach. Also, customer’s value corresponding to the benefits is considered. Finally, the Steiner tree methodology is adapted to a multi-objective model optimized by an ant colony optimization method. The approach is applicable for all digital products, such as mobile, tablet, laptop, etc. An example is worked out to illustrate the proposed approach

    Lower Bounds for QBFs of Bounded Treewidth

    Full text link
    The problem of deciding the validity (QSAT) of quantified Boolean formulas (QBF) is a vivid research area in both theory and practice. In the field of parameterized algorithmics, the well-studied graph measure treewidth turned out to be a successful parameter. A well-known result by Chen in parameterized complexity is that QSAT when parameterized by the treewidth of the primal graph of the input formula together with the quantifier depth of the formula is fixed-parameter tractable. More precisely, the runtime of such an algorithm is polynomial in the formula size and exponential in the treewidth, where the exponential function in the treewidth is a tower, whose height is the quantifier depth. A natural question is whether one can significantly improve these results and decrease the tower while assuming the Exponential Time Hypothesis (ETH). In the last years, there has been a growing interest in the quest of establishing lower bounds under ETH, showing mostly problem-specific lower bounds up to the third level of the polynomial hierarchy. Still, an important question is to settle this as general as possible and to cover the whole polynomial hierarchy. In this work, we show lower bounds based on the ETH for arbitrary QBFs parameterized by treewidth (and quantifier depth). More formally, we establish lower bounds for QSAT and treewidth, namely, that under ETH there cannot be an algorithm that solves QSAT of quantifier depth i in runtime significantly better than i-fold exponential in the treewidth and polynomial in the input size. In doing so, we provide a versatile reduction technique to compress treewidth that encodes the essence of dynamic programming on arbitrary tree decompositions. Further, we describe a general methodology for a more fine-grained analysis of problems parameterized by treewidth that are at higher levels of the polynomial hierarchy

    Solving two-stage stochastic network design problems to optimality

    Get PDF
    The Steiner tree problem (STP) is a central and well-studied graph-theoretical combinatorial optimization problem which plays an important role in various applications. It can be stated as follows: Given a weighted graph and a set of terminal vertices, find a subset of edges which connects the terminals at minimum cost. However, in real-world applications the input data might not be given with certainty or it might depend on future decisions. For the STP, for example, edge costs representing the costs of establishing links may be subject to inflations and price deviations. In this thesis we tackle data uncertainty by using the concept of stochastic programming and we study the two-stage stochastic version of the Steiner tree problem (SSTP). Thereby, a set of scenarios defines the possible outcomes of a random variable; each scenario is given by its realization probability and defines a set of terminals and edge costs. A feasible solution consists of a subset of edges in the first stage and edge subsets for all scenarios (second stage) such that each terminal set is connected. The objective is to find a solution that minimizes the expected cost. We consider two approaches for solving the SSTP to optimality: combinatorial algorithms, in particular fixed-parameter tractable (FPT) algorithms, and methods from mathematical programming. Regarding the combinatorial algorithms we develop a linear-time algorithm for trees, an FPT algorithm parameterized by the number of terminals, and we consider treewidth-bounded graphs where we give the first FPT algorithm parameterized by the combination of treewidth and number of scenarios. The second approach is based on deriving strong integer programming (IP) formulations for the SSTP. By using orientation properties we introduce new semi-directed cut- and flow-based IP formulations which are shown to be stronger than the undirected models from the literature. To solve these models to optimality we use a decomposition-based two-stage branch&cut algorithm, which is improved by a fast and efficient method for strengthening the optimality cuts. Moreover, we develop new and stronger integer optimality cuts. The computational performance is evaluated in a comprehensive computational study, which shows the superiority of the new formulations, the benefit of the decomposition, and the advantage of using the strengthened optimality cuts. The Steiner forest problem (SFP) is a related problem where sets of terminals need to be connected. On the one hand, the SFP is a generalization of the STP and on the other hand, we show that the SFP is a special case of the SSTP. Therefore, our results are transferable to the SFP and we present the first FPT algorithm for treewidth-bounded graphs and we model new and stronger (semi-)directed cut- and flow-based IP formulations for the SFP. In the second part of this thesis we consider the two-stage stochastic survivable network design problem, an extension of the SSTP where pairs of vertices may demand a higher connectivity. Similarly to the first part we introduce new and stronger semi-directed cut-based models, apply the same decomposition along with the cut strengthening technique, and argue the validity of the newly introduced integer optimality cuts. A computational study shows the benefit, robustness, and good performance of the decomposition and the cut strengthening method
    corecore