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Abstract

The Steiner tree problem (STP) is a central andwell-studied graph-theoretical combinatorial
optimization problem which plays an important role in various applications. It can be stated
as follows: Given a weighted graph and a set of terminal vertices, find a subset of edges
which connects the terminals at minimum cost. However, in real-world applications the
input data might not be given with certainty or it might depend on future decisions. For the
STP, for example, edge costs representing the costs of establishing links may be subject to
inflations and price deviations. In this thesis we tackle data uncertainty by using the concept
of stochastic programming and we study the two-stage stochastic version of the Steiner tree
problem (SSTP). Thereby, a set of scenarios defines the possible outcomes of a random
variable; each scenario is given by its realization probability and defines a set of terminals
and edge costs. A feasible solution consists of a subset of edges in the first stage and
edge subsets for all scenarios (second stage) such that each terminal set is connected. The
objective is to find a solution that minimizes the expected cost. We consider two approaches
for solving the SSTP to optimality: combinatorial algorithms, in particular fixed-parameter
tractable (FPT) algorithms, and methods from mathematical programming.

Regarding the combinatorial algorithms we develop a linear-time algorithm for trees,
an FPT algorithm parameterized by the number of terminals, and we consider treewidth-
bounded graphs where we give the first FPT algorithm parameterized by the combination
of treewidth and number of scenarios.

The second approach is based on deriving strong integer programming (IP) formulations
for the SSTP. By using orientation properties we introduce new semi-directed cut- and flow-
based IP formulations which are shown to be stronger than the undirected models from the
literature. To solve these models to optimality we use a decomposition-based two-stage
branch&cut algorithm, which is improved by a fast and efficient method for strengthening
the optimality cuts. Moreover, we develop new and stronger integer optimality cuts. The
computational performance is evaluated in a comprehensive computational study, which
shows the superiority of the new formulations, the benefit of the decomposition, and the
advantage of using the strengthened optimality cuts.

The Steiner forest problem (SFP) is a related problem where sets of terminals need to be
connected. On the one hand, the SFP is a generalization of the STP and on the other hand,
we show that the SFP is a special case of the SSTP. Therefore, our results are transferable
to the SFP and we present the first FPT algorithm for treewidth-bounded graphs and we
model new and stronger (semi-)directed cut- and flow-based IP formulations for the SFP.

In the second part of this thesis we consider the two-stage stochastic survivable network
design problem, an extension of the SSTP where pairs of vertices may demand a higher
connectivity. Similarly to the first part we introduce new and stronger semi-directed cut-
based models, apply the same decomposition along with the cut strengthening technique,
and argue the validity of the newly introduced integer optimality cuts. A computational
study shows the benefit, robustness, and good performance of the decomposition and the
cut strengthening method.
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Zusammenfassung

Das Steinerbaumproblem (STP) ist ein zentrales und gut untersuchtes graphentheore-
tisches kombinatorisches Optimierungsproblem. Hierbei ist ein gewichteter Graph und
eine Menge von Terminalknoten gegeben und es soll eine Teilmenge der Kanten gefun-
den werden, welche die Terminale kostenminimal verbindet. In realen Anwendungen ist
die Eingabe allerdings oft nicht mit Sicherheit gegeben oder die Eingabe hängt von zu-
künftigen Entscheidungen ab. Für das STP könnten z. B. die Kantenkosten, welche die
Kosten für die Installation von Verbindungen darstellen, von Inflationen und Preisschwan-
kungen abhängen. In dieser Arbeit gehen wir die Datenunsicherheit mit dem Konzept der
stochastischen Programmierung an und studieren die zweistufige stochastische Variante des
Steinerbaumproblems (SSTP). Bei diesem Problem definiert eine Menge an Szenarien die
möglichen Ereignisse einer Zufallsvariablen; jedes Szenario hat eine Eintrittswahrschein-
lichkeit und definiert Kantenkosten und eine Menge von Terminalen. Eine zulässige Lö-
sung besteht aus einer Teilmenge der Kanten in der ersten Phase und Kanten-Teilmengen
für jedes Szenario (zweite Phase), so dass jede Terminalmenge verbunden wird. Das Ziel
ist die Minimierung der erwarteten Kosten. Wir betrachten zwei Ansätze um das SSTP
optimal zu lösen: kombinatorische Algorithmen, insbesondere Fixed-Parameter Tractable
(FPT)-Algorithmen, undMethoden aus demBereich der mathematischen Programmierung.

Bezüglich der kombinatorischen Algorithmen entwickeln wir einen Linearzeit-Algo-
rithmus für Bäume, einen FPT-Algorithmus mit Parameter Anzahl Terminale und wir
betrachten Graphen mit beschränkter Baumweite, für die wir den ersten FPT-Algorithmus
mit kombiniertem Parameter Baumweite und Anzahl Szenarien beschreiben.

Der zweite Ansatz basiert auf der Formulierung des SSTP als ganzzahliges lineares
Programm (IP). Mit Hilfe von Orientierungen führen wir neue semi-gerichtete Schnitt- und
Fluss-basierte IP-Formulierungen ein, von denen wir zeigen, dass sie stärker sind als die
ungerichteten Modelle aus der Literatur. Um die Modelle optimal zu lösen wenden wir
einen Dekompositions-basierten zweistufigen Branch&Cut-Algorithmus an, welcher durch
eine effiziente Methode zur Verstärkung der Optimalitätsungleichungen verbessert wird.
Außerdem entwickeln wir neue und stärkere Ganzzahligkeits-Optimalitätsungleichungen.
Die Performanz wird in einer experimentellen Studie ausgewertet, welche die Überlegenheit
der neuen Formulierungen, den Vorteil der Dekomposition und die Verbesserung durch die
verstärkten Optimalitätsungleichungen zeigt.

Das Steinerwaldproblem (SFP) ist ein verwandtes Problem, bei dem Mengen von Ter-
minalknoten verbunden werden müssen. Einerseits ist das SFP eine Verallgemeinerung
des STP, andererseits zeigen wir, dass es ein Spezialfall des SSTP ist. Dadurch können
unsere Ergebnisse auf das SFP übertragen werden und wir präsentieren den ersten FPT-
Algorithmus für Baumweiten-beschränkte Graphen und wir modellieren neue und stärkere
(semi-)gerichtete Schnitt- und Fluss-basierte IP-Formulierungen für das SFP.

Im zweiten Teil dieser Arbeit betrachten wir das zweistufige stochastische Survivable
Network Design Problem, eine Erweiterung des SSTP, bei dem Knotenpaare einen höheren
Zusammenhang fordern können. Ähnlich zum ersten Teil führen wir neue und stärkere
semi-gerichtete Schnitt-basierte Modelle ein, wenden die gleiche Dekomposition mit der
Technik zur Verstärkung der Optimalitätsgleichungen an undwir zeigen die Zulässigkeit der
neu eingeführten Ganzzahligkeits-Optimalitätsungleichungen. Eine experimentelle Studie
zeigt die Vorteile, Robustheit und gute Performanz der Dekomposition und der Methode
zur Verstärkung der Optimalitätsungleichungen.
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Notations

In the following we summarize some important notations which are used in this thesis more
frequently. Rarely used notations are not listed here and we refer to the related chapters.
The notations are grouped by topics.

Basics:

Notation Definition
M>, v> transpose of matrix M , transpose of vector v
2S power set of a set S
N positive integers including 0
N≥i positive integers greater than or equal to i
R(≥i) real numbers (greater than or equal to i)
P polytope
PP
f polytope of formulation f for problem P

Projx (P) projection of P onto the space of x variables

Complexity: Most problems considered in this thesis are optimization problems. To
simplify and shorten the description we call an optimization problem NP-hard if the related
decision problem is NP-complete.

Graphs, cuts, flows, and treewidth: The notations are introduced in Chapter 2.1. Most
importantly, we use G as identifier for undirected or directed graphs, V are the vertices, E
the undirected edges, and A the directed arcs. Mostly, A is used as the bidirection of E .

Parameterized algorithms: This part is self-contained and we refer to Chapter 5 for the
notations. Since the algorithm on treewidth-bounded graphs plays an important role we
highlight B` , the `th Bell-number, and tw, the treewidth of a graph.

Linear, integer, and stochastic programs: Mainly see Section 2.2 and 2.3, respectively.
All vectors are column vectors. Moreover, vectors and matrices are typeset in normal letters
for better readability. The only exceptions are the 0- and 1-vector where the dimensions are
not given explicitly.

A subscript e or a for an edge or arc, e.g., xe or za, gives the element of the vector x
or z corresponding to edge e or arc a. We write za or zi j for an arc a = (i, j); for an edge
e = {i, j} the edge variable is xe or x{i, j }.

A superscript 0 indicates the first stage and a superscript k denotes the kth scenario,
e.g., x0 are first-stage edge variables and xk are edge variables for scenario k. The purpose
of this notation is to avoid double subscripts with scenarios and edges: an edge e will be
assigned variables x0

e and xke , respectively.
Throughout this thesis we let K denote the number of scenarios and useK as the index

set, i.e., K := {1, . . . ,K}.
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To shorten the notationwe use the superscript “1 . . .K” to abbreviateK scenario vectors.
For example, the vector x1...K is the transposed concatenation of the vectors x1, . . . , xK , i.e.,
x1...K = ((x1)>, . . . , (xK )>)>. We use 0 . . .K analogously. Moreover, if, e.g., x0 and y1...K

are variable vectors for the first and second stage we abbreviate the vector ((x0)>, (y1...K )>)>

by (x0, y1...K ).
More notations are listed in the following table.

Notation Definition
x̃, x̄, x̂, x̌ solution vectors, i.e., assignments to the variable vector x
k index of a scenario
pk probability of scenario k
(LP) primal linear program
(D:LP) dual of program (LP)
(Prel) relaxed program of P (all integer variables are relaxed)
(Prel:x) program P with relaxed x variables
L(k) lower bound for the second-stage cost (of scenario k)
θ variable for second-stage cost
θk variable for second-stage cost of scenario k
q̃(k) value of the second-stage cost (of scenario k) w.r.t. the first-

stage solution x̃0

Q(k)(x̃0) second-stage cost function (for scenario k) w.r.t. the first-stage
solution x̃0, i.e., Q(k)(x̃0) = q̃(k)

R(k)(x̃0) relaxed second-stage cost function (for scenario k) w.r.t. x̃0

IP formulations for (stochastic) network design problems: Mainly see Chapter 3,
Chapter 6, and Section 9.2. We use the following variable identifiers: f is used for flow
variables, x always denotes undirected edge variables, z is an identifier for directed arc
variables, and y is used for undirected or directed edge variables.

For an edge set E with edge variables x and x ′ we use the notations x(E) :=
∑

e∈E xe
and (x + x ′)(E) :=

∑
e∈E xe + x ′e. The analogue notation is used for directed arcs.

Let S be a valid cut set in a graph. With undirected edge variables x and directed arc
variables y we use (x + y)(δ−(S)) := x(δ(S)) + y(δ−(S)) =

∑
(i, j)∈δ−(S) x{i, j } + yi j . The

analogue notation is used for the outgoing semi-directed cut δ+(S).
Some important notations are given in the following table.

Notation Definition
Ḡ bidirection of an undirected graph G
c(k) edge/arc costs (of scenario k)
c∗ expected edge/arc costs
r designated root node
rk designated root node in scenario k or for terminal set k
ρ(k) connectivity requirement matrix or vector (for scenario k)
R
(k)
i set of vertices with connectivity requirement i (in scenario k)

t a terminal
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Notation Definition
T set of terminals
Tr T\{r}
Tk terminal set of scenario k or kth terminal set
t∗

∑
k∈K |Tk |

Tk
r Tk\{rk} or Tk\{r}

t∗r
∑

k∈K |Tk
r |

Vr V\{r}
Vk
r V\{rk}
S
(k)
1 ,S

(k)
≥2 set of valid (directed) cuts (for scenario k) with right-hand

side 1 and ≥ 2, respectively
f (k)(S) connectivity requirement function for a cut S (in scenario k)

Two-stage branch&cut: See Chapter 7 and Section 9.3.

Notation Definition
((R)MPf) (relaxed) master problem of model f
((R)SPf) (relaxed) subproblem of model f
(D:RSPf) dual subproblem of model f
S directed cut or 1-index set of a solution
S(k) set of valid (directed) cuts (for scenario k)
αk
S

dual variable for a directed cut S and scenario k
βke, β

k
a dual variable for a capacity constraint and scenario k and edge

e or arc a, respectively
γk, τk dual variables for scenario k

Computational studies: Notations are given in Section 8.3 and Section 10.1.

Abbreviations: The following table lists the used abbreviations.

Abbreviation Definition
2BC two-stage branch&cut
AGL aggregated L-shaped optimality cut
avg average
b&b branch&bound (algorithm)
b&c branch&cut (algorithm)
BIP binary program
DA direct approach
dc directed cut
DE deterministic equivalent
df directed flow
dSTP directed Steiner tree problem

ix



Abbreviation Definition
EEV expected result of EV solution
EV expected value (problem)
FPT complexity class fixed parameter tractable
(G)SEC (generalized) subtour elimination constraint
IP integer linear program
LP linear program
med median
MIP mixed integer linear program
MP master problem
MST minimum spanning tree (problem)
MW Magnanti & Wong
ncSNDP node-connectivity survivable network design problem
NDP network design problem
NoCS no cut strengthening
NoNG no no-good cuts
NP complexity class nondeterministic polynomial time
opt optimum
P complexity class polynomial time
PCSTP prize-collecting Steiner tree problem
rel relaxation
rev reverse
RMP relaxed master problem
RSP relaxed subproblem
rSSTP rooted stochastic Steiner tree problem
sdc semi-directed cut
sdf semi-directed flow
SFP Steiner forest problem
SNDP survivable network design problem
sol solution
SP subproblem
SSNDP stochastic survivable network design problem
SSTP stochastic Steiner tree problem
std. dev. standard deviation
STP Steiner tree problem
sUp speedup
TSP traveling salesman problem
uc undirected cut
uf undirected flow
VSS value of stochastic solution

x
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Chapter 1

Introduction

1.1 Motivational example

Although farmers and news vendors are mostly the first choice working class for introducing
the field of stochastic optimization we like to consider a young manager working at a
telecommunication company. Our manager is assigned a new task concerning an important
customer whose company wants to relocate to a new headquarter building. Both companies
already signed a contract about a high-speed internet connection using fiberglass. Since all
pre-existing cables are copper cables they need proper upgrades. Unfortunately, it is unsure
which one of two possible new headquarter sites will be chosen. However, the two possible
locations are known and moreover, it is known when the decision will be made.

To fulfill the contract it has to be decided which cables to upgrade—and when. Since
the new headquarter location is uncertain there are four possible strategies:

(S1) Upgrade the cheapest connections to both possible headquarter locations now.

(S2) Wait until the customer makes his decision and upgrade the cheapest connection
afterwards.

(S3) Combine both ideas by upgrading some connections now and complete the remaining
parts after the decision is made.

(S4) “Gamble” and install an upgrade to one of the two possible sites now.

Since the chances for both possible sites are 50% strategy (S4) is too risky and ruled
out pre-emptively.

To find the best solution our manager analyzed the situation carefully and identified the
important parts of the current network topology, as depicted in Figure 1.1(a). He calculated
the current upgrading costs and estimated costs for the future; these costs are given in Figure
1.1 and in the following table.

connection
upgrading costs e1 e2 e3 e4 e5

today 100 100 95 50 50
future 205 190 180 60 60

3
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(a)

(b)

Figure 1.1: (a) The current situation and the underlying topology for the network. The two
buildings with captions “1” and “2”, respectively, depict the possible sites for the new headquarter.
The building labeled “B” is the backbone and “H” an additional hub. Upgrading costs for the five
connections e1, . . . , e5 are given for the current situation as well as for the future, as depicted in (b).
Here, a new street highly influences the costs for connections e1, e2, and e3.

The cost for connecting sites 1 or 2 directly by connections e1 and e2, respectively, is
100 each. The detour over some additional hub costs 95 (e3) plus 2 · 50 for the connection
to the sites via e4 and e5. Therefore, the optimum solution for strategy (S1) has cost 195.

Since our manager is familiar with the basics of integer linear programming he formu-
lated the mathematical problem for strategy (S1) to prove the optimality of this solution.
By using decision variables x1, . . . , x5 for the connections e1, . . . , e5, respectively, he came
up with the following model. For i ∈ {1, . . . , 5} variable xi = 1 if and only if connection ei
is upgraded, otherwise xi = 0. The restrictions (1.1) to (1.5) enforce the connections from
site 1 and 2 to the backbone and the objective is to minimize the overall cost:

min 100x1 + 100x2 + 95x3 + 50x4 + 50x5

s.t. x1 + x4 ≥ 1 (1.1)
x2 + x5 ≥ 1 (1.2)

x1 + x2 + x3 ≥ 1 (1.3)
x1 + x3 + x5 ≥ 1 (1.4)
x2 + x3 + x4 ≥ 1 (1.5)

x1, . . . , x5 ∈ {0, 1} (1.6)
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The optimum solution for this integer program is x> = (x1, . . . , x5)
> = (0, 0, 1, 1, 1)>

with cost 195 which proves his preceding arguments concerning strategy (S1).
However, this solution seems inefficient and too conservative since one upgraded con-

nection (e4 or e5) always will be redundant. Therefore, our manager tries to find optimal
solutions for strategies (S2) and (S3), respectively.

Due to new streets in the area—influencing the construction costs—and higher expected
prizes for fiberglass all future costs are increasing: the estimated upgrading costs for all
connections are given in Figure 1.1 (b) and the previous table.

Hence, applying strategy (S2) obviously induces cost 190 or 205, respectively, by using
one of the direct connections and depending on the new location. On the one hand, the
worst-case cost of 205 for the second strategy is worse than connecting both sites now as
in strategy (S1). On the other hand, in the best case the cost is only 190 and this solution
would be preferable. But which strategy is better? Our manager gave some thought to the
interpretation of best- and worst-case and decided that this point of view is not adequate
since the actual location is currently not known.

Instead, by using the mathematical notion of expectation and the assumption that
both locations are equally probable he calculated the expected cost of this solution as
0.5 · 205 + 0.5 · 190 = 197.5 (connections e1 or e2, respectively). Therefore, our manager
concludes that the first approach—with (expected) cost 195—is preferable over the second
one.

However, this is still not satisfying because both of the first two strategies concentrate
only on exactly one point in time: Either all connections are upgraded now (strategy (S1))
or only the necessary connection is upgraded in the future (strategy (S2)). The purpose of
the third strategy is to find a compromise and use the most profitable connections—now and
in the future. Notice that both previously described solutions already are extreme solutions
for this third strategy.

The (reasonable) solutions for strategy (S3) differing from the two previously described
solutions are as follows:

(i) Upgrade connection e3 now at cost 95 and, after the customer makes his decision
connections, e4 or e5, respectively, can be used and upgraded at cost 60: The expected
cost for this solution is 95 + 0.5 · 60 + 0.5 · 60 = 155.

(ii) To cover site 1 upgrade e1 now (cost 100). Later on, if site 1 is chosen everything is
fine. On the other hand, if site 2 is chosen use e4 and e5 at cost 120 (expected cost
60). Hence, the expected cost is 100 + 0.5 · (60 + 60) = 160.

(iii) Analogue to solution (ii) one can upgrade e2 now and use e4 and e5 in the future if
site 1 is chosen; the expected cost is 160, too.

Hence, the best solution for strategy (S3) is option (i) with expected cost 155. Notice
that due to identical costs of e4 and e5 this cost is not only the expected cost but this cost is
certain.

Again, to prove optimality, our network planner formulated the corresponding integer
program by using decision variables x1, . . . , x5 for the connections e1, . . . , e5 if upgraded
now and y1

1, . . . , y
1
5, y

2
1, . . . , y

2
5 for the connections in the future, respectively. The latter set

of variables has an additional upper index indicating which site has to be connected, i.e., y1

models decisions if location 1 is chosen and analogously y2 for the second location. The
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objective is to minimize the expected cost (future costs are weighted by probability) and the
constraints ensure that the necessary connections are upgraded.

min 100x1 + 100x2 + 95x3 + 50x4 + 50x5 +

0.5(205y1
1 + 190y1

2 + 180y1
3 + 60y1

4 + 60y1
5)+

0.5(205y2
1 + 190y2

2 + 180y2
3 + 60y2

4 + 60y2
5)

s.t. x1 + x4 + y1
1 + y1

4 ≥ 1 (1.7)

x1 + x2 + x3 + y1
1 + y1

2 + y1
3 ≥ 1 (1.8)

x1 + x3 + x5 + y1
1 + y1

3 + y1
5 ≥ 1 (1.9)

x2 + x5 + y2
2 + y2

5 ≥ 1 (1.10)

x1 + x2 + x3 + y2
1 + y2

2 + y2
3 ≥ 1 (1.11)

x2 + x3 + x4 + y2
2 + y2

3 + y2
4 ≥ 1 (1.12)

x1, . . . , x5, y
1
1, . . . , y

1
5, y

2
1, . . . , y

2
5 ∈ {0, 1} (1.13)

Solving this integer program gives an optimum solution with x3 = 1, y1
4 = 1, and y2

5 = 1
(all other variables are 0) with cost 155 and which induces solution (i). Compared to the
previously mentioned solutions this one offers the minimum expected cost and this solution
is considerably cheaper than the solutions of the straight-forward strategies (S1) and (S2).

Now, imagine our manager would have perfect information and would be able to obtain
all the uncertain information beforehand. Then, he obviously would connect either site
1 or 2 directly with cost 100. The difference between the optimal expected cost and the
cost under perfect information, i.e., 155 − 100 = 55, is called value of perfect information.
This value measures the upper bound our manager would invest for this perfect information
while still being able of making a good and profitable decision.

The described optimization problem is an instance of the two-stage stochastic Steiner
tree problem, which plays a central role in this thesis. The term two-stage refers to the
two points in time with possible decisions. In the first stage—also said to be today, or
“on Monday”—profitable connections are installed and in the second stage—in the future,
“on Tuesday”—it is possible to take corrective actions, also called recourse (actions).
Thereby, all connectivity requirements of all possible scenarios—the possible outcomes in
the future—have to be satisfied.

The adjective stochastic implies that some input values are “uncertain” and depend on
the realization of random variables. In this thesis, we assume all random variables having
finite support. Hence, the possible outcomes can always be modeled by a finite number of
scenarios.

In our example, the first stage defines the current upgrading decisions under todays
costs. The second stage is in the future after the customer has announced his decision.
Since future edge costs do not depend on the new location it consists of two scenarios
defined by the two possible headquarter sites. Notice that if upgrading costs would depend
on another random variable, e.g., new streets in the area may be built or not, there would
be at least four scenarios.
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1.2 Introduction

Solving stochastic optimization problems. Assuming all values of an optimization prob-
lem being given is the classical view on algorithmic problems. In fact, it is a requirement
for most algorithms and without complete and valid input data algorithms cannot work.
However, when trying to apply theoretically developed algorithms in practice this premise
is often impossible—or at least difficult—to satisfy.

But, what if necessary input is missing or uncertain? For example, consider a truck
driver who is working for a cargo company and delivering and picking up shipments at
customers. What if the truck driver has to plan his tour for tomorrow without precise
knowledge of the customers to visit? Or what if the size or weight of the cargo that needs
to be picked up is unknown such that the truck weight limit might be exceeded? Or, maybe
even more unpredictable, what is when unexpected traffic jams influence the driving times
and time limit restrictions need to be kept?

For planning the tours of several trucks, maybe by using a formulation of the vehicle
routing problem, demands, customers, and driving times are necessary input values. If
these values are missing, any classical algorithm is inapplicable.

On the other hand, if the cargo company has a long standing experience and can
estimate tomorrows customers, demands, and traffic jams during rush hours is it possible
to use algorithms to compute “better” solutions by using this information?—Like in our
motivational example if the company can predict a set of possible scenarios which can
occur.

The intuitive and direct approach would be to adopt a standard algorithm by simply
using expected or average values. Unfortunately, this solution method does mostly not
give an actual optimum solution. Moreover, this method is not easily adaptable for many
problems. E.g., consider the telecommunication manager where the expected value would
yield expected connectivity requirements of 0.5 for each possible headquarter site: Despite
the fact that upgrading a fraction of a cable is not reasonable classical algorithms require
definite, e.g., binary information.

During the last decades several approaches have been proposed how to deal with uncer-
tainty. The two most prominent ones are stochastic programming and robust optimization.
Comparing both ideas is difficult because they have diverging viewpoints and follow differ-
ent objectives. Moreover, robust optimization developed a lot over the years and has spawn
many differing robustness concepts; with some of them even converging to stochastic
optimization.

In this thesis, we use and focus on the concept of two-stage stochastic optimization
problems. Informally, the main aspects, assumptions, and requirements are:

• Two points in time are considered: the first stage happens today and some decisions
can be made “here-and-now”. In the second stage, which is a predefined point of
time in the future, corrective “wait-and-see” actions, also called recourse actions, can
be taken.

• The data of the first stage is known and defined entirely.

• The future data is “uncertain”; however, it can be modeled by a finite number of
scenarios. Each scenario defines a possible setting in the future and has a certain
probability of being realized. Moreover, all possible outcomes are known, i.e., the
probabilities of the scenarios sum up to one.
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• The goal is to optimize the sum of the first-stage objective plus the objective of the
second stage with the latter one being an expected value over all scenarios.

• A feasible solution implies feasibility for all scenarios.

In general, the optimization of two-stage stochastic programs is more challenging than
the optimization of classical deterministic programs. The classical problems have (only)
one decision horizon and imply the viewpoint of all the input data being known in advance.

In this thesis, we focus on the exact solving of two-stage stochastic network design
problems by applying the following three methods:

• Find strong formulations for the problems as stochastic (mixed) integer programs and
use techniques from mathematical programming.

• Develop a parameterized algorithm.

• Identify easier special cases and design efficient combinatorial algorithms.

One promising way of solving large-scale linear programs exactly is by using Benders’
decomposition. For stochastic integer programs the approach utilizing this decomposition
is called integer L-shaped algorithm. We adapt this method for solving the two-stage
stochastic Steiner tree and stochastic survivability network design problem.

Another efficient approach for finding exact solutions are parameterized algorithms for
fixed parameter tractable problems. In this thesis we present algorithms based on the tree
decomposition for stochastic Steiner tree problems and we discuss approaches for other
parameters like the overall number of terminals.

(Stochastic) network design problems. Studying network design problems can be moti-
vated easily because these problems arise in various important areas, e.g.:

• In telecommunications there are many types of network design problems. Like
in our introductory example telecommunication companies want to install/upgrade
profitable connections between the customers. Sometimes the resulting network
topology needs to be resistant to failures which leads to survivability problems.
Another related type of problems are augmentation problems where given networks
are modified to reach a certain survivability. All these problems aim for cost-
minimum networks. If, in addition, connected costumers yield profits these problem
variants are called prize-collecting.

• The previously described problems arise in several fields like computer networks,
street or railway planning, or transportations.

• In VLSI chip design the problem of computing the best wiring can be modeled as a
network design problem.

• Another area for network design problems can be found in biology, in particular in
the reconstruction of phylogenetic trees, see e.g., Catanzaro, Labbé, Pesenti, and
Salazar González [34].
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Besides the numerous applications in practice network design problems belong to the
set of classical combinatorial optimization problems and have been studied intensively over
the past decades. Some of the most famous network design problems are the minimum
spanning tree problem, the shortest path problem, the Steiner tree problem, or the traveling
salesman problem, see Section 3.1.

Remarks. Optimization under uncertainty was firstly considered by Dantzig [56] for
linear programs in 1955. Since then this field developed rapidly and several concepts of
uncertainty, theoretical results, and algorithms were published. In this thesis we focus
on stochastic programming—for an overview we refer the reader to the various textbooks,
e.g., Birge and Louveaux [20], Shapiro, Dentcheva, and Ruszczyński [161], or Kall and
Wallace [104]. Further references are given in Section 2.3.3.

Most of the classical textbooks also discuss other concepts and, in particular, introduce
the approach of robust optimization. Robust optimization and stochastic programming
are both approaches for optimization under uncertainty but attack the problem at different
angles. Moreover, both concepts have their advantages and drawbacks.

In general, stochastic programming depends on knowing the probability distribution
of a random variable. In particular, the possible outcomes—including their realization
probabilities—have to be available and there exist two decision horizons. Here, the goal
is to find a solution which is feasible for all outcomes and which optimizes the expected
value.

Contrary to stochastic programming, robust optimization does not require such a prob-
ability distribution. Moreover, in its basic setting there is only one decision horizon. It
therefore concentrates on the worst case and the decisions have to be feasible for all real-
izations of the uncertain data. However, there are several robustness concepts with some
of them even converging to stochastic programming. For example, the book by Ben-
Tal, El Ghaoui, and Nemirovski [14] and the PhD thesis by Goerigk [76] provide a good
overview.

1.3 Overview and relevant publications

Overview. This thesis is divided into four parts. Part I contains the introduction and
the required preliminaries introducing graphs as well as linear, integer, and stochastic
programming (Chapter 1 and 2). Moreover, we recall the definitions and IP formulations
of relevant network design problems in Chapter 3.

Part II deals with the stochastic Steiner tree problem (SSTP). We start in Chapter 4
with the definitions of the SSTP and the rooted SSTP (rSSTP), some observations, and the
description of new linear-time algorithms for the stochastic problems on trees.

Chapter 5 is dedicated to fixed parameter tractable (FPT) algorithms. Section 5.1
contains a reduction from the rSSTP to the directed STP leading to an FPT algorithm for the
rSSTP which is parameterized by the overall number of terminals. The results are contained
in the diploma thesis by Kurz [115] but have been developed independently by the author
during the preparation of the mentioned diploma thesis; moreover, they are published in
the conference paper [116]. In Section 5.2 we mention an FPT algorithm for partial 2-
trees which is due to Bökler [26] and which is published in [25]. Section 5.3 contains an
NP-hardness proof for graphs with treewidth 3 by reducing the SSTP to the Steiner forest
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problem—also from [25, 26]. Afterwards, we investigate the general case: Section 5.4
describes an FPT algorithm for the deterministic STP on treewidth-bounded graphs. This
algorithm is published in the journal article [41] and the related conference paper [40]. In
Section 5.5 and 5.6 we present new and unpublished extensions of this algorithm for the
SSTP and rSSTP, respectively. Both algorithms are FPT algorithms parameterized by the
combination of treewidth and number of scenarios.

Chapter 6 is dedicated to the IP formulations for the stochastic STPs and the Steiner
forest problem (SFP). After recalling the undirected models in Section 6.1, the new semi-
directed models for the SSTP and the directed models for the rSSTP are described in
Section 6.2 and 6.3, respectively. In Section 6.4 we compare the strength of all introduced
models. The models and their comparisons are contained in the technical report [176] and
the stronger semi-directed model is described in the conference paper [27]. In Section 6.5
we adopt the ideas of the stochastic models and introduce new and stronger semi-directed
and directed models for the SFP; these results are contained in the manuscript [133].

The decomposition of the stochastic models is described in Chapter 7. The basic parts,
i.e., the master problem and subproblem, and the L-shaped optimality cuts are described
in Section 7.1 and 7.2 and also (briefly) in [27]. Moreover, we introduce a method for
strengthening the L-shaped cuts which is described (for the stochastic survivable network
design problem) in the journal article [127] and the related conference paper [126]. Section
7.2 contains unpublished results. Here, we develop another heuristic for improving the
optimality cuts, describe new and stronger integer optimality cuts, give new cut-based
constraints, and consider the disaggregation of all constraints.

Chapter 8 describes details of our implementation, the generated instances, and as main
part of this chapter, the results of a new and comprehensive computational study. The
experiments from [27] cover only a small portion of our new study.

Part III of this thesis deals with the stochastic survivable network design problem
(SSNDP). Chapter 9 introduces the problem, presents new and stronger IP formulations,
and describes the decomposition approach. This chapter is mainly based on the two
publications [126, 127]. The unpublished parts are some results adopted from the SSTP,
i.e., relaxing the first-stage variables does not influence overall integrality and the newly
introduced integer optimality cuts, respectively.

In Chapter 10 we present the results of a computational study for the SSNDP. Again,
some results are published in [127]. However, this thesis contains more details and some
more experiments on, e.g., no-good cuts, the new integer optimality cuts, or larger instances.

Part IV contains Chapter 11 with the conclusion, discussion, and outlook, and a list of
open problems.

Relevant publications. The mentioned publications containing results presented in this
thesis are listed in the following (sorted by publication date):

[133] François Margot, Daniel Schmidt, and Bernd Zey. MIP formulations for the Steiner
forest problem. Manuscript, in preparation, 2017.

[127] Ivana Ljubić, Petra Mutzel, and Bernd Zey. Stochastic survivable network design
problems: Theory and practice. In European Journal on Operations Research
(EJOR), 256(2):333–348, 2017
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[176] Bernd Zey. ILP formulations for the two-stage stochastic Steiner tree problem. CoRR,
arXiv:1611.04324, 2016

[126] Ivana Ljubić, Petra Mutzel, and Bernd Zey. Stochastic survivable network design
problems. In International Network Optimization Conference (INOC), volume 41 of
Electronic Notes in Discrete Mathematics, 2013, pages 245–252

[116] Denis Kurz, Petra Mutzel, and Bernd Zey. Parameterized algorithms for stochastic
Steiner tree problems. In Workshop on Mathematical and Engineering Methods in
Computer Science (MEMICS), volume 7721 of Lecture Notes in Computer Science,
Springer-Verlag, pages 143–154, 2013

[41] Markus Chimani, Petra Mutzel, and Bernd Zey. Improved Steiner tree algorithms for
bounded treewidth. In Journal of Discrete Algorithms (JDA), 16:67–78, 2012

[25] Fritz Bökler, Petra Mutzel, and Bernd Zey. The stochastic Steiner tree problem on
partial k-trees. In Proceedings of the Workshop on Mathematical and Engineering
Methods in Computer Science (MEMICS), NOVPRESS Brno, 2012

[40] Markus Chimani, Petra Mutzel, and Bernd Zey. Improved Steiner tree algorithms
for bounded treewidth. In International Workshop on Combinatorial Algorithms
(IWOCA), volume 7056 of Lecture Notes in Computer Science, Springer-Verlag,
pages 374–386, 2011

[27] Immanuel Bomze, Markus Chimani, Michael Jünger, Ivana Ljubić, PetraMutzel, and
Bernd Zey. Solving two-stage stochastic Steiner tree problems by two-stage branch-
and-cut. In International Symposium on Algorithms and Computation (ISAAC),
volume 6506 of Lecture Notes in Computer Science, Springer-Verlag, pages 427–
439, 2010
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Chapter 2

Preliminaries

This chapter introduces the required preliminaries and notations used in this thesis; relevant
references are given at the beginning of each subtopic. In Section 2.1 we start with graphs,
networks, cuts, flows, and tree decompositions. We cover linear and integer programming
in Section 2.2. Here, we focus on integer programs and describe the branch&cut algorithm.
The main part is Section 2.3 which introduces the important concepts of stochastic pro-
gramming. We define two-stage stochastic linear and integer programs and describe the
L-shaped, integer L-shaped, and two-stage branch&cut algorithm.

2.1 Graphs and networks

The definitions concerning graphs are based on the existing literature, e.g., Diestel [61],
Jünger and Mutzel [102], and Tollis, Di Battista, Eades, and Tamassia [167].

Undirected Graphs. An undirected graph G = (V, E) consists of the finite set V of
vertices—also called nodes—and the finite multiset E of (undirected) edges. Each edge
e ∈ E is an unordered pair of vertices e = {u, v}, u, v ∈ V . We use n := |V | and m := |E |.

For an edge e = {u, v} the vertices u and v are its endpoints, u and v are adjacent, and
both u and v are incident to e. The set of incident edges of a vertex v is denoted by δ({v}),
or short δ(v). The neighbors of a vertex are the adjacent vertices and the degree of a vertex
is its number of incident edges.

An edge e = {v, v} is a self-loop, edges e1 and e2 are adjacent iff |e1 ∩ e2 | = 1, and
two edges with the same endpoints are called multiedges. A graph without self-loops and
multiedges is a simple (undirected) graph.

The density of a non-empty graph G = (V, E) is defined as |E |/|V |.
The vertices of a graph are assumed to be uniquely numbered from 1 to n by a bijective

function id : V → {1, . . . , n}. We often use this identifier as lower index such that the ith
vertex in the list sorted by vertex identifiers is vertex vi with i = id(vi). Moreover, vertices
and integers are used interchangeably, i.e., i and vi are references for the same vertex.

Subgraphs. A graph G′ = (W, F) is a subgraph of G = (V, E) if W ⊆ V and F ⊆ E .
The vertex-induced subgraph of a vertex set V ′ ⊆ V is the subgraph G′ = (V ′, E ′) with
E ′ := {{u, v} ∈ E | u, v ∈ V ′}. Analogously, the edge-induced subgraph of an edge set
E ′′ ⊆ E is the subgraph G′′ = (V ′′, E ′′)withV ′′ := {v ∈ V | ∃e ∈ E ′′ : v ∈ e}. The vertex-

13
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and edge-induced subgraphs of V ′ and E ′′ are denoted by G[V ′] and G[E ′′], respectively.
If a connected subgraph H of G contains all vertices of G then H is a spanning subgraph.

Paths and connectivity. A path P = 〈v1, v2, . . . , vk〉 in a graph G = (V, E) is a sequence
of k ≥ 2 adjacent vertices, i.e., {vi, vi+1} ∈ E, ∀i ∈ {1, . . . , k − 1}. Hereby, vertices v1 and
vk are the designated endpoints of the path P. The length of a path is its number of edges.
A cycle C = 〈v1, . . . , vk−1, v1〉 of length k is a path P = 〈v1, . . . , vk−1〉 with an additional
edge connecting vk−1 and v1. We analogously allow a path and a cycle to be defined by
a valid edge set, i.e., a path is a sequence of k ≥ 1 adjacent edges P = 〈e1, e2, . . . , ek〉 if
〈v1, . . . , vk, vk+1〉 is a path as defined before with {vi, vi+1} = ei ∈ E, ∀i ∈ {1, . . . , k}.

Two vertices u,w ∈ V are connected if there exists a path with endpoints u and w. A
graph, or a set of vertices, is connected if it consists of one vertex or if all pairs of vertices
are connected; otherwise it is called disconnected. The maximal connected subgraphs of a
graph are called connected components.

For an undirected graph G = (V, E) the removal of a vertex set ∅ , S ⊆ V , denoted by
G − S, results in an undirected graph G′ = (V ′, E ′) with V ′ := V\S and E ′ := E\{{u, v} ∈
E | u ∈ S ∨ v ∈ S}. Notice that G′ is a subgraph of G; in fact it is the vertex-induced
subgraph of V\S.

An undirected graph is k-(node)-connected, for some k ∈ N, k > 0, ifG−S is connected
for any vertex set S ⊆ V with |S | < k. Hence, for a 2-(node)-connected graph, also called
biconnected graph, there exists no cutvertex; a cutvertex is a vertex whose removal increases
the number of connected components.

If the number of connected components increases after the removal of an edge then this
edge is called a bridge. If no such edge exists the graph is said to be edge-biconnected or
bridge-connected. A graph G is k-edge-connected if the removal of at most k − 1 edges
does not disconnect G.

Directed graphs. Directed graphs are defined similarly to undirected graphs and differ
in the edge set: Instead of an unordered pair of vertices a directed edge a ∈ E is an ordered
pair of vertices a = (u, v), u, v ∈ V . To distinguish directed from undirected graphs we call
the directed edges arcs and denote the arc set by A.

If any following definition concerns only one type of graph this is explicitly mentioned.
Definitions on graphs without further specifier are valid for both types.

By ignoring the ordering of each arc for a directed graph G = (V, A) we obtain the
underlying (undirected) graph G′ = (V, E) consisting of the same vertex set and the edge
set E := {{u, v} | (u, v) ∈ A ∨ (v, u) ∈ A}. Conversely, a directed graph G = (V, A) is an
orientation of an undirected graph G = (V, E) if it contains exactly one directed version
of each undirected edge, i.e., ∀{u, v} ∈ E : |{(u, v), (v, u)} ∩ A| = 1. Last but not least,
the bidirection of an undirected graph G = (V, E) is the directed graph Ḡ = (V, A) which
contains both orientations for each edge, i.e., A = {(u, v), (v, u) | {u, v} ∈ E}, cf. Figure 2.1.

Since undirected and directed graphs are closely relatedmost of the introduced notations
are also used for directed graphs. In the following we recall the most important—differing,
new, and similar—ones.

The endpoints u, v of an arc a = (u, v) are called source and target, respectively. Since
arcs are ordered pairs of vertices a is outgoing from or leaves u, and a is incident to or
ingoing into v.
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Figure 2.1: (a) An undirected graph, (b) a possible orientation, and (c) its bidirection. Conversely,
the graph depicted in (a) is the underlying graph of the directed graph depicted in (b) and (c),
respectively.

The set of ingoing arcs of a vertex v is denoted by δ−({v}), or short δ−(v), and
analogously, the set of outgoing arcs is denoted by δ+({v}), or short δ+(v). The indegree
of a vertex v is its number of ingoing arcs, i.e., |δ−(v)|, and the outdegree the number
of outgoing arcs, i.e., |δ+(v)|. Vertices with indegree 0 are called sources and vertices
with outdegree 0 are called sinks. Self-loops, multiedges, and simple graphs are defined
analogously for directed graphs.

A directed path P = 〈v1, v2, . . . , vk〉 in a directed graph G = (V, A) is a sequence of
k ≥ 2 vertices with (vi, vi+1) ∈ A, ∀i ∈ {1, . . . , k − 1}. Again, vertices v1 and vk are the
endpoints of the path P, the length is its number of arcs, and a path can also be given by its
arc sequence. A directed cycle is a directed path with identical endpoints.

Vertex u is connected to vertex w in G if there exists a directed path P = 〈v1, . . . , vk〉

with u = v1 and w = vk . A directed graph is strongly connected if all ordered pairs of
vertices are connected.

Weighted graphs. A weighted graph G = (V, E) has each edge e ∈ E assigned a real
number ce ∈ R and is denoted byG = (V, E, c); the vector of edge weights—a column vector
of size |E |—is denoted by c. In this thesis we use the vector notation c> = (c1, . . . , c |E |)
with edge identifiers as indices. Depending on the considered problem the weights are also
called costs or capacities. The sum over the edge costs of a subset E ′ ⊆ E is denoted by
c(E ′) =

∑
e∈E′ ce.

For an undirectedweighted graphG = (V, E, c) theweighted bidirection is the bidirected
graph Ḡ = (V, A) with each arc assigned the same cost as the corresponding undirected
edge, i.e., ci j := cji := ce, ∀e = {i, j} ∈ E . We use the same identifier c for edges and arcs
and denote the weighted bidirection by Ḡ = (V, A, c).

Forests and trees. An undirected graph is acyclic, and called a forest, if it contains no
cycles. A tree is a forest consisting of exactly one connected component. We use the
naming convention of calling the vertices of a tree nodes. A node of a tree with degree one
is called a leaf.

Sometimes it is convenient to consider a tree being hierarchical by defining a special
root node which is mostly denoted by r . Then, this rooted and directed tree is obtained by
orienting the underlying tree. Edges are directed from the root outwards such that the root
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has indegree 0 and all other nodes have indegree 1. Notice that the path connecting the
root node with any other node is unique. For each node u , r the predecessor on the path
from the root node is called parent and conversely, u is a child of its parent. A directed tree
rooted at r is also called (r-)arborescence.

Cuts. A cut S in a graph G = (V, E) is a non-empty subset of vertices ∅ , S ⊂ V . The
cut is called undirected or directed, respectively, depending on the type of graph.

We denote by δ(S) the edges lying, contained in, or crossing an undirected cut S
which are the very edges having one endpoint in the set S and the other endpoint in the
complementary set V\S, i.e., δ(S) := {e ∈ E | |e ∩ S | = |e ∩ V\S | = 1}.

A vertex set ∅ , S ⊂ V in a directed graph G = (V, A) defines two directed cuts: The
arc set of the ingoing cut—or entering cut—of set S is denoted by δ−(S) with δ−(S) :=
{(u, v) ∈ A | v ∈ S, u ∈ V\S}. The arcs of the outgoing cut—or leaving cut—are defined
analogously as δ+(S) := {(u, v) ∈ A | u ∈ S, v ∈ V\S}.

The weight of a cut S is the sum over all weights of the contained edges and is defined
as c(δ(S)) in the undirected case, and c(δ−(S)) or c(δ+(S)) in the directed case. A minimum
cut in a graph is a cut with minimum weight.

Given two vertices s, t ∈ V, s , t, a (minimum) cut S separating s and t, i.e., s < S, t ∈ S,
is called (minimum) s-t-cut.

Flows and flow networks. A flow network N = (V, A, c) is a directed weighted graph G =
(V, A) with non-negative arc capacities ca ≥ 0, ∀a ∈ A. Moreover, a flow network contains
two designated vertices: the source s with indegree 0 and the sink t with outdegree 0.

A flow f in a network N is a function f : A → R≥0 satisfying the following two
properties:

• capacity constraints: ∀a ∈ A : 0 ≤ f (a) ≤ ca

• flow conservation: ∀v ∈ V\{s, t} :
∑

a∈δ−(v)
f (a) =

∑
a∈δ+(v)

f (a)

Since a flow is “going from s to t”, it is also called s-t-flow. The value of a flow v( f )
is the sum of flow leaving the source s: v( f ) :=

∑
a∈δ+(s) f (a), and a maximum flow f ∗ is a

flow with maximum value.
The famous “max flow = min cut” theorem by Ford and Fulkerson [67] determines the

relationship between cuts and flows in networks. Let S∗ be a minimum s-t-cut and let f ∗

be a maximum s-t-flow in a network N .

Theorem 2.1 ([67]). The value of a maximum flow equals the value of a minimum s-t-cut,
i.e., c(δ−(S∗)) = v( f ∗).

Semi-directed paths and cuts. Let G = (V, E) be an undirected graph and Ḡ = (V, A) be
the bidirection of G. A sequence P = 〈 f1, . . . , f`〉 is a semi-directed path if (a) ` ≥ 1, (b)
fi ∈ E or fi ∈ A, ∀i ∈ {1, . . . , `}, and (c) if there exists a directed path P′ = 〈a1, . . . , a`〉 in
Ḡ such that for all j ∈ {1, . . . , `}: aj = fj ∈ A or aj is a valid orientation of fj ∈ E . Hence,
undirected and directed paths are also semi-directed paths, but the opposite is not always
true.

A semi-directed cut ∅ , S ⊂ V contains all edges e ∈ δ(S) and all arcs a ∈ δ−(S), if it
is ingoing, and δ+(S) if it is outgoing. We use the same notation for semi-directed as for
directed cuts: δ−(S) := {(i, j) | i < S, j ∈ S} ∪ δ(S); δ+ is defined analogously.
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Special graph classes. A complete (undirected) graph G = (V, E) on n vertices contains
one edge between each pair of vertices, i.e., |E | = n · (n − 1)/2, and is denoted by Kn. A
clique is a complete (sub)graph and the size of a clique is its number of vertices.

(Partial) k-trees are defined recursively as follows. The complete graph on k vertices is
a k-tree. Inserting a new vertex into a k-tree and connecting this vertex to a clique of size
k gives a k-tree. A spanning subgraph of a k-tree is called partial k-tree. Partial 2-trees
are also called series-parallel graphs. Moreover, partial 2-trees are graphs with treewidth
2, cf. next paragraph.

Planar graphs are graphs that can be drawn into the plane without crossing edges. A
special case of planar graphs and partial 2-trees are outerplanar graphs which allow planar
drawings with all vertices lying on the boundary.

Tree decomposition and treewidth. Tree decompositions of graphs have the purpose of
giving a better insight into its structure. Informally, the tree decomposition of a graph is a
tree with each node representing a subset of vertices of the original graph. The topology of
such a tree reflects the tree structure of the underlying graph. From an algorithmic point of
view, such a decomposition can be utilized to compute solutions for several graph problems
by applying dynamic programming.

The concept of treewidth was introduced by Robertson and Seymour [152] by the
term tree decomposition. Since then it has been used intensively for many (optimization)
problems. For in-depth discussions and comprehensive overviews see, e.g., Bodlaender
[22, 24], Niedermeier [136], or Kloks [111].

Definition 2.2 (Tree decomposition). Let G = (V, E) be a given undirected graph. A tree
decomposition (T ,X) is a pair consisting of a tree T = (I, F) and a collection X = {Xi}i∈I

of vertex subsets Xi ⊆ V (called bags) with the following properties:

1. Every vertex v ∈ V is contained in at least one bag Xi, i ∈ I.

2. For every edge {u, v} ∈ E there is at least one bag Xi, i ∈ I, containing both u and v.

3. For every vertex v ∈ V , the nodes i with v ∈ Xi form a subtree of T .

Again, to avoid confusion, we speak of vertices V in the graph G, and of nodes I in the
tree T . The size of a bag is its number of vertices and the width of a tree decomposition
(T ,X) is the size of the largest bag inX minus 1. The treewidth tw of a graph is the smallest
width over all feasible tree decompositions. An example is given by Figure 2.2.

The treewidth measures how similar the decomposed graph is to a tree: trees have
treewidth 1, series-parallel graphs have treewidth ≤ 2, (partial) k-trees have treewidth ≤ k,
etc. On the other side of the spectrum are complete graphs which have treewidth |V | − 1,
by putting all vertices in one bag.

Most importantly, we note that there always exists a tree decomposition with linear size
with respect to |V | and |E | (cf. Kloks [111]), even when considering nice tree decomposi-
tions [111]. Such tree decompositions always exist even for the optimal treewidth and are
defined as follows.

Definition 2.3 (Nice tree decomposition). Let G = (V, E) be an undirected graph. A tree
decomposition (T ,X) is a nice tree decomposition if the following properties are satisfied.
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Figure 2.2: (a) An undirected graph with treewidth 2 and (b) a tree decomposition with minimum
width. The bags are depicted by the grey shades and tree edges by double edges.

1. The tree T is rooted at some node r ∈ I.

2. Each node i ∈ I is one of four possible types:

(a) A leaf node i has 0 children and |Xi | = 1.
(b) An introduce node i has 1 child j ∈ I and Xj contains all vertices of Xi except

for one: Xj ⊂ Xi, |Xj | + 1 = |Xi |.
(c) A forget node i has 1 child j ∈ I and Xj contains all vertices of Xi plus one

additional one: Xi ⊂ Xj , |Xi | + 1 = |Xj |.
(d) A join node i has two children j ∈ I and j ′ ∈ I and all three corresponding bags

are identical: Xj = Xj′ = Xi.

Tree decompositions, in particular nice tree decompositions, can be used to find clear
and quite simple algorithms based on dynamic programming, cf. e.g., Bodlaender [24] for
a comprehensive overview. However, most tree decomposition based algorithms have an
exponential running time in the treewidth. Hence, for practical purposes it is important
to find a tree decomposition with a small width. Arnborg, Corneil, and Proskurowski
[8] showed that determining whether a graph has treewidth tw, for a given integer tw, is
NP-complete. On the other hand, the decision problem is solvable in polynomial time for
any constant tw, i.e., it is in FPT, cf. Bodlaender [23].

2.2 Linear and integer programming

The main purpose of this section is to recall the definitions and to introduce the used nota-
tions for linear and integer programs. We briefly describe the branch&cut algorithm and
introduce a concept for comparing the strength of formulations. All definitions and descrip-
tions are based on the following textbooks and mainly follow the first one: Nemhauser and
Wolsey [135], Schrijver [155], Bertsimas and Tsitsiklis [18].
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Linear programming. Linear programs are optimization problemswith a linear objective
function and a set of linear constraints. The task is to find a solution that minimizes the
objective function while all constraints are satisfied. Let x = (x1, . . . , xn)> be the decision
vector of size n, A ∈ Rm×n, c ∈ Rn, and b ∈ Rm. A linear program (LP) reads as follows:

(LP) min c>x

s.t. Ax ≥ b

x ≥ 0

For a linear program (LP) there exists a dual program (D:LP) defined as follows.

(D:LP) max b>y

s.t. A>y ≤ c

y ≥ 0

To emphasize the difference, (LP) is also called the primal program. With x∗, y∗ being
optimum solutions to (LP) and (D:LP) with objective values z∗LP and z∗D:LP, respectively, the
theorem of the strong duality says that if z∗LP or z∗D:LP is finite, then both (LP) and (D:LP)
have finite solutions and z∗LP = z∗D:LP.

Another important property is given by the theorem of complementary slackness. Let
x∗, y∗ be optimal solutions to (LP) and (D:LP), respectively. Intuitively, the theorem states
that a (primal/dual) constraint is satisfied with equality or the associated (dual/primal)
variable is 0. More formally, let sj := bj − A[j, ·]x∗, ∀ j ∈ {1, . . .m}, be the primal slack and
ti := ci − y∗A[·,i], ∀i ∈ {1, . . . n}, the dual slack. The complementary slackness states that
for optimal x∗, y∗ it holds for all j: sj y∗j = 0, and for all i: tix∗i = 0.

Integer programming. Contrary to linear programs integer programs (IP) have a discrete
variable space.

(IP) min c>x

s.t. Ax ≥ b

x ≥ 0
x ∈ Zn

One important special case of integer programs are binary programs (BIP) where
variables have two possible values 0 or 1, i.e., x ∈ {0, 1}n. These 0-1-decisions allow
formulations of all combinatorial optimization problems. In case there are integer and
continuous variables allowed, the program is called mixed integer program (MIP).

The following descriptions focus on binary programs.

2.2.1 Branch&cut algorithm

Since integer programs can be used to model NP-hard problems it is unlikely, under the
hypothesis NP , P, that they can be solved in polynomial time. However, there exist
successful approaches to solve binary programs in practice. One of these successful
algorithms is branch and cut (b&c) which is mainly built on the four pillars: (1) LP
relaxation, (2) branch and bound, (3) cutting-plane method and separation, (4) primal
heuristics. We briefly discuss the main ideas in the following.
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LP relaxation. By dropping the integrality restrictions from an IP one obtains the LP
relaxation (or short relaxation). For an IP zIP = min{c>x | Ax ≥ b, x ∈ {0, 1}n} the LP
relaxation reads zLP = min{c>x | Ax ≥ b, 0 ≤ x ≤ 1}.

The LP relaxation has some useful properties. First, if the relaxation is infeasible the
corresponding IP is infeasible, too. Second, if the optimum solution to the LP relaxation
is integer this solution is optimal for the corresponding IP. Third, the LP relaxation can be
solved in polynomial time. Fourth, the value of the LP relaxation is a lower bound for the
optimal value of the integer program, i.e., zLP ≤ zIP.

Branch and bound (b&b). The b&b algorithmmaintains a list of subproblems and starts
by solving the LP relaxation. If the optimal solution is fractional, i.e., at least one variable
is not integer, a branching step is performed. Thereby, two new subproblems are generated
by setting one fractional variable to 1 and 0, respectively. Both subproblems are added to
a list of open problems, the algorithm continues by solving another subproblem, and stops
when all subproblems are processed. If an LP solution is integer, the current subproblem
is solved to optimality and can be discarded. This also happens if a linear program is
infeasible. In the end, the best found solution is the overall optimum solution.

The b&b algorithm naturally leads to the rooted branch and bound tree. Each subprob-
lem corresponds to a node in this tree. The root node corresponds to the linear program of
the initial LP relaxation and one branching step creates two children b&b nodes in this tree.

Obviously, the worst-case running time of this algorithm is exponential in the number
of variables. By storing the best integer solution found so far—also called primal bound—a
subproblem and its descendants in the b&b-tree can be discarded if its LP value—the dual
bound—is not better than the primal bound.

Cutting-planemethod. Some formulations have a large—many times even exponential—
number of constraints. The cutting planemethod offers a way to solve such LP formulations:
Start with a smaller and proper subset of all constraints and solve the corresponding linear
program. If the problem is infeasible, the original problem is infeasible. Otherwise, perform
a separation step by searching for violated constraints. Those violated constraints are added
and the procedure continues until no violated constraints are found or the problem turns out
to be infeasible.

Primal heuristics. The b&b algorithm relies on good integer solutions to cut off as many
b&b nodes as soon as possible. Since the LP relaxation solves a related problem of the
original IP it might be easier to find solutions by using the LP solution as a starting point.
The idea of primal heuristics is to exploit the fractional solutions and derive integer solutions
thereof.

Branch and cut (b&c). The b&c algorithm mainly is the combination of the b&b ap-
proach with the other techniques. In each subproblem, the LP relaxation is solved by using
the cutting plane method to obtain a dual bound. Non-optimal subproblems, i.e., if the dual
bound is worse than the primal bound, can be discarded as well as infeasible subproblems.
If an LP turns out having an optimum integer solution the corresponding subproblem is
solved.
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To ensure optimality, subproblems with fractional solutions are split into two subprob-
lems by performing a branching step. Moreover, to obtain good integer solutions and
eliminate unnecessary subproblems primal heuristics can be applied.

The b&c approach turned out being very efficient in practice and many problems can
be solved exactly for large real-world instances. One of the most famous examples is the
traveling salesman problemwith a solved instance consisting of 85,900 cities by Applegate,
Bixby, Chvátal, Cook, Espinoza, Goycoolea, and Helsgaun [7], cf. also [51].

2.2.2 Strength of formulations, polyhedral theory

Strength of formulations. Finding a “good” formulation for a problem is very important
since the solutions of the LP relaxation highly influence the performance of a b&b based
algorithm. If the solutions of LP relaxation and IP are close the number of b&b nodes
is likely to be small. Moreover, if the dual bounds are strong more subproblems can be
discarded.

By considering two IP formulations for the same problem it is not obvious which
formulation yields a better running time when solved with a b&b algorithm. One indication
is the strength of the LP relaxation, as defined by, e.g., Polzin and Daneshmand [140].

Let (A) and (B) denote two IP formulations for the same minimization problem and let
(Arel) and (Brel) be the corresponding LP relaxations. Moreover, let vI(Arel) and vI(Brel)

denote the value of the optimum solutions of (Arel) and (Brel), respectively, on instance I.

Definition 2.4 (Strength of LP relaxations). The LP relaxation (Arel) is weakly stronger
than the LP relaxation (Brel) if and only if vI(Arel) ≥ vI(Brel) for all valid instances I of
the problem. If (Arel) is weakly stronger than (Brel) and (Brel) is weakly stronger than (Arel),
then both relaxations are equivalent.
(Arel) is (strictly) stronger than (Brel) if it is weakly stronger and they are not equivalent.

In other words, if for all instances I it holds vI(Arel) ≥ vI(Brel) and there exists an instance
I∗ with vI∗(Arel) > vI∗(Brel).

If both formulations are not equivalent and neither formulation is stronger they are
incomparable.

This comparison of LP relaxations is used to compare (mixed) integer programming
formulations.

Definition 2.5 (Strength of IP formulations). The IP formulation (A) is (weakly) stronger
than the formulation (B) if (Arel) is (weakly) stronger than (Brel). (A) and (B) are equivalent
if (A) is weakly stronger than (B) and (B) weakly stronger than (A). Otherwise, both
formulations are incomparable.

Polyhedral theory. Let A ∈ Rm×n and b ∈ Rm. A polyhedron P ⊆ Rn is the set of
points in Rn that satisfy a finite number of linear inequalities: P = {x ∈ Rn | Ax ≤ b}.
A polyhedron P is bounded and called polytope if there exists a w ∈ R,w > 0, with
P ⊆ {x ∈ Rn | −w ≤ xi ≤ w, ∀i = 1, . . . , n}.

Let (F) be an LP formulation (or relaxation, respectively). Throughout this thesis wewill
denote the polyhedron defined by (F) by PF. Moreover, the projection of PF into the space
of a variable space x is denoted by Projx (PF). For an overview of extended formulations
and projections we refer the reader to, e.g., Balas [10]. The following observation is adopted
from Kandyba-Chimani [105].
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Observation 2.6. Let (Arel) and (Brel) be LP relaxations of two formulations (A) and (B)
for the same optimization problem. Moreover, let x be a suitable common variable space
of both formulations.

• (Arel) is weakly stronger than (Brel) if for all problem instances it holds Projx(PArel) ⊆

Projx(PBrel).

• (Arel) and (Brel) are equivalent if for all problem instances it holds Projx(PArel) =

Projx(PBrel).

• (Arel) is (strictly) stronger than (Brel) if (Arel) is weakly stronger than (Brel) and
there exists an instance I with Projx(PArel) ( Projx(PBrel); In this case it holds
vI(Arel) > vI(Brel).

2.3 Stochastic programming

We introduce two-stage stochastic linear and integer programs in Section 2.3.1, and discuss
an exact approach based on the integer L-shaped method (Sections 2.3.2 and 2.3.3), namely
the two-stage branch&cut algorithm. The definitions and algorithms in Sections 2.3.1–2.3.3
are mainly based on the textbooks by Birge and Louveaux [20] and Shapiro, Dentcheva,
and Ruszczyński [161].

2.3.1 Two-stage stochastic linear programs

A two-stage stochastic linear program can bee seen as a generalization of a linear program
where the objective function coefficients c, entries of the matrix A and the right-hand side
b depend on the realization of a random vector ξ.

Let x and y be decision vectors of size n1 and n2, respectively. Variables x are the
first-stage variables and y are the second-stage variables. Let vectors c and b and matrix A
be defined as follows: c ∈ Rn1 , b ∈ Rm1 , and A ∈ Rm1×n1 .

A two-stage stochastic linear program reads as follows:

(2LP) min c>x + Eξ [min q(ω)>y]

s.t. Ax ≥ b

T(ω)x +W y ≥ h(ω)

x ≥ 0, y ≥ 0

Thereby, Eξ denotes the expected value w.r.t. ξ and Ω denotes the possible outcomes
of ξ. In general, matrices T and vectors q and h depend on the random vector and are
denoted by a functional style indicating this dependence, i.e., T(ω) ∈ Rm2×n1 , q(ω) ∈ Rn2 ,
and h(ω) ∈ Rm2 , ω ∈ Ω. Together they form the random vector ξ.

Mostly, the recourse matrix W ∈ Rm2×n2 is assumed to be fixed, which is called fixed
recourse, see, e.g., Birge and Louveaux [20]. All considered stochastic problems in this
thesis have fixed recourse. Moreover, we assume that the isolated first-stage problem itself
is feasible, i.e., {Ax ≥ b, x ≥ 0} , ∅.
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For a realization ω ∈ Ω and a first-stage solution x̃, Q(x̃, ω) is the optimal value of the
second-stage problem:

(2LP:2nd) Q(x̃, ω) := min q(ω)>y

s.t. W y ≥ h(ω) − T(ω)x̃

y ≥ 0

By assigning dual variables πj, j ∈ {1, . . . ,m2}, the dual of (2LP:2nd) for a first-stage
solution x̃ reads as follows:

(D:2LP:2nd) max π>(h(ω) − T(ω)x̃)

s.t. W>π ≤ q(ω)

π ≥ 0

Deterministic equivalent. Throughout this thesis we assume that the probability distribu-
tion is known and that ξ has a finite support1, i.e.,Ω = {ω1, . . . , ωK }, K ∈ N,K > 0. Hence,
we can formulate a two-stage stochastic program by using K scenarios; letK := {1, . . . ,K}.
The kth scenario is defined by its probability pk > 0, its objective function coefficients
ck ∈ Rn2 , the constraint matrix Tk ∈ Rm2×n1 , and the right-hand side hk ∈ Rm2 .

Here and in the following we use upper indices 0 and k to denote the first stage and
second stage under scenario k, respectively, see the notations on page vii. Hence, x0 and xk

are the decision vectors for the first stage and for scenario k, ∀k ∈ K, with x0 being n1- and
xk n2-dimensional, respectively. Moreover, b ∈ Rm1 is the right-hand side of the first-stage
constraints with constraint matrix A ∈ Rm1×n1 . As before, W ∈ Rm2×n2 is the fixed recourse
matrix.

By expanding the formula for the expected value the deterministic equivalent of the
two-stage stochastic program in extensive form reads as follows:

(DE) min (c0)>x0 +
∑
k∈K

pk(ck)>xk

s.t. Ax0 ≥ b

Tk x0 +W xk ≥ hk ∀k ∈ K

x0...K ≥ 0

Notice that we use the vector x0...K as placeholder for the concatenation of the vectors
x0, x1, . . . , xK , cf. the notations on page vii.

2.3.2 Benders’ decomposition, L-shaped algorithm

Obviously, the number of variables and constraints of the deterministic equivalent depends
on the number of scenarios and with an increasing number it becomes more difficult to
solve. One promising approach for solving a large-scale linear program is to use Benders’
decomposition. This method was originally proposed by Benders [15] for mixed integer
programs. The general idea is to partition the program into the master problem and
the subproblem. To obtain the master problem the difficult part is projected out into

1Assuming finite support is referred to as the finite scenario model. We discuss other models in Section 4.3
when considering the stochastic Steiner tree problem.



24 Chapter 2. Preliminaries

the subproblem and replaced by new lower bounding variables and optimality cuts. The
corresponding algorithm iteratively solves the master problem and generates optimality cuts
by solving the (dual of the) subproblem.

Van Slyke and Wets [168] focussed on two-stage stochastic linear programs and pre-
sented a similar approach “which is essentially the same as the algorithm developed by
Benders” [168]. The main idea of this algorithm is to exploit the special structure of the
constraint matrices A and W : Since the whole constraint matrix contains a lot of zeros
and big parts are identical for each scenario the stochastic program can be decomposed
with respect to the two stages. This special L-shaped like structure of the non-zeros in the
constraint matrix led to the name L-shaped algorithm.

The overall idea is to project the second-stage variables and the related constraints
out to decompose problem (DE) into a master problem (MP) and a set of K subproblems
(SP(k, x̃0)), one for each scenario. The main advantage of this approach is that instead of
solving one huge LP many smaller and similar LPs have to be solved.

For two-stage stochastic programs the master problem contains all first-stage variables
and constraints, and the subproblems are defined for each scenario and a first-stage solution
x̃0. In the multicut version, the second-stage cost is replaced by K+1 variables θ, θ1, . . . , θK

with θ ≥
∑

k∈K pkθk . Furthermore, two types of new cuts are introduced: feasibility cuts
(MP:1) and L-shaped optimality cuts (MP:2). A detailed discussion of these cuts and, in
particular, the exact multipliers F` and D` and right-hand sides f` and d` for the `th cut can
be found in the following paragraphs.

By using our notations and adopting the formulation from Birge and Louveaux [20] the
master problem (MP) reads as follows:

(MP) min (c0)>x0 + θ

s.t. Ax0 ≥ b

θ ≥
∑
k∈K

pkθk (MP:0)

F` x0 ≥ f` (MP:1)

θk + D` x0 ≥ d` (MP:2)

x0 ≥ 0
(θ, θ1, . . . , θK ) ≥ 0

In general, θ variables are free, cf. [20]. Here, we assume θ, θ1, . . . , θK ≥ 0 since in
this thesis the second-stage costs are always non-negative.

Notice that we use the scenario probabilities as a multiplier in constraint (MP:0) such
that the scenario probabilities are not incorporated into the variables θ1, . . . , θK . In the
formulation by [20] the probabilities were already multiplied into the θk variables such that
θ ≥

∑
k∈K θ

k .
The basic idea of the L-shaped algorithm is to solve the master problem iteratively and

separate cuts of type (MP:1) and (MP:2) by solving the (dual) subproblems, i.e., the K
scenarios. For a first-stage solution x̃0 and a scenario k ∈ K the kth subproblem (SP(k, x̃0))
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is given as follows:

(SP(k, x̃0)) min (ck)>xk

s.t. W xk ≥ hk − Tk x̃0

xk ≥ 0

By defining dual variables (πk)> := (πk1, . . . , π
k
m2
) for all constraints j ∈ {1, . . . ,m2},

the dual (D:SP(k, x̃0)) of the kth subproblem is the following:

(D:SP(k, x̃0)) max πk(hk − Tk x̃0)

s.t. W>πk ≤ ck

πk ≥ 0

Relatively and simple complete recourse. A stochastic program has relatively com-
plete recourse if the second-stage subproblem (D:SP(k, x̃0)) has a feasible solution for
each feasible first-stage solution x̃0, i.e., {x0 | Ax0 ≥ b, x0 ≥ 0} ⊆ {x0 | ∀k ∈ K :
(SP(k, x0)) is feasible}.

Moreover, a stochastic program has complete recourse if {W y ≥ z, y ≥ 0} , ∅ for all
possible z ∈ Rm2 , i.e., if the subproblem is feasible for all possible first-stage decisions.
Notice that this property only depends on the recourse matrix W . By duality, complete
recourse is given if problem (D:SP(k, x̃0)) is bounded for every choice of x̃0, hk , and Tk

(set z = hk − Tk x̃0). In this thesis all considered two-stage stochastic problems have the
complete recourse property.

Another type of recourse is simple recoursewhere the constraint matrixW is the identity
matrix and matrix T and vector h are deterministic. Since we do not deal with this case we
refer the reader to, e.g., Louveaux and van der Vlerk [128].

Feasibility cuts. In case the primal subproblem is infeasible for the current first-stage
solution x̃0 and a scenario k ∈ K a feasibility cut (MP:1) is introduced into the master
program to cut off the current first-stage solution. In this thesis, all considered stochastic
problems—and their formulations—do not require feasibility cuts because they have com-
plete recourse. Therefore, we skip the details on feasibility cuts and refer the reader to Birge
and Louveaux [20].

L-shaped optimality cuts. Feasibility cuts have the purpose of cutting off the current
infeasible first-stage solution x̃0 without having any direct implications on the θ variables.
This is overcome by the so-called (L-shaped) optimality cuts (MP:2).

Let (x̃0, θ̃, θ̃1, . . . , θ̃K ) be the current optimum solution of the master problem. Further-
more, let x̃k be the optimal primal and π̃k the optimal dual solution for the kth scenario
subproblem, k ∈ K.

If the current θ̃k value—which represents a lower bound on the second-stage cost of
scenario k—is too low, an L-shaped optimality cut is inserted to increase this value or to
enforce the selection of additional variables in the first stage: if for any scenario k ∈ K,
it holds θ̃k < (ck)> x̃k = (π̃k)>(hk − Tk x̃0), then the following (disaggregated) L-shaped
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optimality cut is generated:

θk ≥ (π̃k)>(hk − Tk x0)

⇔ θk + (π̃k)>Tk x0 ≥ (π̃k)>hk (Lc)

By adapting these values to the notation of the master program, we have D` := (π̃k)>Tk

and d` := (π̃k)>hk for the `th optimality cut, with ` being the current index.

Remark 2.7. The described decomposition introduces variables θ, θ1, . . . , θK which replace
the second-stage part in the master program. This approach is already the disaggregated
(multicut) version. It is also possible to use a single cut approach with one θ variable as
originally proposed by Van Slyke and Wets [168].

Then, (MP) contains only one variable θ and constraint (MP:0) is removed. The
feasibility cuts (MP:1) remain the same but the L-shaped optimality cuts are generated
slightly differently. In case θ̃ <

∑K
k=1 pk(ck)> x̃k =

∑K
k=1 pk(π̃k)>(hk −Tk x̃0) the following

L-shaped optimality cut is added:

θ ≥
∑
k∈K

pk(π̃k)>(hk − Tk x0)

⇔ θ +
∑
k∈K

pk(π̃k)>Tk x0 ≥
∑
k∈K

pk(π̃k)>hk (Lc1)

A disaggregated L-shaped cut affects exactly one θk variable and hence, a collection
of K disaggregated cuts (Lc) is not weaker than the related single aggregated L-shaped
cut (Lc1). On the other hand, the multicut approach contains K additional variables and
inserting multiple L-shaped cuts leads to a larger linear program. However, in practice,
using disaggregated cuts in the L-shaped algorithm is mostly the preferred approach, cf.
e.g., Birge and Louveaux [19, 20].

L-shaped algorithm. The L-shaped algorithm byVan Slyke andWets [168] for stochastic
linear programs basically consists of the previously mentioned ingredients. With an empty
set of feasibility and L-shaped optimality cuts in the beginning the master problem is
solved iteratively in a cutting-plane manner. Violated cuts are generated by solving the K
subproblems (SP(k, x̃0)) for each scenario and the currently optimal first stage x̃0.

Theorem 2.8 (Birge and Louveaux [20]). When ξ is a finite random variable, the L-
shaped algorithm finitely converges to an optimal solution when it exists or proves the
infeasibility of problems (2LP) and (DE), respectively.

2.3.3 Integer L-shaped method, two-stage branch&cut

A (mixed) integer two-stage stochastic program, in particular its deterministic equivalent in
extensive form, is defined as follows. Again, let K = {1, . . .K} denote the set of scenarios
with pk being the realization probability of scenario k ∈ K. The vectors c0, b, ck , and
hk and the matrices A,W , and Tk are defined as before: c0 ∈ Rn1 , b ∈ Rm1 , ck ∈ Rn2 ,
hk ∈ Rm2 , A ∈ Rm1×n1 , W ∈ Rm2×n2 , and Tk ∈ Rm2×n1 . Notice that we use the same
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identifier (DE) for this program; it will be clear from context which one is referred to.

(DE) min (c0)>x0 +
∑
k∈K

pk(ck)>xk

s.t. Ax0 ≥ b

Tk x0 +W xk ≥ hk ∀k ∈ K

x0...K ≥ 0
x0 ∈ X0

xk ∈ Xk ∀k ∈ K

Thereby, X0 and/or Xk might contain integrality or binary restrictions on the variables
x0 and xk , respectively. In this thesis, the classical formulations based on undirected cuts
of all considered stochastic network design problems are binary stochastic programs, i.e.,
X0 = {0, 1}n1 and Xk = {0, 1}n2, ∀k ∈ K; mostly with n1 = n2, too. However, we will
strengthen some formulations, in particular by introducing more variables in the second
stage, such that some variables in the second stage are binary and some are fractional.

For the remaining part of this section we restrict the description to stochastic programs
with binary first and second stage and mainly follow Birge and Louveaux [20]. Analogously
to the preceding description of the L-shaped algorithm (DE) can be decomposed with
Benders’ decomposition. The master problem (MP) using the multicut approach is almost
identical to the continuous case and only expanded by binary restrictions:

(MP) min (c0)>x0 + θ

s.t. Ax0 ≥ b

θ ≥
∑
k∈K

pkθk (MP:0)

F` x0 ≥ f` (MP:1)

θk + D` x0 ≥ d` (MP:2)

x0 ∈ {0, 1}n1

(θ, θ1, . . . , θK ) ≥ 0

Type (MP:2) constraints denote the same (continuous) L-shaped optimality cuts from
the L-shaped algorithm and further types of cuts, the so-called integer optimality cuts. This
second type of cuts is important to close the integrality gap. Constraints of type (MP:1) are
feasibility cuts and (integer) optimality cuts which are discussed in the next paragraph.

The relaxed master problem, denoted by (RMP), is obtained by relaxing the integrality
on x0. Then, for each (fractional) first-stage solution x̃0 and each scenario k ∈ K, the kth
subproblem reads as follows:

(SP(k, x̃0)) min (ck)>xk

s.t. W xk ≥ hk − Tk x̃0

xk ∈ {0, 1}n2

Analogously, the relaxed subproblem (RSP(k, x̃0)) is obtained by relaxing the integrality
on xk . The dual program of (RSP(k, x̃0)) is already given by the dual program (D:SP(k, x̃0)).
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Optimality cuts. Like already mentioned, the (continuous) L-shaped optimality cuts are
also valid for binary stochastic programs:

Theorem 2.9 (Birge and Louveaux [20]). Any continuous L-shaped optimality cut is a
valid lower bound on the second-stage cost.

In the following exact approaches additional cuts are required to close the integrality
gap. Let L be a valid lower bound for the expected second-stage cost which is assumed
to exist. Moreover, let x̃0 be a feasible binary first-stage solution with its corresponding
1-index set S̃, i.e., S̃ = {i | x̃0

i = 1}. Let q̃ be the value of the second-stage recourse
function: q̃ :=

∑
k∈K pk q̃k with q̃k being the optimum solution value of (SP(k, x̃0)).

Laporte and Louveaux [117] introduced the following integer optimality cuts:

θ ≥ (q̃ − L) ©«
∑
i∈S̃

x0
i −

∑
i<S̃

x0
i − |S̃ | + 1ª®¬ + L

⇔ θ +
∑
i∈S̃

(L − q̃)x0
i +

∑
i<S̃

(q̃ − L)x0
i ≥ (L − q̃)(|S̃ | − 1) + L (Ic)

The proof of validity can be found in [20] or [117]. These integer optimality cuts are
quite weak since they mainly affect only the corresponding solution x̃0 by giving a lower
bound for θ: For x̃0 the cut states that θ ≥ q̃ which is obviously valid since q̃ is the current
second-stage cost. When considering any first-stage integer solution x̄0 different from x̃0,
i.e., ∃i : x̄0

i , x̃0
i , the cut states that θ ≥ L, if x̃0 and x̄0 differ in exactly one variable, and

otherwise, the obtained bound on θ gets even smaller.

Integer L-shaped method. One approach for solving a binary two-stage stochastic pro-
gram is the integer L-shaped method developed by Laporte and Louveaux [117]. Like the
name suggests it is based on the L-shaped method for linear stochastic programs. Basically
it is a branch&cut algorithm on the first-stage master program (MP) with separations of
feasibility, integer, and L-shaped optimality cuts.

A brief description of the algorithm—its multicut version—is given as follows and a
simplified flow chart of the method is presented by Figure 2.3. We use UB as a global upper
bound on the optimum solution. Moreover, ν denotes the current node of the b&b tree.

Step 0: Initialization. UB := +∞. Create the first pendant node ν; in the initial relaxed
master problem (RMP) the set of L-shaped and integer optimality cuts is empty.

Step 1: Selection. Select a pendant node ν from the branch and bound tree. If no such node
exists STOP.

Step 2: Solving. Solve (RMP) at the current node ν. Let (x̃0, θ̃, θ̃1, . . . , θ̃K ) be the optimal
solution with value zν := (c0)> x̃0 + θ̃. If zν ≥ UB or (RMP) is infeasible: Fathom
the current node. Goto Step 1.

Step 3: Separation.

3.1: Separation of feasibility cuts.
3.2: Separation of L-shaped optimality cuts:
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3.2.1: For all k ∈ K solve the LP relaxation (RSP(k, x̃0)). Let x̃k denote the
optimum solution with value Rk(x̃0).
If Rk(x̃0) > θ̃k : insert L-shaped optimality cut (Lc) into (MP).

3.2.2: If at least one L-shaped cut was inserted: Goto Step 2.
3.3: If x̃0 is binary: Separation of integer optimality cuts:

3.3.1: For all k ∈ K where x̃k was not binary in the previously computed LP
relaxation: solve (SP(k, x̃0)) to integer optimality. Let Qk(x̃0) be the
optimal value, for each k ∈ K.

3.3.2: UB := min{UB, (c0)> x̃0 +
∑

k∈K pkQk(x̃0)}.
3.3.3: If

∑
k∈K pkQk(x̃0) > θ̃ insert integer optimality cut (Ic) into (MP).

Goto Step 2.
3.3.4: Fathom the current node. Goto Step 1.

Step 4: Branching. Use a branching criterion on a fractional x0 variable and create two
new b&b nodes. Goto Step 1.

We leave out Step 3.1: Separation of feasibility cuts from the detailed description since
we are dealing with complete recourse. For a complete description of the algorithm we
refer the reader to [20].

If the scenarios can be solved in a finite number of steps for any fixed first-stage solution
x̃0 (Assumption 3 in Birge and Louveaux [20]) then the integer L-shaped method is finite
and optimal:

Theorem 2.10 ([20, 117]). Under Assumption 3, for any problem for which a valid set of
feasibility cuts and a valid set of optimality cuts exist, the integer L-shaped method yields
an optimal solution (when one exists) in a finite number of steps.

The integer L-shapedmethod andBenders’ decomposition are powerful tools for solving
two-stage stochastic programs. Both methods have been applied and adopted successfully
for several stochastic and non-stochastic problems like

• Stochastic vehicle routing problem: Laporte, Louveaux, and van Hamme [119]

• Hub location problem: Contreras, Cordeau, and Laporte [50]

• Stochastic location problem: Laporte, Louveaux, and van Hamme [118]

• Stochastic dial-a-ride: Heilporn, Cordeau, and Laporte [92]

• Hop-constrained Survivable network design: Botton, Fortz, Gouveia, and Poss [30]

• Stochastic supply chain network design: Santoso, Ahmed, Goetschalckx, and Shapiro
[154]

• Stochastic assignment problems: Albareda-Sambola, van der Vlerk, and Fernández
[3]

• Robust facility location problem: Álvarez-Miranda, Fernández, and Ljubić [4]

• Capacitated facility location problem: Fischetti, Ljubić, and Sinnl [66]

A recent literature review on Benders’ decomposition can be found in Rahmaniani,
Crainic, Gendreau, and Rei [148].
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Figure 2.3: Basic steps of the integer L-shaped algorithm as flow chart.

Two-stage branch&cut algorithm. The integer L-shaped algorithm plays an important
role in this thesis. We adopt this method for solving two-stage stochastic network design
problems. When applying the integer L-shaped algorithm/Benders’ decomposition concept
to the proposed models for the two-stage stochastic network design problems, attention
should be given to the following two non-standard aspects: a) First of all, one has to
deal with the integer recourse. For that purpose, we integrate a separation of the integer
optimality cuts within a branch&cut framework. b) The second main difficulty arises with
the fact that the associated subproblems contain an exponential number of constraints, and
can therefore be solved only by means of a cutting plane approach (for finding optimal
LP solutions), or branch&cut (for finding optimal integer solutions). Therefore, in order
to apply a Benders-like decomposition, one needs to nest two branch&cut algorithms: a
branch&cut is employed for solving themaster problemwhere violated integer and L-shaped
optimality cuts are generated by solving the K subproblems with a dedicated branch&cut
algorithm. Hence, there are two nested branch&cut algorithms which led to the naming
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two-stage branch&cut algorithm, cf. [27].

Stochastic programming references. Although we mainly cite the book by Birge and
Louveaux [20] there exist some nice overview articles on stochastic programming, and in
particular on stochastic integer programming. We give some references in chronological
order of their publication date: Schultz, Stougie, and van der Vlerk [157], Klein Haneveld
and van der Vlerk [110], Schultz [156], Higle [93], and Shapiro and Philpott [160]. We
also like to mention a homepage dedicated to stochastic programming [144] which offers
many links to lecture notes, slides, and further references.

Solution methods for stochastic integer programs. In this thesis we focus on and apply
the two-stage branch&cut algorithm and the single-stage branch&cut approach, where the
deterministic equivalent in extensive form is solved directly. In literature there exist other
approaches for solving two-stage stochastic (integer) programs. Each method mostly covers
a different type of stochastic program, i.e., integer, mixed-integer, or binary variables,
respectively. Here, we like to mention the generalized version of the integer L-shaped
algorithm by Carøe and Tind [33], the dual decomposition approach based on Lagrangian
relaxation by Carøe and Schultz [32], and a method based on disjunctive programming by
Sen and Higle [158].

One challenge of the (integer) L-shaped method is the repeated solving of each scenario
in every step. With an increasing complexity of the subproblems the stochastic program
itself becomes more difficult to solve. A possible way to reduce the problem complexity
is to apply the so-called sample average approximation method. The basic idea of this
approach is to solve the problem only for a sampled subset of scenarios. We refer the
reader to Shapiro [159] and references therein. Higle and Sen [94] discussed stochastic
decomposition which is another approach aiming in a similar direction. Here, an adaptive
sample size is used which is increased during the algorithm.
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Chapter 3

Network design problems

The first section of this chapter contains the definitions of the relevant combinatorial op-
timization problems. Then, Section 3.2 introduces basic IP formulations for the network
design problems. Afterwards, we concentrate on the Steiner tree problem and the surviv-
able network design problem and summarize important results concerning both problems
(Section 3.3 and 3.4).

3.1 Definitions

Although the literature on network design problems (NDP) is vast there is no standard defi-
nition covering all NDPs. In general and informally, NDPs are combinatorial optimization
problems on graphs with values assigned to vertices, edges, or certain substructures. The
objective is to find a subgraph satisfying some specified properties such that the overall
value of the selected graph elements is minimized or maximized.

In the following we give formal definitions of relevant NDPs. We define edge weights
to be positive for all problems. Although this is a restriction it is a reasonable assumption
for practical purposes since using edges corresponds to, e.g., driving times or upgrading or
building costs which are mostly positive. Moreover, to make the distinction to the stochastic
problems clearer, we refer to these problems as deterministic problems.

Problem 3.1 (Minimum spanning tree problem (MST)):
Given: undirected graph G = (V, E, c), edge cost ce ∈ R>0, ∀e ∈ E
Solution: connected subgraph G′ = (V, E ′) of G
Objective: minimize overall cost

∑
e∈E′ ce

The minimum spanning tree problem is solvable in polynomial time, e.g., with the algo-
rithms by Kruskal or Prim, cf. e.g., Cormen, Leiserson, Rivest, and Stein [52]. Contrarily,
the following network design problems are NP-hard.

Problem 3.2 (Steiner tree problem (STP)):
Given: undirected graph G = (V, E, c), edge cost ce ∈ R>0, ∀e ∈ E , set of terminal vertices

∅ , T ⊆ V
Solution: edge set E ′ ⊆ E such that G[E ′] connects T
Objective: minimize overall cost

∑
e∈E′ ce

The vertices inV\T are called non-terminals and the non-terminals which are contained
in a Steiner tree are called Steiner vertices.

33
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A solution to the STP does not have to be connected or cycle-free. However, it can be
easily seen that the optimum solution satisfies these properties when edge costs are positive.
Hence, the optimum solution is in fact a tree, the Steiner tree.

A generalization of the STP is the Steiner forest problemwhere several sets of terminals
have to be connected.

Problem 3.3 (Steiner forest problem (SFP)):
Given: undirected graph G = (V, E, c), edge cost ce ∈ R>0, ∀e ∈ E , set of K ≥ 1 terminal

sets T = {T1, . . . ,TK } with ∅ , Tk ⊆ V, ∀k ∈ {1, . . . ,K}
Solution: edge set E ′ ⊆ E such that Tk is connected in G[E ′], ∀k ∈ {1, . . . ,K}
Objective: minimize overall cost

∑
e∈E′ ce

Another common definition of the SFP consists of defining a set of p vertex pairs
that need to be connected: (s1, t1), . . . , (sp, tp) with si, ti ∈ V, ∀i ∈ {1, . . . , p}. Since the
connectivity requirement is transitive both problem definitions are equivalent and can be
transformed into each other easily.

Obviously, the STP is a special case of the SFP with K = 1. On the other hand,
the Steiner forest problem is a special case of the more general survivable network design
problem (SNDP)—more precisely the non-unitary SNDP, see below. The term “survivable”
indicates that feasible solutions are immune to a certain failure. In the first considered
problem, vertices need to be connected with respect to a certain edge-connectivity such that
the failure of edges does not disconnect the vertices.

Problem 3.4 (Survivable network design problem (SNDP)):
Given: undirected graph G = (V, E, c), edge cost ce ∈ R>0, ∀e ∈ E , symmetric and unitary

connectivity requirement matrix ρ ∈ N |V |× |V |

Solution: edge set E ′ ⊆ E such thatG[E ′] contains ρuv edge-disjoint paths between vertices
u, v ∈ V, u , v

Objective: minimize overall cost
∑

e∈E′ ce

While the definition of the SNDP is as general as possible we have one commonly used
restriction and assume that matrix ρ implies that all vertices with connectivity requirements
need to be connected. In other words, each optimal solution comprises a single connected
component. In this case the problem and the connectivity requirement matrix is called
unitary, cf. Magnanti and Raghavan [130]. As mentioned before, one example for a non-
unitary SNDP is the Steiner forest problem where optimal solutions may be disconnected.

A closely related problem is the node-connectivity version of the SNDP where failures
of vertices need to be covered. To distinguish both problems we call this problem the
node-connectivity SNDP.

Problem 3.5 (node-connectivity SNDP (ncSNDP)):
Given: undirected graph G = (V, E, c), edge cost ce ∈ R>0, ∀e ∈ E , symmetric and unitary

connectivity requirement matrix ρ ∈ N |V |× |V |

Solution: edge set E ′ ⊆ E such that G[E ′] contains ρuv node-disjoint paths between
u, v ∈ V, u , v

Objective: minimize overall cost
∑

e∈E′ ce

It is common to consider special cases of the (nc)SNDP. One famous example from
literature is the {0, 1, 2}-ncSNDP, see, e.g., Chimani, Kandyba, Ljubić, and Mutzel [38],
where vertices are classified into three categories: each vertex v ∈ V is assigned a value
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ρv ∈ {0, 1, 2} (notice that we use the same identifier ρ, but this time ρ is a vector instead
of a matrix). Vertices of type 2 require two node-disjoint paths, vertices of type 1 simple
connectivity, and all other vertices can be used to establish cost-efficient solutions. Then,
the vertex types are given by sets R1,R2, and R defined as Ri := {v ∈ V | ρv = i}, for
i = 1, 2, and R := R1 ∪ R2. The required connectivity between a pair of distinct vertices
u, v ∈ V is defined as ρuv = min{ρu, ρv}. Hence, ρuv = 2 if both vertices u and v are of
type 2, ρuv = 1 if 1 ≤ ρu · ρv ≤ 2, and otherwise ρuv = 0.

Further Problems. The existing literature on Steiner tree problems and network design
problems is immense. An overview of problems related to the STP can be found at a
dedicated homepage [91]. In the preceding section we covered only the problems which
are considered in this thesis. Because of their relevance and the similarities to our topics
we like to mention the traveling salesman problem (TSP) and the prize-collecting Steiner
tree problem (PCSTP). The TSP consists of finding a minimum cost hamiltonian circuit.
It is is one of the best studied NP-hard combinatorial optimization problems, cf. e.g., the
book by Applegate, Bixby, Chvátal, and Cook [6] or a TSP homepage [51]. The PCSTP
is an extension of the STP with no predefined set of required vertices. Instead, vertices
reward a profit if they are contained in the solution. The objective is to maximize this profit
minus the cost of connecting the vertices. For the PCSTP we refer the reader to Ljubić,
Weiskircher, Pferschy, Klau, Mutzel, and Fischetti [125].

However, the introduced problems often do not suffice to cover problems that arise
in practice where it is necessary to satisfy additional constraints of different types. For
example, such constraints might require a maximum degree of connected vertices (degree-
constrained), a maximum number of edges or vertices between two connected vertices
(so-called hops), or an additional resource that has to be satisfied (resource constrained).
Moreover, there might be different types of vertices, like, e.g., demand or supply vertices,
or different types of edges, e.g., edges representing different technologies, which influence
the set of feasible solutions. Some problems are also considered in a stochastic or robust
setting or, e.g., with multiple objectives.

Here, we mention some (recent) publications: Gouveia, Simonetti, and Uchoa [78],
Gouveia, Leitner, and Ljubić [79], Climaco and Pascoal [47], Di Puglia Pugliese and
Guerriero [60], Chimani, Kandyba, Ljubić, and Mutzel [39], Gollowitzer [77], Goerigk
[76], and Kandyba-Chimani [105], and refer the reader to references therein.

3.2 Basic IP formulations

Most of the previously described network design problems with predefined connectivity
requirements can be formulated as integer programs easily by using undirected cuts. The
following formulation was introduced byWilliamson, Goemans, Mihail, and Vazirani [172]
and Goemans and Williamson [75]. It can be used to define a broad set of network design
problems.

Let G = (V, E) be the undirected input graph. Selecting an edge in the solution is
indicated by the binary decision variable xe, ∀e ∈ E : xe = 1 if and only if the edge is
contained in the solution. With the classical notation x(E ′) :=

∑
e∈E′ xe, ∀∅ , E ′ ⊆ E , the
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cut-based formulation for network design problems reads as follows:

(NDPuc) min
∑
e∈E

cexe

s.t. x(δ(S)) ≥ f (S) ∀∅ , S ⊆ V (3.1)

x ∈ {0, 1} |E | (3.2)

The objective function is simply the minimization of the cost of the selected edges.
Constraints (3.1) enforce the selection of at least f (S) incident edges crossing a cut S.
Thereby, function f : 2V → N is used to model the connectivity requirements of the
network design problem.

For example, the Steiner forest problem can be modeled by defining f as follows:

f (S) :=

{
1 if ∃i : ∅ , T i ∩ S , T i

0 otherwise
(3.3)

For the edge-connectivity survivable network design problem function f is set to

f (S) := max{ρuv | u ∈ S, v < S} (3.4)

The problems MST, STP, SFP, and SNDP all fall in this class of NDPs and can be
modeled this way. The correctness of formulation (NDPuc) for each of these problems
follows from the “max flow = min cut” theorem, cf. e.g., Grötschel, Monma, and Stoer [80].

Another MIP formulation for this type of network design problems is based on multi-
commodity flows, cf. e.g., Ahuja, Magnanti, and Orlin [2]. The idea is to send ρuv units of
flow from vertex u to v, for each ordered vertex pair u, v ∈ V , while each edge has capacity
one. Then, every edge with non-zero flow is used in the solution (set xe = 1).

Contrary to (NDPuc) this formulation is a compact model. A compact formulation has
a size that is polynomial in the graph size. (NDPuc) is obviously not compact since the
number of constraints is exponential in |V |.

Let A be the arc set of the bidirection of G. To distinguish the different flows we use
K commodities, one for each pair of vertices u, v with ρuv > 0; we denote the connectivity
requirement of commodity k corresponding to vertices u, v with qk and set qk := ρuv. For
each commodity k ∈ {1, . . . ,K} let the vertex with smaller index be the source and the
other the target.

To model the flow we use flow variables f ki j linked to the directed arcs and to the kth
commodity, indicated by the upper index k. Moreover, we use binary decision variables xe
for each undirected edge. By adopting the notation of Magnanti and Raghavan [130] the
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flow formulation for network design problems reads as follows:

(NDPuf) min
∑
e∈E

cexe

s.t. f ki j ≤ xe,

f kji ≤ xe ∀k ∈ {1, . . . ,K}, ∀e = {i, j} ∈ E (3.5)

f k(δ−(i)) − f k(δ+(i)) =


−qk, if i = source(k)
qk, if i = target(k)
0, otherwise


∀k ∈ {1, . . . ,K},
∀i ∈ V

(3.6)

f ∈ [0, 1] |A | ·K (3.7)

x ∈ {0, 1} |E | (3.8)

The objective function contains only x variables and is identical to the cut-based formu-
lation. Arcs which are used for routing flow are payed for through capacity constraints (3.5).
Constraints (3.6) are classical flow-conservation constraints. For each source (target) the
outgoing (ingoing) flow has to meet the connectivity requirement and for non-source and
non-target vertices the sum of the ingoing and outgoing flow has to be identical.

Comparing the two formulations (NDPuc) and (NDPuf) is twofold. From a polyhedral
point of view both formulations are equally strong (cf. Section 2.2.2):

Theorem 3.6 (e.g. [130]). (NDPuf) is equivalent to (NDPuc).

On the other hand, in practice it makes a difference which model is solved. Although
formulation (NDPuf) is compact it does contain a lot more variables than formulation
(NDPuc), i.e., |E | + 2 · |E | · K versus |E |. Moreover, separating undirected cuts (3.1) can
be done in polynomial time by computing minimum cuts, cf. e.g., Grötschel, Monma, and
Stoer [81]. It is known that cut-based formulations perform in general better and scale
better with an increasing graph size. For example, computational results for the Steiner tree
problem can be found in the PhD theses by Daneshmand [55] and Polzin [139].

3.3 Steiner tree problem

TheSteiner tree problem—in particular its stochastic version—is one of the central problems
studied in this thesis. It is also one of the classical network design problems with a vast
literature. For a first overview we refer the reader to the books by Hwang, Richards, and
Winter [96] and Prömel and Steger [145], and to a dedicated homepage [91]. Further
references are given in the following for each specific subtopic. We focus on the topics
which are relevant to the stochastic Steiner tree problem and discuss them in more detail.

3.3.1 Complexity, polynomially solvable cases, and parameterized algorithms

The decision version of the Steiner tree problem—is there a Steiner tree which costs at most
a given value?—is one of the famous 21 NP-complete problems studied by Karp [106].
Bern and Plassmann [17] gave a proof based on a constructed graph with edge weights 1
and 2. Therefore, they could show that the STP is strongly NP-hard and MAX SNP-hard.
Moreover, the STP is still NP-hard on planar graphs, cf. Garey and Johnson [70].
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On the other hand, there exist special cases for which the Steiner tree problem can be
solved in polynomial time:

• Trees: Since paths in trees are unique the minimum Steiner tree is the union of paths
connecting any two terminals.

• Partial 2-trees, series-parallel graphs: Wald and Colbourn [170] described a linear
time algorithm for partial 2-trees.

• Partial k-trees: For partial k-trees, which are graphs with treewidth k, the STP can
be solved with the FPT algorithm described in Section 5.4; this is a polynomial-time
algorithm if k is a constant.

• Bounded number of terminals: The case |T | = 2 is the shortest path problem. For
a constant |T | the algorithm by Dreyfus and Wagner [63] solves the STP in time
O(3 |T | |V |); this is again an FPT algorithm which is polynomial for constant |T |.

• Bounded number of non-terminals: The case T = V is the MST. For a constant
number of non-terminals |V\T | a simple enumeration of all possible subsets of V\T
combined with the MST gives the optimum Steiner tree.

• For further special cases we refer the reader to Winter [174] and Hwang, Richards,
and Winter [96].

For series-parallel graphs or partial 2-trees, respectively, complete LP formulations for
the Steiner tree and related problems were given by Margot, Prodon, and Liebling [132]
and Goemans [72, 73].

Approximation algorithms. Besides the long list of literature on exact approaches and
polyhedral studies there exists a vast literature on approximation algorithms, too. The
classical algorithm is the distance network heuristic (MST heuristic) with an approximation
ratio of 2 − 2/|T |, cf. e.g., Vazirani [169] or Prömel and Steger [145]. Another (2 − 2/|T |)-
approximation is based on the primal-dual scheme by Goemans and Williamson [75].

Over the years, the approximation ratio was improved several times to the currently best
ln(4)+ ε ≈ 1.39 for an arbitrary small ε > 0 by Byrka, Grandoni, Rothvoß, and Sanità [31].
Another preceding milestone was the algorithm by Robins and Zelikovsky [153] which
achieves an approximation ratio that converges to 1 + ln(3)/2 ≈ 1.55. Both algorithms
are based on the enumeration of (restricted) components of size k and the approximation
ratio converges to the given value if k converges to ∞. Unfortunately, the running time
is exponential in k which makes the algorithms inapplicable in practice. A nice overview
of (more) approximation algorithms and heuristics with an experimental study was given
by Chimani and Woste [37].

On the other hand, an inapproximability result by Chlebík and Chlebíková [43] states
that the STP is not approximable within a factor of 96/95 unless NP = P.

3.3.2 IP formulations

IP formulations and polyhedra of the Steiner tree problem have been studied intensely in the
1990s by Chopra and Rao [44, 45], Chopra and Tsai [46], Goemans and Myung [74], Koch
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1

2 3
(a)
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(b)

Figure 3.1: An instance of the STP where all three vertices are terminals and all edge costs are 1.
(a) shows the optimum solution of the relaxed undirected cut formulation with value 1.5 by setting
xe = 0.5 for all edges e. There is no valid solution for the directed cut formulation with the same
value. Instead, two arcs have to be selected, e.g., for root node 1 z12 = z13 = 1, as depicted in (b).

and Martin [112], Polzin and Daneshmand [140, 142], Daneshmand [55], and Polzin [139].
We like to highlight [55, 112, 139, 140, 142] since the authors also described branch&cut
algorithms and provided results from computational studies.

Cut-based formulations. With the IP formulation (NDPuc) at hand the undirected cut
formulation for the Steiner tree problem follows directly by setting f (S) := 1 if S contains
at least one, but not all, terminals: x(δ(S)) ≥ 1, ∀S ⊂ V : ∅ , S ∩ T , T . In this case there
has to be at least one edge connecting these vertices with the remaining part of the graph.
The related constraints are called Steiner cuts and we denote the formulation by (STPuc);
this undirected cut formulation was first introduced by Aneja [5].

Another possibility for formulating the Steiner tree problem is by considering arbores-
cences in the bidirection: it is easy to see that a minimum cost arborescence—rooted at
an arbitrary terminal and containing all terminals—in the bidirection gives a cost minimal
Steiner tree.

Let G = (V, E, c) be the undirected weighted input graph with the weighted bidirection
Ḡ = (V, A, c). Moreover, let the root r be a designated terminal. With the notation
Vr := V\{r} and binary arc variables za, ∀a ∈ A, the directed cut formulation (first
described by Wong [175]) for the Steiner tree problem is given by:

(STPdc) min
∑
a∈A

caza

s.t. z(δ−(S)) ≥ 1 ∀S ⊆ Vr : S ∩ T , ∅ (3.9)

z ∈ {0, 1} |A | (3.10)

The constraints (3.9) are directed ingoing cuts and assure the construction of an r-
rooted arborescence. The induced STP solution is given by the set {e = {i, j} ∈ E | zi j =
1 or zji = 1}.

By projecting the directed z variables into the space of undirected edge variables x by
xe := zi j + zji, ∀e = {i, j} ∈ E , it follows directly that the undirected cut formulation is not
stronger than the directed cut formulation. The classical example given by Figure 3.1 shows
that there exist instances where model (STPdc) gives a stronger lower bound. A formal
proof can be found in, e.g., Chopra and Rao [44].

Theorem 3.7. (STPdc) is stronger than (STPuc).
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Flow-based formulations. Analogously to formulation (NDPuf) one can find equally
strong flow formulations for the Steiner tree problem. One simply has to set one terminal
as root node r and route a commodity from r to each terminal t ∈ Tr (Tr := T\{r}); hence,
the number of commodities is |T | − 1. We denote the resulting formulation by (STPuf).

(STPuf) min
∑
e∈E

cexe

s.t. xe ≥ f ti j, xe ≥ f tji ∀t ∈ Tr, ∀e = {i, j} ∈ E (3.11)

f t (δ−(i)) − f t (δ+(i)) =


−1, if i = r
1, if i = t
0, otherwise

 ∀t ∈ Tr, ∀i ∈ V (3.12)

f ∈ [0, 1] |A | ·( |T |−1) (3.13)

x ∈ {0, 1} |E | (3.14)

(STPuf) is equivalent to (STPuc). Moreover, there exists a stronger flow formulation
which is equivalent to (STPdc). This formulation can be obtained from (STPuf) by replacing
the undirected edge variables x by their directed counterparts z.

(STPdf) min
∑
a∈A

caza

s.t. f satisfies (3.12)
zi j ≥ f ti j ∀t ∈ Tr, ∀(i, j) ∈ A (3.15)

f ∈ [0, 1] |A | ·( |T |−1) (3.16)

z ∈ {0, 1} |A | (3.17)

Theorem 3.8. (STPdf) is equivalent to (STPdc).

By transitivity it follows that (STPdf) is stronger than (STPuf). For formal proofs
regarding the strength of the formulations we refer the reader again to, e.g., [44].

It is possible to formulate an equivalent directed flow-based model by replacing (i) di-
rected arc variables by undirected edge variables x and (ii) constraints (3.15) by constraints
f t1i j + f t2ji ≤ xe, for each edge e = {i, j} ∈ E and each pair t1, t2 ∈ Tr , see, e.g., Goemans
and Myung [74]:

(STPdf2) min
∑
e∈E

cexe

s.t. f satisfies (3.12)
xe ≥ f t1i j + f t2ji ∀t1, t2 ∈ Tr, ∀e = {i, j} ∈ E (3.18)

f ∈ [0, 1] |A | ·( |T |−1) (3.19)

x ∈ {0, 1} |E | (3.20)

Lemma 3.9 ([74]). (STPdf), (STPdc), and (STPdf2) are equivalent.
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3.4 Survivable network design problem

In this section we discuss the survivable network design problem. We mention polyno-
mially solvable special cases and give references to approximation algorithms as well as
parameterized algorithms. The main part contains the description of the well-known undi-
rected cut and flow formulation for the SNDP, and we discuss how these formulations can
be strengthened by considering the bidirection of the input graph.

3.4.1 Complexity, polynomially solvable cases, and parameterized algorithms

Complexity and approximation algorithms. Due to the Steiner tree problem the node-
and edge-connectivity versions of the SNDP are strongly NP-hard and inapproximable
within a factor of 96/95. The best known approximation algorithm is due to Jain [99] and
achieves a ratio of 2. In fact, this algorithm can deal with all network design problems from
Section 3.2 where the connectivity function f is weakly submodular. These problems were
introduced by Goemans andWilliamson [75] who described approximation algorithms with
ratio 2 · max{ρuv} for proper functions f . An overview of approximations, polynomially
solvable cases, and the SNDP in general, was given by Kerivin and Mahjoub [108].

Polynomially solvable cases. The following two special cases of the ncSNDP as well as the
SNDP can be solved in linear time on series-parallel graphs: Raghavan [147] presented an
algorithm when connectivity requirements are in {0, 1, 2} and Winter [173] showed how to
solve the problem with connectivity requirements in {0} ∪ {2` | ` ∈ N}. For an overview
of further special cases we refer the reader to Kandyba-Chimani [105].

Parameterized algorithms. To the best of our knowledge, parameterized algorithms for the
SNDP have not been studied so far. The only considered special cases are Steiner tree and
Steiner forest problems, cf. Section 3.3.

Regarding treewidth, it was shown that the Steiner forest problem is already NP-hard for
graphs with a treewidth of 3. This result was published independently by Gassner [71] and
Bateni, Hajiaghayi, and Marx [13]. On the other hand, [13] described a polynomial-time
algorithm for the SFP on graphs with treewidth 2.

Guo, Niedermeier, and Suchý [82] considered directed “Steiner problems” including
the directed Steiner tree problem, directed Steiner forest problem, and strongly connected
subgraph problems. The authors achieve some hardness results as well as some FPT results;
one of the considered parameters is the number of terminals.

3.4.2 IP formulations

We introduce basic IP formulations based on undirected cuts and multicommodity flows for
the SNDP in Section 3.2. For the STP the directed models provide stronger formulations,
cf. Section 3.3.2. Magnanti and Raghavan [130] were able to strengthen the formulations
(NDPuc) and (NDPuf) by using a famous theorem by Nash-Williams [134] about graph
orientations that we restate here:

Theorem 3.10 (Nash-Williams [134]). Let G = (V, E) be an undirected graph and let κuv
be the maximum number of edge-disjoint paths from u to v, where u, v ∈ V , u , v. Then G
has an orientation such that for every pair of nodes u and v in G, the number of pairwise
edge-disjoint directed paths from u to v in the resulting directed graph is at least b κuv

2 c.
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If connectivity requirements are in {0, 1} ∪ {2` | ` ∈ N} then it is possible to orient
any optimal SNDP solution as follows: Since we are dealing with the unitary SNDP, any
optimal SNDP solution consists of edge-biconnected components connected with each
other by cutvertices or bridges. Using the result of Theorem 3.10, each of those edge-
biconnected components can be oriented such that for each pair of distinct nodes u and v

from the same component there exist ρuv/2 edge-disjoint directed paths from u to v and
ρuv/2 edge-disjoint directed paths from v to u.

To orient possible bridges, a node r is chosen for which we know that it is a part of
an edge-biconnected component and each bridge is oriented away from this component.
To this end, the edge-biconnected components are oriented, shrunk into single nodes, and
the obtained tree is oriented away from the “root” r . These orientation properties can be
used to derive a MIP model that uses binary arc variables zi j associated to the bidirection.
By projecting the arc variables into the space of undirected edges as xe = zi j + zji, for all
e = {i, j} ∈ E , it is not difficult to see that the obtained directed model is stronger than the
undirected one. In fact, the directed model is stronger if and only if there exists a pair of
distinct nodes u, v ∈ V , such that ρuv = 1, cf. Magnanti and Raghavan [130].

To model the general SNDP, i.e., the SNDP with arbitrary connectivity requirements
ρuv ∈ N, Magnanti and Raghavan [130] presented an extended MIP formulation which is
similar to the one described above with the only difference that the binary arc variables zi j
are relaxed to be continuous. This minor change makes the model valid for arbitrary values
of ρuv and provably stronger than its undirected counterpart.

By using fractional arc variables za, ∀a ∈ A, and f (S) := max{ρuv | u ∈ S, v <
S}, ∀S ⊂ V , the resulting model by [130] reads as follows:

(SNDPdc) min
∑
e∈E

cexe

s.t. z(δ−(S)) ≥ f (S)/2 ∀∅ , S ⊆ V : f (S) ≥ 2 (3.21)
z(δ−(S)) ≥ 1 ∀∅ , S ⊆ Vr : f (S) = 1 (3.22)

xe ≥ zi j + zji ∀e = {i, j} ∈ E (3.23)
z ≥ 0 (3.24)

xe ∈ {0, 1} |E | (3.25)

Constraints (3.22) are the known directed Steiner cuts implying connectivity of the
solution, i.e., the existence of a directed path from r to each “terminal”. The directed
cuts (3.21) ensure that ρuv/2 directed path are selected from u to v and from v to u,
respectively. The capacity constraints (3.23) enforce that each edge is oriented in (at most)
one direction and that each used arc is payed for.

The formal proof of correctness for (SNDPdc) as well as an equally strong model based
on multicommodity flows can be found in Magnanti and Raghavan [130].

Lemma 3.11 ([130]). (SNDPdc) is a valid formulation for the survivable network design
problem and stronger than (NDPuc).
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Chapter 4

Introduction

This chapter introduces the two-stage stochastic Steiner tree problem and its related rooted
version. The problem definitions are given in Section 4.1. Afterwards, in Section 4.2, some
basic examples are discussed which lead to some simple observations. Section 4.3 contains
an overview of the complexity and the related work. We close the chapter with Section 4.4
by describing linear time algorithms when the input graph is a tree.

4.1 Definitions

The stochastic Steiner tree problem is a natural extension of the classical STP to a two-stage
stochastic combinatorial optimization problem. In the first stage, it is possible to buy some
“profitable” edges while the terminal set and the edge costs are subject to uncertainty. Then,
in the second stage, one of the given scenarios is realized and additional edges have to be
purchased in order to interconnect the now known set of terminals. The objective is to make
a decision about edges to be selected in the first stage, while minimizing the expected cost
of the overall solution.

For the used notations see page vii and Section 2.3. Moreover, let edge set E0 denote the
selected edges in the first stage and Ek the edges in the second stage in scenario k, ∀k ∈ K,
with K := {1, . . . ,K}. The stochastic Steiner tree problem is defined as follows:

Problem 4.1 (Stochastic Steiner tree problem (SSTP)):
Given: undirected graph G = (V, E), first-stage edge cost c0

e ∈ R
>0, ∀e ∈ E , and a set of

K ≥ 1 scenarios. Each scenario k ∈ K is defined by its probability pk ∈ (0; 1],
second-stage edge cost cke ∈ R

>0, ∀e ∈ E , and a set of terminals ∅ , Tk ⊆ V .
Moreover, it holds

∑
k∈K pk = 1.

Solution: K + 1 edge sets E0, . . . , EK ⊆ E such that G[E0 ∪ Ek] connects Tk, ∀k ∈ K

Objective: minimize the expected cost
∑

e∈E0 c0
e +

∑
k∈K pk

∑
e∈Ek cke

The expected cost of an edge e ∈ E is defined as c∗e :=
∑

k∈K pkcke . W.l.o.g. one can
assume that c0

e < c∗e, ∀e ∈ E; otherwise, this edge would never be purchased in the first
stage since it can be installed in every scenario at the same or cheaper cost. On the other
hand it is also valid to assume c0

e > mink∈K {pkcke }, ∀e ∈ E , since such an edge would never
be installed in any scenario.

In the literature, cf. Section 4.3, the SSTP is mostly considered to have some special
terminal r ∈ V . This vertex r is a designated root node and is contained in every terminal
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r 1 2 3
1/11
e1

10/1
e2

1/11
e3

Figure 4.1: A simple example for the rooted stochastic Steiner tree problem where applying the
assumption “c0

e < c∗e, ∀e ∈ E” is not feasible, cf. text. There exists only one scenario (connect
terminals r and 3) and edge costs are written above the edges (as first stage cost/scenario cost). The
optimum solution selects all edges in the first stage with overall cost 12. Disabling e2 in the first
stage would imply cost 13.

set Tk, ∀k ∈ K. We refer to this special case of the stochastic Steiner tree problem as SSTP
with global terminal—in particular, we want to make the distinction to the rooted SSTP
clear which is motivated and defined in the following.

Notice that for the SSTP the first-stage solution E0 does not have to be connected.
In particular, it is easy to construct instances with the optimum first-stage solution being
disconnected, cf. Section 4.2. However, fragmented solutions might be unreasonable in
practical settings. For example, if new cables or pipes are installed underground one would
prefer starting at one point and connecting adjacent streets first and not by digging in several
parts of the city simultaneously. These ideas lead to the problem definition of the rooted
SSTP:

Problem 4.2 (Rooted stochastic Steiner tree problem (rSSTP)):
Given: undirected graph G = (V, E), first-stage edge cost c0

e ∈ R
>0, ∀e ∈ E , root node

r ∈ V , and a set of K ≥ 1 scenarios. Each scenario k ∈ K is defined by its
probability pk ∈ (0; 1], second-stage edge cost cke ∈ R

>0, ∀e ∈ E , and a set of
terminals ∅ , Tk ⊆ V with r ∈ Tk . Moreover, it holds

∑
k∈K pk = 1.

Solution: K + 1 edge sets E0, . . . , EK ⊆ E such that G[E0] is a tree containing r and
G[E0 ∪ Ek] connects Tk, ∀k ∈ K

Objective: minimize the expected cost
∑

e∈E0 c0
e +

∑
k∈K pk

∑
e∈Ek cke

The two problems SSTP and rSSTP are the main stochastic Steiner tree variants con-
sidered in this thesis.

Notice that the assumption c0
e < c∗e, ∀e ∈ E , as for the SSTP, is not valid for the

rSSTP due to the necessary first-stage tree. This is shown by Figure 4.1; here, edge e2
would be disabled in the first stage which prohibits the optimum solution. By swapping
first- and second-stage edge costs this example shows that this holds for assumption c0

e >

mink∈K {pkcke } as well.

Relationship between SSTP and rSSTP. Although both variants of the stochastic Steiner
tree problem are related and seem similar there are some differences. Obviously, one can
interpret any rSSTP instance as SSTP instance and the optimum unrooted stochastic Steiner
tree is at least as cheap as the rooted one. Hence, the SSTP can be seen as a relaxation of
the rSSTP since the rooted version adds the constraint for a connected first-stage solution.
On the other hand, instances for the SSTP do not necessarily contain a root node and do not
have to be feasible for the rSSTP.

Moreover, the (known) complexity varies for some classes considered in this thesis.
For example, the rooted version allows for an FPT algorithm parameterized by the overall
number of terminals; for the unrooted version it is an open question if such an algorithm
exists. Moreover, it is possible to formulate the rooted SSTP by a fully directed MIP
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Figure 4.2: Example SSTP instance with two equally probable scenarios having the same set of
terminals {1,3,4}. Edge costs for the first stage and the two scenarios are written next to the edges
(as c0/c1/c2) with M representing a sufficiently large positive value. The optimum solution edges
of the first stage are highlighted by thick edges; scenario 1 and 2 additionally purchase edge e2 and
e3, respectively. Hence, the optimum solution has cost 12.

formulation but for the unrooted SSTP this attempt causes some difficulties—as discussed
in Section 6.3. But there are also similar results concerning trees, cf. Section 4.4, and the
FPT complexity on partial 2-trees and on treewidth-bounded graphs, cf. Section 5.2, 5.5,
and 5.6.

4.2 Observations and examples

In this section we like to discuss some observations and examples to give a better insight
into the stochastic Steiner tree problems. For this purpose, let E0 denote the optimal first
stage and E1, . . . , EK the optimal scenario edges of an instance.

Observation 4.3. The following edge sets are all cycle-free: E0, Ek, ∀k ∈ K, and E0∪Ek ,
∀k ∈ K.

Otherwise one can simply remove one edge from the cycle—either in the first stage or
in a scenario—and obtain a cheaper solution; recall that all edge costs are positive. This
observation obviously holds for the SSTP as well for the rSSTP.

Observation 4.4. For the SSTP edge set E0 may be disconnected.

An example is already given by Figure 4.1 when interpreted as SSTP instance. Here,
the optimum solution with (expected) cost 3 is E0 = {e1, e3} and E1 = {e2}. Figure 4.2
presents a slightly more complex example with 2 scenarios. Here, edges e1 and e4 are
selected in the first stage and e2 and e3 each in one scenario, respectively.

Moreover, when solving both scenarios of the example in Figure 4.2 independently as
Steiner tree problems the optimum solutions use edges e2, e3, e5 for scenario 1 and edges
e2, e3, e6 for scenario 2. Hence, both independent scenario solutions are disjoint to the
optimum first-stage solution for the SSTP.

Observation 4.5. Let Fk, ∀k ∈ K, denote the optimum solution edges to the Steiner tree
problem induced by scenario k. It possibly holds Fk ∩ E0 = ∅, for all k ∈ K.
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Figure 4.3: An instance for the SSTP with two equally probable scenarios which have the same
terminal sets T1 = T2 = {A, B,C}. However, the optimum solution selects no edge in the first stage.
(a) gives the edge costs of the first stage which are all 1. (b) and (c) depict the two scenarios with
the selected edges of the optimum solution being drawn as bold lines. The overall solution cost is
1.25 whereas the selection of any first-stage edge would lead to higher cost.

In other words, solving the scenarios independently does not give any information about
the corresponding first-stage solution which might not be used in any scenario. Contrarily,
using an edge in all scenarios does not indicate a profitable edge for the first stage neither.

Observation 4.6. Let Fk, ∀k ∈ K, denote the optimum solution edges to the Steiner tree
problem induced by scenario k with an edge e∗ such that e∗ ∈

⋂
k∈K Fk , ∅. There exist

instances with e∗ < E0.

The same example gives such an instance where edges e2 and e3 are selected in both
scenarios but they are not contained in the optimum first-stage solution.

Moreover, Figure 4.2 shows that it might not be optimal to connect all coinciding
terminals already in the first stage. Here, every scenario has the same terminal set but E0

is not a Steiner tree for this set.
Notice that although these latter three properties do not hold for the rooted SSTP and this

very example in Figure 4.2 it is easy to see that there exist instances where the statements
are also true for the rSSTP.

The stochastic Steiner tree problems do not contain terminals in the first stage and in
general it is not possible to derive connectivity requirements from the scenarios into the first
stage. Consider the example given by Figure 4.3 which consists of two equally probable
scenarios: Although both terminal sets are identical the optimum first-stage solution is
empty. Hence, the connectivity requirements in the scenarios do not imply any connectivity
requirements in the first stage and cannot be imposed in the first stage.

Observation 4.7. The terminal sets do not imply connectivity requirements in the first stage.

For the deterministic STP it is valid to assume that the edge costs satisfy the triangle
inequality, i.e., the input graph G = (V, E, c) is a complete graph and for any three distinct
vertices u, v,w ∈ V it holds cuv ≤ cuw + cwv, see, e.g., Vazirani [169]. The STP with this
property is called the metric Steiner tree problem. We use the same naming and call the
(r)SSTP themetric (rooted) stochastic Steiner tree problem if the edge costs in the first stage
c0 and if the edge costs ck in every scenario k ∈ K satisfy the triangle inequality.

Observation 4.8. The SSTP is equivalent to the metric SSTP and the rSSTP is equivalent
to the metric rSSTP.
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Proof. The proof is similar to the one for the STP as given by, e.g., [169]. We argue that the
original instance I and the metric closure I ′ (the complete graph where edge costs in the
first stage and each scenario equal the costs of the shortest paths) have the same optimum
solution cost optI = optI′.

The first direction “optI ≥ optI′” holds since edge costs in I ′ are no more than in I.
Hence, a solution in I can be directly translated into a solution for I ′ with the same or
cheaper cost.

The opposite direction “optI ≤ optI′” follows from the following transformation. For
an optimal solution in I ′ all edges can be replaced by the shortest paths in the original
graph; notice that the cost of this solution is not worse than optI′. Afterwards, cycles can
be removed by deleting edges from the solution and a selected second-stage edge which is
already used in the first stage can be discarded, too. Of course, these modifications do not
increase the overall cost. �

4.3 Complexity and related work

Since the stochastic Steiner tree problem is obviously a generalization of the classical
Steiner tree problem the known complexity results can be carried over directly. Hence, the
stochastic STPs are NP-hard and there is no polynomial time approximation scheme unless
NP = P.

Although the STP allows constant factor approximations the stochastic problems are
harder to approximate. Ravi and Sinha [150] showed that the group Steiner tree problem can
be reduced to the stochastic shortest path problem (SSP); the SSP is identical to the rSSTP
or the SSTP with a global terminal, respectively, and with exactly one additional terminal
in each scenario. The group Steiner tree problem is Ω(log2−ε n)-hard to approximate due
to a reduction from the label cover problem, cf. Halperin and Krauthgamer [90] and Dinur
and Safra [62].

However, in literature the stochastic Steiner tree problem has been mostly investigated
for approximation algorithms. Due to the inapproximability results restricted versions of the
stochastic Steiner tree problem have been considered to obtain approximation algorithms.

The classical approach for making the problem better tractable is by introducing an
inflation factor for the second-stage edges. Instead of independent edge costs in the scenarios
each scenario has a fixed inflation factor σk, ∀k ∈ K, mostly with σk > 1, such that all
edge costs are increased by the same factor and edge e is assigned cost σkc0

e in scenario k.
It is also possible to allow only one uniform inflation factor σ for the second-stage costs,
i.e., σ = σ1 = . . . = σK .

Moreover, there are several other possibilities for reducing the problem complexity. For
example, it is common to assume a special vertex being a terminal in all scenarios. In the
literature, this vertex is referred to as root node but due to the overloaded naming w.r.t. the
rSSTP we call such a vertex a global terminal. This assumption lets the problem become
similar to the rSSTP without introducing the requirement for a first-stage tree.

Scenario representations. We assume that the random variables of the stochastic prob-
lems have finite support, compare the definition in Section 2.3. Hence, it is possible to
describe the possible outcomes with a finite set of scenarios for which the probabilities are
known. This stochastic model is known under the term finite scenario model or polynomial
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scenario model. Running times of algorithms designed for the finite scenario model are
measured in the input size which contains the full scenario representations.

A different approach is the black box model or oracle model where the number of
scenarios might be exponential. In this model, the set of scenarios is not given explicitly,
i.e., the distribution is not known. Instead, there exists an oracle that returns one scenario—
depending on its probability—in polynomial time. Moreover, the sampling procedure of
asking the oracle is considered to be an elementary operation. Polynomial time algorithms
for the black box model are algorithms with polynomial running time and a polynomial
number of oracle calls. For a nice overview and further references we refer the reader to
the article by Shmoys and Swamy [163].

Finite scenario model approximations. As far as we know there are two results con-
cerning the stochastic Steiner tree problem in the finite scenario model as considered in
this thesis. Further approaches deal with the black box/oracle model which are listed in the
following paragraph.

Gupta, Ravi, and Sinha [87] considered the SSTP with K inflation factors and a global
terminal. The authors present a 40-approximation based on rounding of the relaxed LP
followed by a primal-dual phase which is inspired by the classical approximation algorithm
for the Steiner tree and forest problem by Goemans and Williamson [75]. As an interesting
side note Gupta, Ravi, and Sinha [87] could show that the additional restriction of a valid
first stage being a tree rooted at the global terminal at most doubles the cost of the optimum
solution.

Gupta and Kumar [83] considered the so-called stochastic Steiner forest problemwhich
is a special case of the SSTP. The main difference to the previously mentioned work is the
non-existence of a global terminal. On the other hand, their problem contains a uniform
fixed inflation factor σ > 1, the edge costs in the first stage have to be positive integers,
and the scenarios are equally probable. For this version Gupta and Kumar [83] described a
constant factor approximation based on a primal-dual scheme.

Black box model approximations. All following approximation algorithms are based on
the common idea of scenario sampling. In this approach a specified number of scenarios is
sampled by calling the scenario oracle. The exact number mostly depends on the uniform
inflation factor and for an inflation factor σ the sample size is mostly bσc. Approximating
the sampled scenarios allows for an approximate solution to the related stochastic problem.

To the best of our knowledge, Immorlica, Karger, Minkoff, and Mirrokni [98] presented
the first approximation algorithm. Their problem is restricted by a uniform inflation factor
and the algorithm achieves an approximation guarantee of O(log n). Gupta, Pál, Ravi,
and Sinha [85, 89] introduced the concept of boosted sampling which is a sophisticated
version of the described sampling approach. The authors consider the problem with a
global terminal and a uniform inflation factor and present a constant factor approximation
algorithm with ratio 3.55. The same problem is considered by Shmoys and Swamy [163]
who presented a 4-approximation.

Contrarily to the other problems, Gupta and Pál [84] approximated the stochastic Steiner
tree without global terminal. Their problem has a fixed uniform inflation factor and the
presented algorithm has a ratio of 12.6.

The only approach without uniform inflation factor is due to Gupta, Hajiaghayi, and
Kumar [86]. The considered SSTP does not have inflation factors but there are only two
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cost functions for the first-stage edges and one for the second-stage edges. Hence, in this
problem the second-stage costs are independent of the realized terminal sets. The authors
show that this restricted problem is at least Ω(log log n)-hard and give an approximation
algorithm with a polylogarithmic approximation ratio.

Heuristic. Hokama, San Felice, Bracht, and Usberti [95] introduced a heuristic for the
SSTP and present results of a computational study. The heuristic is a biased random-key
genetic algorithm which in its core is a general search metaheuristic. Although the method
is described only for the SSTP it can be modified to work for the rSSTP as well. To
populate the initial set of solutions for the genetic algorithm two heuristics were introduced:
(i) a buy-none heuristic where the first stage is always empty and (ii) a procedure which
iteratively adds profitable edges to the first stage. In both cases the scenarios are solved with
the MST heuristic. Hokama, San Felice, Bracht, and Usberti [95] evaluated the genetic
algorithm experimentally on the instances from Bomze, Chimani, Jünger, Ljubić, Mutzel,
and Zey [27] and from the 11th DIMACS challenge [101]. To the best of our knowledge
these two publications are the only ones which present computational results for the SSTP.
We discuss and compare the approaches in our computational study in Section 8.3.6.

4.4 Stochastic Steiner tree problems on trees

Solving the deterministic Steiner tree problem on trees is trivial—and can be done in linear
time—because the (shortest) path between any two vertices is unique: Comprising the
edges of the paths connecting all pairs of terminals gives the minimum Steiner tree. The
same result holds for the Steiner forest problem.

Hence, trees seem to be a simple graph class for the stochastic Steiner tree problem.
This is true for the SSTP since there exists a straight-forward linear time algorithm, as
discussed in the next paragraph. Afterwards, we see that solving the rSSTP on a tree is not
that trivial but can be done in linear time, too.

SSTP on trees. Like alreadymentioned the deterministic Steiner tree problem is solved by
combining the shortest paths between all terminal pairs. By using thismethod independently
for each scenario one can find all relevant edges Ẽ :=

⋃
k∈K Ẽk ; thereby Ẽ1, . . . , ẼK are

the required edges for each of the K scenarios.
Obviously, an optimum solution uses only edges from Ẽ and it only remains to decide

for each edge if this edge is bought in the first or in the second stage. Consider any edge
e ∈ Ẽ: If c0

e <
∑

k∈K:e∈Ẽk pkcke it is cheaper to select e as a first-stage edge. Otherwise e
is used as a second-stage edge in all scenarios k with e ∈ Ẽk .

The constructed solution obviously connects all terminals and hence, it is feasible.
Moreover the solution is optimal since every other solution has to use the edges from Ẽ .
The running time is linear in the size of the stochastic instance and dominated by the time
required for computing edge sets Ẽk, ∀k ∈ K, which can be done in O(K · |V |) time.

rSSTP on trees. Solving the rooted stochastic Steiner tree problem on trees is not as
simple as the unrooted version due to the required first-stage tree. Hence, it is not possible
to decide for each edge independently if it should be used in the first stage or in the scenario
solutions. However, by considering the input tree rooted at r (recall that r is the root node
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from the rSSTP) and by using a bottom-up traversal allows for a simple optimality equation
which can be evaluated for each node. For the description we assume that the edge sets
Ẽ, Ẽ1, . . . , ẼK—as described in the preceding paragraph—are already known. Moreover,
let v be the current node with u being its parent in the tree; the corresponding edge is
denoted by e = {u, v}.

One can observe that in any solution v is reachable from the root solely by first-stage
edges, or the path consists of an (empty) sub-path of first-stage edges followed by some
scenario edges. To this endwe store two values b1(v) and b2(v)which represent both choices
for connecting vertex v. b1(v) gives the minimum cost for connecting v via e as first-stage
edge and all terminals in the subtree rooted at v with a minimum v-rooted stochastic Steiner
tree. b2(v) stores the minimum cost for connecting v by e and all terminals in the subtree
rooted at v by second-stage edges only.

As base case we set b1(v) := b2(v) := 0 for all nodes v ∈ V with v < G[Ẽ], i.e., v is not
a terminal and the subtree rooted at v does not contain any terminal. Otherwise and in case
v , r the two following optimality equations hold:

b1(v) := c0
e +

∑
w∈V :

w child of v

min{b1(w), b2(w)} (4.1)

b2(v) :=
∑

k∈K:e∈Ẽk

pkcke +
∑
w∈V :

w child of v

b2(w) (4.2)

The overall optimum solution value b(r) can be computed by evaluating the following
equation in the root node: b(r) :=

∑
w∈V :w child of r min{b1(w), b2(w)}. Using a bottom-up

traversal, each edge is considered only a constant number of times per scenario; Hence, the
overall running time is O(K · |V |). The constructed solution is feasible since all terminals
are obviously connected and first-stage edges are only selectable when the current node is
connected by first-stage edges (case (4.1)) or incident to the root node (case b(r)) which
leads to a first-stage tree rooted at r .

The optimality of the constructed solution can be seen by a simple inductive proof on
the tree: leaves of G[Ẽ] are assigned correct values and the values of the other nodes are
computed correctly since all child values are correct.

After extracting the optimum solution value in the root node one can use a backtracking
procedure for computing the actual edge sets. This procedure also runs in linear time of the
input size.

Lemma 4.9. The SSTP as well as the rSSTP can be solved in time O(K · |V |) on trees.

We close the discussion by referring the interested reader to another version of the
stochastic Steiner tree problemwhich was introduced by Kurz [115]. His problem definition
requires a first-stage tree but there does not exist a common root node, contrarily to the
rSSTP. Moreover, each scenario solution combined with the selected edge set from the first
stage has to consist of one connected component. Kurz showed that this problem can be
solved in time O(|V |3 + K · |V |) on trees.

Notice that by calling our algorithm |V | times—by considering each vertex as root
node—this problem can be solved in time O(K · |V |2) as well.
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Parameterized algorithms

In this chapter we introduce FPT algorithms for the stochastic Steiner tree problems by
considering the following parameters: the overall number of terminals, the treewidth, and
the number of scenarios. We start in Section 5.1 with the number of terminals. Afterwards,
we consider tree decompositions where we first take a look at graphs with treewidth 2, the
partial 2-trees (Section 5.2). Section 5.3 shows that the SSTP is already NP-hard on graphs
with treewidth 3. Afterwards, we consider the general case and describe treewidth-based
algorithms for the SSTP. We summarize the ideas of the deterministic case in Section
5.4. Section 5.5 deals with the expansion of this approach to the SSTP and Section 5.6
summarizes the necessary modifications for the rSSTP.

5.1 Number of terminals

The famous algorithm by Dreyfus and Wagner [63] is based on dynamic programming and
solves the deterministic STP on a graph G = (V, E) with terminals T in time O(3 |T |n +
2 |T |n2 + nm), with n = |V |,m = |E |. This result places the STP in the complexity class
FPT parameterized by the number of terminals. In fact, this algorithm also works for the
directed Steiner tree problem, see Kurz [115], Kurz, Mutzel, and Zey [116].

Problem 5.1 (Directed Steiner tree problem (dSTP)):
Given: directed graph G = (V, A, c), arc cost ca ∈ R>0, ∀a ∈ A, set of terminal vertices

∅ , T ⊆ V , root node r ∈ T
Solution: arc set A′ ⊆ A such that there exists a directed path from r to each terminal

t ∈ T\{r}
Objective: minimize overall cost

∑
a∈A′ ca

Obviously, the STP can be reduced to the dSTP by considering the weighted bidirection
of the undirected input graph and by setting the root node r to an arbitrary terminal.
Moreover, it is easy to see that the algorithm by Dreyfus and Wagner can be adapted for
solving the dSTP. In fact, the algorithm already considers directed components and hence,
only minor modifications are necessary.

As we will discuss in the following the rooted stochastic Steiner tree problem can be
solved by the directed STP. Hence, the algorithm by Dreyfus and Wagner gives an FPT
algorithm for the rSSTP parameterized by the number of terminals.

For solving the rSSTP we describe a polynomial reduction to the dSTP. Let the input of
the rSSTP be the undirected weighted graph G = (V, E, c) with root node r and let A be the

53
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Figure 5.1: Sketch of the constructed graph G′ in the reduction from the rSSTP to the dSTP, cf.
text. Dashed arcs are transition arcs with cost 0.

arc set of the bidirection of G. We construct a dSTP instance G′ = (V ′, A′) with root node
r ′, terminal set T ′, and arc costs w such that the optimum solution values of both instances
are identical.

The dSTP instance basically consists of K+1 copies of the bidirection of G: a first-stage
copy G0 := (V0, A0) and K scenario copies G1, . . . ,GK with Gk := (Vk, Ak), ∀k ∈ K. An
arc (i, j) in G0 has cost c0

{i, j }
and in the kth scenario copy it has cost pkck

{i, j }
. The first-stage

copy of the root is the overall root. Moreover, each vertex in a scenario copy has one
additional ingoing arc with the source of this arc being the corresponding vertex in the
first-stage copy; these transition arcs have cost 0. Figure 5.1 depicts the structure of the
graph G′. Formally, the dSTP instance is constructed as follows:

• V ′ :=
⋃K
`=0 V` with V` := {v`1, . . . , v

`
n}; v`i is the copy of vertex vi in the first stage

(` = 0) or in the `th scenario (` ∈ K)

• A′ := A∗ ∪
⋃K
`=0 A` with:

– A0 :=
{
(v0

i , v
0
j )

��� (i, j) ∈ A
}
; (v0

i , v
0
j ) is the first-stage copy of arc (i, j) with cost

w0
i j := c0

{i, j }
, ∀(i, j) ∈ A

– Ak :=
{
(vki , v

k
j )

��� (i, j) ∈ A
}
; (vki , v

k
j ) is the kth scenario copy of arc (i, j) with

cost wk
i j := pkck

{i, j }
, ∀(i, j) ∈ A, ∀k ∈ K

– A∗ :=
{
(v0

i , v
k
i )

�� i ∈ {1, . . . , n}, k ∈ K
}
; the cost of each transition arc is 0

• r ′ := r0; r0 is the first-stage copy of the root node r

• T ′ :=
⋃

k∈K

{
vki

�� vi ∈ Tk
}

Now, consider an optimum solution for this dSTP instance which is an arborescence
rooted at r ′. Since there exists no arc entering the first-stage copy from the other copies
the subgraph of the optimum solution in A0 is a connected tree. Moreover, all terminals
in T ′ are connected which are vertices in the scenario copies. Hence, a terminal vki in Gk
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is connected by a directed path consisting of arcs in A0, followed by one transition arc in
A∗, and arcs in Ak . Since the transition arcs have zero cost the solution can be transformed
into a solution for the rSSTP with the same cost. Arcs in the subgraph G0 are transformed
into first-stage edges and arcs in the graphs G1, . . . ,GK are scenario edges. This solution
obviously consists of an r-rooted first-stage tree and all terminals in all scenarios are
connected.

On the other hand, an optimum solution to the rooted stochastic Steiner tree problem
can be transformed easily into an equivalent solution for the corresponding dSTP instance.
One simply has to orient the arcs from the root node away and whenever a path switches
from first to second-stage edges a transition arc is used. This obviously occurs exactly once
per path in the optimum rSSTP solution.

Hence, applying the algorithm by Dreyfus andWagner to the constructed dSTP instance
solves the rooted stochastic Steiner tree problem. Let t∗ :=

∑
k∈K |Tk | denote the overall

number of terminals. The constructed directed graph consists of (K + 1)n vertices and
2m(K + 1) + Kn arcs, respectively.

Lemma 5.2. The rooted stochastic Steiner tree problem (rSSTP) can be solved by an
FPT algorithm parameterized by the overall number of terminals t∗ with running time
O(3t∗Kn + 2t∗K2n2 + K2nm).

Since this approach uses the algorithm by Dreyfus and Wagner as a black box it is
possible to take advantage of known faster algorithms. Björklund, Husfeldt, Kaski, and
Koivisto [21] described how to speed up the algorithm by Dreyfus and Wagner directly by
fast subset convolution. Their approach has a running time of Õ(2 |T |nm) for the Steiner
tree problem with integer edge weights which are bounded by a constant; notice that
polylogarithmic factors are hidden by Õ, cf. [21]. Moreover, Fuchs, Kern, Mölle, Richter,
Rossmanith, and Wang [69] described a different algorithm for the STP based on dynamic
programming with running time O((2 + δ) |T |nO(1/(δ/ln(1/δ))ζ )), for any 1/2 < ζ < 1 and
sufficiently small δ > 0.

It is also possible to solve the SSTP variant defined by Kurz [115] and Kurz, Mutzel,
and Zey [116] (cf. Section 4.4) by adopting the described transformation: recall that this
problem has no designated root node but still requires the first stage solution being a tree.
One simply has to add a virtual root node and connect it with directed arcs to all vertices
of G0. The costs of these arcs are set to a sufficiently large value such that an optimum
solution chooses exactly one of these arcs. More detailed proofs and further discussions can
be found in [115, 116]. For example, it was shown that the rooted stochastic prize-collecting
Steiner tree problem can be solved with the same transformation.

We like to close the discussion by mentioning three open problems.

Open problem 5.1. Is the stochastic Steiner tree problem (SSTP) parameterized by the
overall number of terminals in FPT?

Since the dSTP algorithm is used as a black box in our approach it is an interesting
question if it is possible to adapt the algorithm for the stochastic problems.

Open problem 5.2. Is it possible to adapt the algorithm by Dreyfus and Wagner [63]
directly for the stochastic Steiner tree problems?

Although there exists a simple FPT algorithm with parameter number of non-terminals
for the STP it is an open problem if this result holds for the stochastic problems, too.
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Open problem 5.3. Are the stochastic Steiner tree problems (SSTP and rSSTP) parame-
terized by the overall number of non-terminals in FPT?

Remark 5.3. The previously described reduction from the rSSTP to the dSTP is approx-
imation preserving. As already discussed in Section 4.3 this relationship does not yield
good approximation algorithms since the dSTP is as hard to approximate as the label cover
problem which is Ω(log2−ε n)-hard.

5.2 Partial 2-trees

Wald and Colbourn [170] showed that the Steiner tree problem can be solved in linear time
on partial 2-trees. The idea of the algorithm is based on the recursive way of constructing
these graphs: start with a simple edge and in each step add a vertex that is adjacent to
both endpoints of an edge. Therefore, in a 2-tree there always exists a vertex with degree 2
which is removed by the algorithm in each iteration. While removing a vertex all necessary
information about the attached subgraphs are stored in a constant number of variables
representing the best solutions w.r.t. the removed subgraphs. Because of the restricted
structure of these graphs there are only 6 relevant cases (variables) to be considered in each
iteration; for details we refer the reader to [170].

For the stochastic Steiner tree problem this idea can be adopted, as described in Bökler,
Mutzel, and Zey [25] and Bökler [26]. The basic idea remains unchanged: In each step
a vertex with degree 2 is removed and all necessary solution values are stored. However,
the number of distinguishable cases increases highly and is not a constant anymore. The
difficulty arises from the set of scenarios. Although the K scenarios are somehow indepen-
dent they influence, and are influenced by, the first-stage decisions. Therefore, all relevant
combinations of the first stage and the K scenarios have to be considered.

The complete description of all cases is quite technical and lengthy. For the SSTP there
are 9K variables and the evaluation for each degree-2 vertex takes time Θ(16K ). Overall,
the running time is O(16K |V |).

Theorem 5.4 ([25]). The stochastic Steiner tree problem on partial 2-trees and parame-
terized by the number of scenarios is in FPT. There exists an algorithm with running time
O(16K |V |).

For more details we refer the reader to Bökler, Mutzel, and Zey [25] or Bökler [26].
Although the problem was not investigated in [25, 26] the rooted stochastic Steiner tree
problem on partial 2-trees can be parameterized by the number of scenarios, too. We
describe an algorithm for general treewidth in Section 5.6.

We like to close the discussion on partial 2-trees with an open problem regarding the
complexity. As we will see in the next part the SSTP is already NP-hard on graphs with
treewidth 3. For treewidth 2, the complexity is unknown.

Open problem 5.4. Are the stochastic Steiner tree problems (SSTP and rSSTP) on partial
2-trees solvable in polynomial time?
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5.3 Treewidth-bounded graphs

The stochastic Steiner tree problems are solvable in polynomial time on trees and for
treewidth 2 the SSTP is fixed parameter tractable with the parameter being the number of
scenarios.

However, it is still open if the problems are already NP-hard for treewidth 2. For
treewidth 3, we can show that the SSTP is indeed NP-hard. We use a polynomial reduction
from the Steiner forest problem which was shown to be NP-hard on graphs with any fixed
treewidth ≥ 3 independently by Bateni, Hajiaghayi, and Marx [13] and Gassner [71].

The main idea of our reduction is to encode each terminal set of the SFP into a single
scenario and to use unprofitably large edge costs in the second stage. The first-stage edge
costs are the given edge costs by the SFP instance. Then, the optimum solution to this SSTP
instance buys exclusively edges in the first stage which correspond to the optimum solution
for the SFP.

Theorem 5.5 ([25]). The Steiner forest problem (SFP) is polynomial time reducible to the
stochastic Steiner tree problem (SSTP).

Proof. The constructed SSTP instance uses the same graph with first-stage edge costs
c0
e := ce, ∀e ∈ E , and K equally probable scenarios: pk := 1/K, ∀k ∈ K. The terminal
set of scenario k is set to Tk, ∀k ∈ K, and all edge costs to “big M”; here it suffices to set
M := 1+ K ·maxe∈E ce. Therefore, buying an edge e in the first stage is even cheaper than
buying e in a single scenario since 1/K · M > c0

e.
Intuitively, the SSTP now constructs the minimum Steiner forest by connecting all

terminal sets already in the first stage. We argue that the SFP instance has a solution with
value z if and only if the SSTP instance has a solution with value z.

Let Ê0, Ê1, . . . , ÊK, Ê` ⊆ E, ∀` ∈ {0, . . . ,K}, denote a solution to the constructed
SSTP instance with cost z. Due to the previous observation concerning the high costs of the
edges in the second stage we can set Ẽ0 := Ê0 ∪

⋃
k∈K Êk and Ẽ1 := . . . := Ẽk := ∅ and

obtain a (new) solution with value at most z. Moreover, this solution connects all terminal
sets in the first stage and hence, Ẽ0 is a feasible solution for the SFP instance with the same
(or better) value.

Now consider a solution Ẽ ⊆ E to the SFP instance with value z. Since Ẽ connects all
terminal sets the solution Ê0 := Ẽ, Ê1 := . . . := ÊK := ∅ with value z is valid for the SSTP
instance.

To conclude the proof notice that the constructed instance for the stochastic Steiner tree
problem is polynomial in the size of the SFP instance. �

Notice that the preceding reduction does not modify the input graph of the SFP; hence,
Theorem 5.5 and the result by Bateni, Hajiaghayi, and Marx [13] and Gassner [71] implies
the following result.

Corollary 5.6. The stochastic Steiner tree problem (SSTP) is NP-hard on graphs with any
fixed treewidth ≥ 3.

The reduction from the SFP to the SSTPdepends on the property that first-stage solutions
may be disconnected. Hence, the arguments are not transferable to the rooted SSTP.

Open problem 5.5. Is the rooted stochastic Steiner tree problem (rSSTP) on graphs with
treewidth ≥ 3 NP-hard?
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Deterministic STP. Concerning treewidth-based algorithms for the STP the strongest
result is due to Korach and Solel [114] who described an algorithm with running time
O(tw4tw · |V |). More recent publications, in particular those dealing with polynomial
approximation schemes (see next paragraph) where the STP on bounded-treewidth graphs
arises as a subproblem, mostly propose own, yet weaker, results.

For the unweighted STP, i.e., the objective is to minimize the number of edges of the
Steiner tree, Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, and Wojtaszczyk [53] gave
a Monte Carlo algorithm for the decision problem with a one-sided error—false negatives
occur with probability of at most 1/2—requiring only O(3tw |V |O(1)) time; however, its
derandomization is considered an open problem.

Recently, the STP and related problems for graphswith bounded treewidth have received
more attention due to their applicability to approximate network optimization problems
in planar graphs: In multiple papers by Bateni, Chekuri, Ene, Hajiaghayi, Korula, and
Marx [12], Chekuri, Ene, and Korula [35], Bateni, Hajiaghayi, and Marx [11], Borradaile,
Kenyon-Mathieu, and Klein [28], Borradaile, Klein, and Mathieu [29], and Bateni, Haji-
aghayi, and Marx [13], polynomial time approximation schemes were proposed which use
dynamic programming on bounded-treewidth graphs as a subroutine. Hence, the develop-
ment of faster algorithms for the problem on bounded-treewidth graphs directly leads to
faster PTASes for the corresponding problem on planar graphs.

For the STP, the approximation scheme of [29] uses an algorithm for solving the problem
on graphs with bounded carving-width (a relative of treewidth) as a black box. Chekuri et al.
[35] (later merged into [12]) gave an algorithm for the prize-collecting Steiner tree problem
with running time O(B3

`
· s` · |V |), where ` := tw+ 1, B` is the number of partitions of a set

with ` elements (the `th Bell number), and s` is the number of subgraphs of a `-vertex graph.
Since s` = O(2(`

2)), this leads to a running time of O(2(tw2) ·B3
tw+1 · |V |). This algorithm then

allows PTASes for prize-collecting Steiner tree and forest problems. Bateni et al. [11] (also
later merged into [12]) described PTASes for prize-collecting network design problems on
planar graphs by using a similar approach. They investigated the prize-collecting STP (the
solution is a tree), prize-collecting TSP (the solution is a cycle), and the prize-collecting
stroll (the solution is a path). To this end they described a (1 + ε)-approximation for the
prize-collecting STP problem with a running time of order O(twtw · 2tw · |V |) that can be
adapted to solve the other two considered problems as well.

Furthermore, Polzin and Daneshmand [141] introduced an algorithm with running time
O(23b · |V |) where b is the size of a “border” obtained in the algorithm and a parameter
similar to pathwidth. Yet note that even for simple trees—with natural treewidth 1—the
pathwidth is unbounded.

5.4 Treewidth-based algorithm for the STP

In the following, we describe the ideas of a new treewidth-based parameterized algorithm
for the deterministic STP. We expand this approach for solving the SSTP (Section 5.5) and
the rSSTP (Section 5.6).

Our algorithm for the deterministic STP runs in time O(B2
tw+2 · tw · |V |) on a graph

with vertex set V and treewidth tw. The `th Bell number B` is the number of partitions
of a set with ` elements and can be recursively defined as B0 = 1, B`+1 =

∑`
i=0

(`
i

)
Bi, for

` ≥ 0, cf. Riordan [151]. It holds B` < `! < `` < 2(`2), for ` ≥ 3, and B` > 2` , for
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Xi

X+i

r

S

Figure 5.2: A Steiner tree S decomposes into a forest when restricted to the vertices of bag Xi .
The bag Xi is indicated by the grey shape, terminals are drawn as rectangles and Steiner vertices as
circles. For simplicity, we omit edge costs as well as all edges not in S.

` ≥ 5, and Berend and Tassa [16] showed that B` < (0.792`/ln(` + 1))` . This algorithm
is hence linear for graphs with fixed treewidth and requires O(|V |3 log |V |/log log |V |) time
for tw ∈ O(log |V |/log log |V |).

Our algorithm follows the classical bottom-up approach for algorithms based on tree
decompositions: Starting from the leaves of a nice tree decomposition (T = (I, F),X)
we enumerate a sufficient number of sub-solutions per tree node i ∈ I, using only the
information previously computed for the children of i. Such information is stored in a table
tabi, for each node i ∈ I. The final optimum solution of the original problem can then be
read from the table tabr of T s root node r .

Overall, given any tree decomposition, we can easily transform it into a nice tree
decomposition where we pick the root r such that its bag Xr contains at least one terminal
vertex. While the latter property is not necessary, it allows us to give a simpler description
of our algorithm.

Since the tree traversal requires only O(|V |) time, the algorithms time complexity
mainly depends on two aspects: The amount of information to be stored per node, and the
necessary effort to establish the sub-solutions at a node based on its childrens data. We start
by concentrating on the first question and describe how to represent the necessary solutions
efficiently by using a coloring-based scheme. Afterwards, we describe how to efficiently
combine our coloring with the bottom-up traversal to solve the STP.

5.4.1 Representing sub-solutions

The general idea of using the rooted tree decomposition is the following: Let i be any node
in T with the corresponding bag Xi. We define X+i to be the set of all vertices that are in
descendent bags of Xi, with Xi being a descendent of itself. Then, let Gi (G+i ) describe the
subgraph of G induced by the vertices Xi (X+i , respectively) and let Ti (T+i ) be the set of
terminals in Xi (X+i , respectively).
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When we consider any node i ∈ I, we observe, based on the third property of a
tree decomposition, that no vertex of X+i \ Xi will appear in any other bag than the ones
descending from node i. For our bottom-up approach this means that these vertices are not
considered in other parts of the algorithm and will never be considered again. Hence, the
sub-solutions at node i have to ensure that all terminals T+i \Ti are properly connected with
other vertices. Consider any Steiner tree S in G. The subgraph of S in G+i then forms a
forest, with the property that any terminal T+i \ Ti is connected to some vertex in Xi, cf.
Figure 5.2.

Our table tabi stores multiple rows, each row representing a different solution: the rows
of tabi are indexed by solution patterns and the columns are indexed by the vertices of Xi.
Thereby, each row of tabi indicates the corresponding solution pattern. Observe that we do
not have to consider all possible subgraphs of a bag Xi but can use the fact that a forest in
Gi contains at most |Xi | − 1 edges. It remains how to describe these forests uniquely and
compactly and allow for fast merging operations within the dynamic programming.

We show that it (roughly) suffices to consider all possible partitions of the at most tw+1
many vertices in Xi by assigning colors to them. Each color then indicates the set of vertices
that lie in a connected component (a tree, in fact) inG+i . To obtain such a description scheme,

we first consider some arbitrary but fixed total numbering Φ : V
1:1
−−→ {1, . . . , |V |} of all

vertices of the given graph. Based thereon, we assign—locally for each bag Xi—the unique
secondary index ϕi : Xi

1:1
−−→ {1, . . . , |Xi |} which satisfies ϕi(v) < ϕi(w) ⇔ Φ(v) < Φ(w)

for all v,w ∈ Xi.

We now introduce a coloring function γj : Xi → {0, . . . , |Xi |} whereby any vertex
v ∈ Xi may only be colored by a color at most as large as its local index, i.e., γj(v) ≤ ϕi(v).
We use the coloring to encode the following information: all vertices of color 0 are not
contained in the represented sub-solution and all vertices with a common color > 0 are
already connected in the graph G+i . Note that these connections do not have to exist in Gi

(cf. Figure 5.2). Finally, in order to be a feasible coloring, we require all terminals Ti in Xi

to be colored > 0.

Hence, the color of a connected component C of the sub-solution is exactly the smallest
secondary index of all vertices contained in C. We observe that a vertex v with ϕi(v) = z
has z + 1 possible colors. Moreover, the intersection of any tree S of G with G+i provides a
natural partition of Xi. For each connected component C of S∩G+i , C∩Xi gives a partition
set. The last partition set is formed by the vertices Xi \ S not contained in S. To represent
this special set, we (conceptually) add an additional “ghost” element to Xi with secondary
index 0. Thus, the solution patterns for Xi are given by all B |Xi |+1 partitions of the set Xi

plus the ghost element.

For each possible partition, table tabi stores a row with the unique corresponding
coloring, i.e., a color index for each vertex of Xi. Additionally, we will store a solution
value val(γ) for each coloring γ, to be set by the subsequent algorithm. Hence, the size of
any table tabi can be bounded by O(Btw+2 · tw). It is crucial that all the rows of tabi are held
in a canonical order, to allow efficient look-up operations. The next section will discuss
the efficient enumeration and look-up strategy for the table. This will then be used in the
subsequent algorithm description.



5.4. Treewidth-based algorithm for the STP 61

5.4.2 Enumeration and look-up of table rows

Enumeration. We start with showing how to enumerate all possible rows (i.e., colorings)
in O(tw) time per coloring. Let Xi be the bag under consideration, w := |Xi |, and v1, ..., vw
the nodes of Xi in increasing order of their secondary index. We have to generate Bw+1
colorings.

Assume we would want to enumerate all numbers between 0 and 999 in base-10
representation. We would start with “000” and for each next number, we would increment
the least significant, right-most, digit, until we would have to increment on the digit “9”. In
this case we set the digit to “0” and increment the second-right-most digit, etc. In the worst
case, one incrementation step looks at each digit once.

Our enumeration scheme is similar to this traditional counting, but when incrementing
a “digit”—in our setting changing the color of a vertex—not all higher numbers are valid.
The first row of the table tabi colors all its vertices with color 0. It remains to describe
how to obtain the coloring γj of row j from the coloring γj−1 of row j − 1. Initially, set
γj := γj−1.

Let τ := w. We increment the color of vertex vτ unless it is already colored with its
highest feasible color, i.e., its own secondary index ϕi(vτ). We hence distinguish between
two cases: If γj(vτ) = ϕi(vτ), we set γj(vτ) := 0 and continue the incrementation with “the
next digit” τ := τ − 1. Otherwise we have to identify to which color we can increment
γj(vτ). Observe that we may only use a color c if the vertex with secondary index c is itself
colored with c. Therefore, we scan γj from vertex vγj (vτ )+1 (the potentially next color) with
increasing indices until we find the first entry > γj(vτ) or arrive at index ϕi(vτ) itself. This
index is then the next feasible color for vτ . We observe that this scan only considers vertices
with indices less than τ. Therefore, each vertex is looked at at most once when constructing
the coloring of row j.

Due to this enumeration scheme, it is clear that the colorings are sorted increasingly,
when interpreting the colors of the vertices as digits of a number in base-w representation,
where vw is the right-most digit. Furthermore, consider the first Bw of those colorings
(where vertex v1 is colored 0): When decrementing each non-0 color by 1 and deleting the
first color we obtain exactly the colorings in the exact same order one would obtain when
enumerating colorings for a set of size w − 1.

Look-up. In the algorithm, we will often have to find the row index j for some feasible
given coloring γ, in order to obtain the solution value stored for this rows sub-solution.
Assume for now that γ is a coloring for some set Xi with |Xi | = tw + 1. Let v1, ..., vtw+1 be
the vertices of Xi in increasing order of their secondary index.

We want to support this operation with the best-possible running time of O(tw). Since
the tables at the decomposition trees nodes have the size O(Btw+2 · tw), we can allow for a
look-up datastructure of size O(Btw+2 · tw). In fact, we will also be able to construct it in
time O(Btw+2 · tw).

Conceptually, start with a search tree D with tw + 1 levels. The root node constitutes
on level 1. Each node, on some level a, holds an array of size at most a + 1. For inner
nodes, the entries of these arrays point to corresponding tree nodes of the next level, i.e.,
they form the search tree. In the leaves, the array entries are row indices. In order to find
the row index for γ we traverse D from its root downwards: Assume we are at some node
α on level a, we use the color γ(va) as the index in the array of α to select the next node
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(or, if α is a leaf, read the row index). While this datastructure hence allows a look-up time
of O(tw), it would require more space than we want to allow.

During a look-up, assume we are at a node on some level a and pick the edge corre-
sponding to the vertex va having a color distinct from ϕ(va) (possibly 0)—we may say va
has a foreign color. This rules out that any of the following vertices will ever be colored a.
Hence it suffices to consider the following shrunken structureD with corresponding look-up
operation: For any node α on level a, let Z(α) denote the number of foreign colored vertices
with index smaller than a. Observe that this number is trivial to establish when traversing
the datastructure from the root to α. Then, the array at α only holds a + 1 − Z(α) entries.
As D now encodes exactly only all feasible colorings, it follows that its size is bounded
by O(Btw+2 · tw).

Now, when usingD for a look-up, we use an auxiliary array Awith one entry per possible
color and initialize A[0] := 0. Furthermore, we use a counter z—initialized to zero—which
counts the number of encountered foreign colored vertices during the traversal. Assume
we are at some node α on level a and want to pick the edge corresponding to the vertex va
having a color c. If a = c, i.e. va does not have a foreign color, we set A[c] := a + 1 − z;
otherwise color a is unused and A[a] is irrelevant. In any case, we use A[c] to identify the
index in the shrunken child array at α in D, to know how to continue the traversal.

Recall that the enumeration scheme for a w-element set also includes the rows (correctly
ordered) for any smaller set—one only has to shift the colors by the size difference. Hence,
we can use this datastructure to look up the row indices for bags smaller than tw+ 1 as well.
We summarize:

Lemma 5.7. Given some coloring γ, we find the corresponding row index in O(tw) time,
using a static global look-up datastructure D of size O(Btw+2 · tw). As a preprocessing, D
can be constructed in O(Btw+2 · tw) time.

5.4.3 Processing the decomposition tree

Having our coloring concept at hand, we can now describe how to ensure its properties
when computing the actual sub-solution tables in a bottom-up fashion. Our recursion can be
described by distinguishing between the different types of nodes of T . Recall that for each
row, representing some coloring γ, we store the cost val(γ) of the represented sub-solution.

Leaf node. Let i ∈ I be a leaf, and hence a base case for our algorithm. The table tabi
contains only two rows corresponding to the two possible colors 0 and 1, respectively, for
the only vertex v ∈ Xi. If v ∈ T but is colored 0, the sub-solutions cost is +∞; in the other
case the cost is 0.

Introduce node. Let i ∈ I be an introduce node, and j ∈ I its only child. We have
Xj ⊂ Xi, |Xi | = |Xj | + 1, and let v be the additional vertex, cf. Figure 5.3.

As a preprocessing, we create tabi and set the value entries for each row to +∞. Then,
we iterate over each row in tabj , in order to generate multiple solutions for tabi; since we
sometimes generate the same coloring more than once we store and update the best found
solution value for each row in tabi. Let γj be the currently considered coloring from tabj .
First, we adapt this coloring to satisfy the coloring scheme of i, instead of j: By the fact that
both secondary indices stem from a common primary index Φ all colors ≥ ϕi(v) have to be
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Figure 5.3: (a) An introduce node i with the additional vertex v. The numbers inside the vertices
describe the color partitions, i.e., vertices with the same number are already connected in G+i \ {v}
in this solution. Only edges incident to v are shown. (b) shows the resulting coloring when the
algorithm picks the thick edges to connect the vertex sets with colors 1, 2, and 3 via v.

increased by one. This modification takes O(tw) time giving us an intermediate coloring
γ′i where v is yet uncolored.

We now have to consider not only all possible colorings of v, but also all possibilities
of joining several color partitions in γj via the new vertex v. First consider the solutions
where v does not essentially change the given partitions, i.e., v is colored with color 0
or ϕi(v). Then, the obtained coloring has the same solution value as γj , or +∞ if v is a
0-colored terminal vertex. We write these solutions into tabi, identifying the correct row
via our look-up datastructure in O(tw) time.

Now, we enumerate all possible—O(2tw) many—non-empty sets of incident edges for
connecting the new vertex v to one or more existing color partitions. For each such edge
set, we generate a solution γi from γ′i by coloring the newly connected vertex sets with
the smallest contained secondary index. We compute the cost val(γi) for this solution
by summing the known cost val(γj) and the costs of the new edges inserted between the
connected color partitions and v.

Thereby, two cases are invalid and penalized with cost+∞. First, a solution containing a
0-colored vertex which is now connected by a new edge is not allowed—the related feasible
solution where this very vertex is in its own partition and colored with its local index will
be considered anyway. Second, new edges inducing a cycle, i.e., in case at least two edges
connect the same color partition, are also prohibited.

Again, we find the row corresponding to this coloring in tabi in O(tw) time and update
val(γi) accordingly. Overall, we generate O(2tw) solutions from each of the O(Btw+1)

solutions in the child node. Each solutions takes O(tw) time to process.
Hence, given a correct solution table for its child node we compute a correct solution

table for an introduce node in O(Btw+1 · 2tw · tw) time.
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Forget node. Let i ∈ I be a forget node, and j ∈ I its only child. We have Xi ⊂ Xj ,
|Xi | = |Xj | − 1, and let v be the discarded vertex.

As a preprocessing, we generate all rows of tabi and set each solution cost to +∞.
We then look at the rows of tabj one by one; let γj be the corresponding coloring, and
c := γj(v). We say γj induces a coloring γi of the vertices Xi, by simply dropping the vertex
v and shifting the color index by −1 for all colors > ϕj(v); the vertices colored with color
ϕj(v) in γj obtain the color matching the smallest secondary index ϕi(.) among themselves.

The case c = 0 is trivial because the induced coloring gets the same cost as the solution
in tabj . If c > 0 but there is no other vertex with color c, we cannot easily remove this
vertex from the solution, as it represents a component. In general, this component contains
terminals which have to be connected to the final Steiner tree S. Hence we cannot use this
sub-solution to improve the solution value of the induced coloring of Xi. Otherwise, we
can safely drop the vertex and set val(γi) := val(γj) if the current value of val(γi) is not
already smaller. If the computed cost of γi is smaller than the current val(γi) entry for this
coloring in tabi we update val(γi) accordingly.

To summarize, we compute a correct solution table for a forget node in O(Btw+2 · tw)
time.

Join node. Let i ∈ I be a join node, and j, j ′ ∈ I its two children. We have Xj = Xj′ = Xi.
Again, we first construct all rows of tabi and set the solution values to +∞. Then

we consider all possible combinations of solutions from Xj and Xj′. Let γj and γj′ be
colorings (rows) of tabj and tabj′, respectively. We want to construct a merged solution γi
that resembles the combined connectivities of both solutions, i.e., two vertices vs, vt ∈ Xi

should be in the same color partition if and only if there is a vertex sequence 〈vs :=
v1, v2, . . . , vβ := vt〉 in Xi such that, for all 1 ≤ α < β, the vertices vα, vα+1 have the same
color in either γj or γj′.

Note that, a priori, such amergemight lead to cycles in the solution: Assume twovertices
v1, v2 are colored with identical color cj in γj and furthermore, they have a common color
cj′ in γj′. Hence the vertices are connected in both sub-solutions, but the connection paths
do not need to coincide. Even if the paths do coincide, we would have to identify them to
not count their cost twice for the combined solution. Hence, we only want to combine two
solutions if each pair of vertices is connected in at most one sub-solution. Then, the value
of the combined solution can be given as val(γi) := val(γj) + val(γj′), which we can store
into tabi.

We are able to perform the merge operation, including the check of validity, in linear
time O(tw): Consider a helper array recol : {1, . . . , |Xi |} → {1, . . . , |Xi |} and construct a
graph C with a vertex cr per used color r . Then, for each vertex v ∈ Xi, add an edge
between the two colors cγj (v) and cγj′ (v) of v in Xj and Xj′, respectively. Clearly, the graph
has only O(tw) vertices and edges, cf. Figure 5.4 (a) and (b).

We observe that we can merge two sub-solutions iff the following three properties are
satisfied:

(i) vertex c0 representing color 0 represents an isolated connected component in C, i.e.,
no vertex is colored 0 in one and > 0 in the other sub-solution,

(ii) no vertex in C\{c0} has more than one incident selfloop, i.e., any pair of vertices has
a common color > 0 in at most one of the two colorings γj, γj′, and
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Figure 5.4: (a) The child bags Xj , Xj′ of a join node Xi with two feasible colorings. The numbers
inside the vertices describe the color partitions, the numbers to the top right of each vertex the
local indices. (b) depicts the constructed auxiliary graph C used for the DFS sub-algorithm with
edge-labels indicating the corresponding vertices. (c) shows the resulting coloring in Xi .

(iii) C is acyclic (disregarding selfloops), i.e., any pair of vertices is connected in at most
one sub-solution.

For merging and recoloring we remove vertex c0 together with its incident self-loops
and mark all other vertices in C as unvisited. Then, for increasing r ∈ {1, . . . , |Xi |},
we start a depth-first search (DFS) in C at any unvisited cr and set recol(cr′) := r for
any vertex cr′ visited in this DFS run. Hence, in the end, recol gives the new color for
any color in either γj or γj′. Whenever a DFS run revisits an already visited vertex, we
identified a cycle (including the special case of multiple edges), and the merge operation
should be aborted; thereby, self-loops are simply ignored. If no cycles are detected, we
can finally again consider each v ∈ Xi and set γi(v) := 0 if γj(v) = γj′(v) = 0, and
γi(v) := recol(γj(v)) = recol(γj′(v)) otherwise. Figure 5.4 shows the outcome of a feasible
combination step in a join node.

We deduce that a correct solution table for a join node can be computed in O(B2
tw+2 · tw)

time.

Extracting the solution at the root node. From the described construction process it
is clear that each solution of a bag Xi describes the minimum cost of a forest where all
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terminals from X+i are connected to some vertex of Xi. Also recall that it can be safely
assumed that at least one terminal is contained in the root bag Xr of T . Hence the optimum
solution value for the whole graph can be found in the root bag Xr of T , identifying a
cheapest solution where all vertices with color , 0 are contained in the same connected
component (i.e., have the same color).

5.4.4 Analysis and remarks

In the following, we summarize the main results concerning the algorithms running time
and its correctness. For detailed proofs we refer to Chimani, Mutzel, and Zey [41].

Lemma 5.8. The above algorithm requires O(B2
tw+2 · tw · |V |) time and space.

Proof. A table tabi at some tree node i stores O(Btw+2) rows and requires O(Btw+2 · tw)
storage. The look-up datastructure has size O(Btw+2 · tw).

During the bottom-up traversal of T we consider all possible row combinations for two
tables in the case of the join node which requires O(B2

tw+2 · tw) time; this dominates the
other cases. Due to the linear size of T the overall running time follows. �

Lemma 5.9. The above algorithm correctly computes an optimum solution to the Steiner
tree problem.

The correctness can be shown by an inductive proof on the decomposition tree, cf. [41].

Theorem 5.10. Given a graph with vertex set V and a tree decomposition with treewidth
tw, the Steiner tree problem can be solved to optimality in O(B2

tw+2 · tw · |V |) time.

The previously described algorithm can be adopted to solve other network design
problems on treewidth-bounded graphs. [41] showed that the prize-collecting STP and the
k-cardinality tree problem can be solved by similar FPT algorithms in O(B2

tw+2 · tw · |V |)
and O(B2

tw+2 · (tw + k2) · |V |) time, respectively.
We close the discussion on the deterministic STP with two remarks.

Remark 5.11. The described FPT algorithm works for negative edge weights, too. In case
the given graph G has only positive edge weights, we do not need to actively identify cycles
or multiedges: the solutions objective value will be greater than the alternative cycle and
multiedge-free combination, which will also be considered.

Remark 5.12. We can also run the algorithm on a tree decomposition where the root node
does not contain any terminal. In this case, whenever we process a tree node i with T ⊆ X+i
we check for the best solution where all vertices with color > 0 belong to the same color
partition and store a reference to it. After processing the root node this reference gives the
optimum solution. Note that this algorithm has the same time complexity.

5.5 Treewidth-based algorithm for the SSTP

The parameterized treewidth-based algorithm for the deterministic STP can be adopted for
solving the rooted and unrooted version of the stochastic Steiner tree problem. The main
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difficulty consists of dealing with the set of scenarios; all other ideas like the coloring
scheme for representing sub-solutions work similarly.

We start with the algorithm for the SSTP and afterwards, we summarize the necessary
modifications for the rSSTP. The resulting algorithms are parameterized by the combination
of treewidth and number of scenarios. For the best of our knowledge, this is the first approach
placing the SSTP in the complexity class FPT with respect to the parameter treewidth.

To simplify the description we multiply the probability of a scenario into the second-
stage edge costs, i.e., the cost of edge e ∈ E in scenario k ∈ K is pkcke .

5.5.1 Coloring

Representing sub-solutions works similarly to the deterministic case by using a coloring
scheme. But instead of one coloring function we now need K coloring functions, one for
each scenario. Let E0, E1, . . . , EK be the edge set of an optimum stochastic Steiner tree.
When considering the vertices Xi of a bag i ∈ I and a scenario k ∈ K the edges E0 ∪ Ek

induce a forest in Xi (and X+i ). Thereby, all terminals in Tk ∩ X+i are connected to vertices
in Xi. The main idea is to encode a solution by K colorings representing the connected
components induced by the edge sets E0 ∪ Ek , one for each scenario k ∈ K. We will see
that it is not necessary to explicitly store the first stage solution.

To make the description clearer we will speak of a coloring as the union of K sub-
colorings. Hence, a sub-coloring is always related to a certain scenario while a coloring
represents a global solution.

Notice that the sub-colorings are independent of each other: coloring a vertex v in one
sub-coloring with color c does not influence the set of feasible colors for v in any other
sub-coloring.

We again use the following two types of numberings: the total vertex numbering
Φ : V

1:1
−−→ {1, . . . , |V |} and the secondary numbering ϕi : Xi

1:1
−−→ {1, . . . , |Xi |} being as-

signed locally to each bag Xi, i ∈ I, with ϕi(v) < ϕi(w) ⇔ Φ(v) < Φ(w) for all v,w ∈ Xi.
A coloring/solution γi in bag Xi, i ∈ I, is a vector of K sub-colorings γi := (γ1

i , . . . , γ
K
i )

with γki : Xi → {0, 1, . . . , |Xi |}, ∀k ∈ K, ∀i ∈ I. Again, a vertex can only be colored by a
color at most as large as its local index, i.e., γki (v) ≤ ϕi(v), ∀v ∈ Xi.

The interpretation of > 0-colored vertices is identical to the deterministic case: All
vertices sharing the same color are already connected by E0∪Ek in G+i . On the other hand,
assigning a vertex color 0 has a slightly different meaning: (a) either a 0-colored vertex
is not used in a solution or (b) it is irrelevant for a sub-solution and the corresponding
scenario.

This latter property is described and motivated as follows. Consider an edge e being
used in the optimum solution as a first-stage edge but E0\{e} ∪ Ek still connects Tk for a
scenario k ∈ K. Such an edge is called irrelevant for this scenario. Moreover, edge e might
even form (be contained in, respectively) an isolated connected component in E0 ∪ Ek . In
the deterministic STP algorithm all colored vertices (color > 0) are used and have to be
connected. This requirement is not valid anymore since the first stagemight be disconnected
or some of its parts are irrelevant for certain scenarios. Hence, although being connected
by E0 we allow vertices being assigned color 0 (and named irrelevant) if they do not need
to be connected to the remaining part of the solution. But of course, we still require all
vertices in Tk being colored > 0 in a sub-coloring of scenario k ∈ K.
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5.5.2 Solutions, enumeration, tables, and look-up

We again denote the table corresponding to bag Xi, i ∈ I, by tabi. The number of possible
solutions is defined by all possible combinations of the sub-colorings, i.e., the cartesian
product of the K sub-colorings. For a bag Xi with w := |Xi | the number of possible
partitions is Bw+1. Hence, combining the scenarios leads to BK

w+1 possible solutions, which
is the number of rows of tabi. Each solution itself stores K colors per vertex leading to a
table size of BK

w+1 · K · w. Overall, the size of a table can be bounded by O(B
K
tw+2 · K · tw).

The rows/solutions of a bag i ∈ I can be enumerated by using K nested enumerations
for each sub-coloring. Each sub-enumeration uses the very same procedure from the
deterministic algorithm. Hence, coloring γj from row j can be obtained from the preceding
coloring γj−1 of row j − 1 in linear time w.r.t. the size of the instance and the treewidth, i.e.,
O(K · tw).

Looking up the index of a given coloring also works similarly by using the same
techniques as in the deterministic setting. Conceptually, the look-up datastructure is the
concatenation of K nested single-scenario search trees. Hence, we use an expanded search
tree with K · (tw+ 1) levels. Thereby, every tw+ 1 levels represent a scenario, a search tree
of size O(Btw+2 · tw). This leads to an overall search tree of size O(BK

tw+2 · tw
K ) which can

be constructed in a preprocessing step in O(BK
tw+2 · tw

K ) time.

5.5.3 Processing the decomposition tree

The optimum solution can be computed by using dynamic programming in a bottom-up
traversal of the decomposition tree. The description breaks down to the case distinction of
the types of bags in the nice tree decomposition.

In all cases we denote the currently considered node by i ∈ I with vertex set Xi. As a
preprocessing we always generate the corresponding table tabi and set each solution cost
to +∞.

Leaf node. The base case is a leaf node with |Xi | = 1; let Xi = {v}. For each scenario
k ∈ K, v can be colored 0 or 1. Hence, the number of rows of tabi is 2K . The cost of a
solution γi is +∞ if one terminal is colored 0, i.e., ∃k ∈ K : v ∈ Tk and γki (v) = 0, and 0,
otherwise.

Introduce node. Let i ∈ I be an introduce node, and j ∈ I its only child. We have
Xj ⊂ Xi, |Xi | = |Xj | + 1, and let v be the additional vertex.

As in the deterministic case, we iterate over the rows in tabj in order to generate multiple
solutions for tabi. Let γj be the currently considered coloring from tabj . Again, we first
adapt this coloring to satisfy the coloring scheme of i by increasing all colors ≥ ϕi(v) by
one for each sub-coloring. This modification can be done in O(K · tw) time with a resulting
intermediate coloring γ′i with an uncolored vertex v in each sub-coloring.

Next, all possibilities of connecting/joining color partitions by first- and second-stage
edges to/via the new vertex v are considered. For this purpose we simply enumerate all
subsets of incident edges of v as first-stage edges. For each such subset we enumerate—
and combine—all subsets for all scenarios as well. There are at most O(2tw) subsets
leading to O(2(K+1)·tw) combinations overall. Invalid solutions can be discarded right away,
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e.g., solutions with coinciding first- and second-stage edges, cycles, or 0-colored vertices
connected by second-stage edges, are not valid.

Then, we combine each intermediate coloring γ′i with the O(2(K+1)·tw) possible edge
sets to generate multiple solutions for tabi. Thereby, all scenarios can be considered
independently and the sub-colorings can be updated similarly to the deterministic case.
However, we have to deal with the special property of connected, but irrelevant, 0-colored
vertices. It is fundamental that a connected vertex can only be colored 0 if it is no terminal
and all selected incident edges are first-stage edges. If this property is violated in any
sub-coloring the solution cost is +∞. Overall, we have to deal with more cases than in
the deterministic setting. We describe the resulting cases (1)–(4) in the following; they are
distinguished by the number of selected edges in the first and second stage, independently
for each scenario.

Consider a scenario k ∈ K with intermediate sub-coloring γ′ki and let Ê0 ∪ Êk be the
set of selected first- and second-stage edges.

(1) If Ê0 ∪ Êk = ∅ vertex v can be assigned color 0 or ϕi(v). This case is identical to
the deterministic algorithm, as is the following. (2) If Ê0 = ∅, Êk , ∅ all newly connected
vertices get a common color > 0 which is the lowest common index. Of course, any such
vertex having color 0 in γ′ki induces an infeasible solution.

The two remaining cases (3) and (4) are induced by a non-empty first stage. (3) If
Ê0 , ∅ and Êk = ∅ we consider two sub-cases (3a) and (3b), respectively, by declaring
v irrelevant, or not. (3a) First, we consider v being irrelevant by assigning color 0—then,
all other vertices keep their color. This case is only feasible if at most one adjacent vertex
is colored > 0. Otherwise, the irrelevant vertex v would connect several components and
then, v has to be colored > 0, which is covered by the following case. (3b) Second, vertex
v is not irrelevant and we assign v a color c > 0. If all adjacent vertices are colored 0, v
has to get color ϕi(v). Otherwise, the colors are updated as usual such that v is contained
in the partition colored by c > 0.

Last but not least, if (4) Ê0 , ∅ and Êk , ∅, v cannot be colored 0. Therefore, the
colors can be updated with the known procedure and all 0-colored vertices—irrelevant or
not used—are treated identically and can be connected by first-stage edges.

Again, when finding a feasible solution γi the solution cost val(γi) can be calculated
by summing the cost of the related coloring in tabj plus the costs of the newly added
edges in the first stage and all scenarios. Moreover, we update the solution value in tabi,
in case the solution value improves, by identifying the corresponding row via the look-up
datastructure. As discussed by cases (1)–(4) any edge set Ê0 ∪ Êk induces at most two
feasible sub-colorings. Processing one new solution, i.e., computing new color indices and
finding the correct row in the table, can be done in linear time O(K · tw).

Hence, given a solution table for its child node, we compute a solution table for an
introduce node in O(BK

tw+1 · 2
(K+1)tw · 2K · K · tw) time.

Forget node. Let i ∈ I be a forget node, and j ∈ I its only child. We have Xi ⊂ Xj ,
|Xi | = |Xj | − 1, and let v be the discarded vertex.

In fact, the handling of a forget node is almost identical to the deterministic algorithm
and basically repeated K times for each sub-coloring. After generating tabi we again look at
each solution γj from tabj . In case the cost of γj is +∞we skip this solution. Otherwise, we
try to drop the discarded vertex v and compute the induced sub-colorings γki , independently
for each scenario.
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Consider a scenario k ∈ K and let c := γkj (v). In case c = 0, vertex v can be safely
removed; independently of v being irrelevant or unused. If c > 0 there are two more cases
to distinguish. First, if v is not the only c-colored vertex its connected component is still
present and hence, everything is fine. Second, in case v is the last remaining vertex of
a color partition it represents a component which, in general, connects some terminals.
If this component contains the whole set Tk , i.e., the sub-coloring contains only colors 0
and c, and Tk ⊆ X+i , this scenarios connectivity requirements are already fulfilled and the
removal of v is feasible. Otherwise, the constructed sub-coloring induces several connected
components and hence, it is infeasible.

Overall, after removing v from each sub-coloring the induced solution is feasible iff
every sub-coloring is feasible. The cost of this solution is taken from the child table. Again,
the running time for these steps is linear for each scenario. Therefore, a solution table for a
forget node can be computed in O(BK

tw+2 · K · tw) time.

Join node. Let i ∈ I be a join node, and j, j ′ ∈ I its two children with Xj = Xj′ = Xi.
After constructing tabi we combine each solution from tabj with each solution from tabj′ to
obtain a new solution for tabi representing the combined connectivities. The procedure for
computing new color indices is identical to the deterministic algorithm and directly applied
to each scenario independently. Thereby, an infeasible sub-solution implies an infeasible
overall solution. Moreover, the new solution cost is calculated by summing both combined
solution costs. For details we refer to the description in Section 5.4.3. We conclude that,
given a solution table for its child nodes, we are able to compute a solution table for a join
node in O(B2K

tw+2 · K · tw) time.

Extracting the optimum solution. A solution γj in a table tabi, i ∈ I, is globally feasible
if and only if each sub-coloring γkj is feasible (solution cost < +∞), each γkj constitutes
at most one color partition, and the terminals of all scenarios are contained in G+i , i.e.,
Tk ⊆ X+i , ∀k ∈ K. Hence, during the traversal of the decomposition tree we check for
these properties and store a reference to the best found feasible solution. In the end, this
reference gives the optimum solution.

5.5.4 Analysis

Lemma 5.13. The above algorithm for the stochastic Steiner tree problem requiresO(B2K
tw+2·

K · tw · |V |) time and space.

Proof. Each table tabi, i ∈ I, stores O(BK
tw+2) colorings/rows and requires overall O(B

K
tw+2 ·

K · tw) storage since each row contains the solution value and a column for each vertex in
each scenario. Moreover, the look-up datastructure requires O(BK

tw+2 · tw
K ) space.

The most time-consuming step during the bottom-up traversal of T is the join node
where all possible combinations of two tables are considered; the required time can be
bounded by O(B2K

tw+2 ·K · tw). This bound dominates the time required for introduce, forget,
and leaf nodes, as well as all other extra effort. Due to the linear size of the decomposition
tree T , we can deduce the overall running time and the required space. �

Before discussing the correctness of the algorithm please notice that the introduce node
is the only case where edges are actually added to the solutions. In the forget node a vertex
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is discarded and the representations of solutions shrink, and in the join node two solutions
are merged.

Lemma 5.14. The above algorithm correctly computes an optimum solution for the stochas-
tic Steiner tree problem.

Proof. We argue the correctness by an inductive proof on the decomposition tree. Let
Γ
k,c
i := {v ∈ Xi | γ

k
i (v) = c} be the vertices colored c ∈ {0, . . . , |Xi |} in the kth sub-

coloring γki in a bag i ∈ I, for each scenario k ∈ K.
Our induction hypothesis (IH) states that, for each processed bag Xi, each coloring

γi = (γ
1
i , . . . , γ

K
i ) implies a cost-minimal solution among the solutions satisfying the

following conditions:

1. ∀k ∈ K: Each sub-coloring γki corresponds to a forest Fk
i in G+i .

2. ∀k ∈ K: Fk
i consists of (pairwise disconnected) trees Fk,c

i , one for each color c > 0,
with Γk,ci , ∅, Γk,ci ⊆ V(Fk,c

i ), and |Γ
k,c′

i ∩ V(Fk,c
i )| = 0 for all c′ , c, i.e., each tree

connects only vertices of the same color partition.

3. ∀k ∈ K: Fk
i contains all terminals of the kth scenario of G+i , i.e., (T

k∩X+i ) ⊆ V(Fk
i ).

If one of the properties does not hold and any sub-solution is infeasible, the overall
solution is infeasible and has cost +∞.

As always, the base case is the leaf node where the hypothesis obviously holds. Now
consider any internal bag Xi, i ∈ I, and assume that the induction hypothesis is true for all
descendants of i. By using contradictions we show that IH still holds for bag i.

Forget node. Each solution of a forget bag is induced by one solution from the child bag
which is obtained by removing the special vertex, updating the indices of sub-colorings,
and without changing its solution value.

Assume there exists a better solution value for coloring γi than the one identified by
the algorithm. In this case we can add the forget vertex to this solution and change colors
according to this solution in each sub-coloring. The resulting coloring γi′ is a feasible
solution for the child bag with the same value. By using the induction hypothesis this
solution would be considered by our algorithm without changing its solution value.

Introduce node. Each solution of an introduce bag is obtained by using a coloring from
the child node and coloring the special vertex 0, with its own local index, or connecting it by
every possible first- and second-stage edge combination, for each scenario. Again, assume
the computed value val(γi) of coloring γi is too high and consider its dominating solution.

By removing the introduced vertex and all its incident edges in each scenario a feasible
and minimal solution for the child bag is created. Since we consider this solution (IH), as
well as all possible edge sets, this solution would be generated by the algorithm.

Join node. Consider a solution γi with an assumably wrong solution value. For each
scenario k ∈ K, we can decompose this solution into two disjoint sub-forests Fk

j and
Fk
j′ such that these two forests induce feasible sub-colorings for the children j and j ′,

respectively. Our tables contain all possible combinations of sub-colorings; hence, the
induction hypothesis implies that both solutions are contained in the child bags with the
correct solution values. In the algorithm we combine all possible solutions and obtain the
correct objective value. �
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Finally, the following theorem summarizes the above lemmata.

Theorem 5.15. Given a graph G = (V, E) and a tree decomposition with treewidth tw, the
stochastic Steiner tree problem (SSTP) can be solved to optimality in O(B2K

tw+2 · K · tw · |V |)
time. This places the SSTP into the complexity class FPT parameterized by the combination
of treewidth and number of scenarios.

5.5.5 Treewidth-based algorithm for the Steiner forest problem

Our discussions reveal that the Steiner forest problem is closely related to the SSTP:Theorem
5.5 shows that the SFP can be solved by the (unrooted version of the) stochastic Steiner tree
problem. Therefore, the result concerning the parameterized complexity can be transferred
directly to the SFP. To the best of our knowledge, this is the first result concerning the
parameterized complexity of the SFP with respect to treewidth.

Theorem 5.16. Given a graph G = (V, E) and a tree decomposition with treewidth tw,
the Steiner forest problem can be solved to optimality in O(B2K

tw+2 · K · tw · |V |) time.
Hence, the Steiner forest problem belongs to the complexity class FPT parameterized by the
combination of treewidth and number of terminal sets.

Proof. Follows directly from Theorem 5.5, the FPT algorithm for the SSTP, and Theo-
rem 5.15. �

5.6 Treewidth-based algorithm for the rooted SSTP

The rooted version of the stochastic Steiner tree problem can be solved with a similar
approach. However, the first stage is not unconstrained anymore and we have to ensure that
the first stage is empty or a tree containing the root node. In the following we describe
the algorithm for the rooted SSTP in a compact way and mainly point out the necessary
modifications compared to the SSTP algorithm.

Coloring. We again use K coloring functions γ1, . . . , γK for the K scenarios. Addition-
ally, we introduce a coloring function γ0 which describes the connected components of the
first stage.

The interpretation of colors in the first stage is identical to the deterministic setting. A
0-colored vertex is not connected by first-stage edges at all and the set of vertices with a
common color > 0 induces a connected component in the first stage.

The sub-colorings γ1, . . . , γK represent the same information as in the SSTP algorithm:
All vertices sharing the same color are already connected by E0∪Ek and either a 0-colored
vertex is not used in a solution or it is irrelevant for the corresponding scenario. Notice that
a vertex v can be colored > 0 in γ0 and 0 in some γk if v is irrelevant, and the other way
around is possible, too.

Dynamic Programming. To simplify the description we assume that the root node r is
contained in the root node of the decomposition tree T . Recall that r is a terminal in every
scenario and the first stage needs to be a (possibly empty) tree containing r . Hence, any
feasible solution implies a single connected first-stage component.
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The number of rows, i.e., solutions, of a table tabi for bag Xi, i ∈ I, with w := |Xi |

is BK+1
w+1 . Each solution stores a color for each vertex in the first stage and every scenario.

Hence, the size of a table can be bounded by O(BK+1
tw+2 · K · tw).

The index of a coloring can be found by using a similar look-up datastructure. Here, it
is expanded by one level representing the first-stage coloring. Overall, the size of the search
tree is O(BK+1

tw+2 · tw
K+1) and it can be constructed in the same time.

Let i ∈ I denote the currently considered node in the traversal of T . For each case we
first generate the full table tabi with default costs +∞. Then we consider each solution γj
in the child bag (introduce and forget node) or each combination of two solutions γj, γj′
from both child bags (join node) in order to generate solutions for the current node i.

Leaf node. The table of a leaf node i ∈ I simply contains all 2K+1 possible 0/1-colorings
for the only vertex. The cost of a solution is +∞, if a terminal in any scenario is colored 0,
and 0 otherwise.

Introduce node. In the introduce node edges are added and the property of the first-
stage tree cannot be violated. Hence, the description of the introduce node is basically
identical to the description in the SSTP algorithm. The only difference is the additional
coloring for the first stage, but updating γ0

i works with the known procedure. Hence, given
a solution table for its child node, we compute a solution table for an introduce node in
O(BK+1

tw+1 · 2
(K+1)tw · 2K · K · tw) time.

Forget node. A solution γj of tabj induces exactly one coloring γi for the current bag Xi

by dropping the forget vertex and updating indices accordingly. In case every sub-coloring
remains feasible the solution itself is feasible and the solution cost is unchanged; otherwise
the cost is set to +∞. Infeasibility occurs when the forget vertex v is the last representative
of a connected component—either in the first-stage coloring γ0 or a sub-coloring γk, k ∈ K.
The running time for computing the table of a forget node is O(BK+1

tw+2 · K · tw).
Join node. A join node combines two solutions from the two child tables tabj and

tabj′ to obtain a new solution for tabi representing the combined connectivities. Thereby,
the deterministic algorithm can be used to compute the first-stage coloring γ0. Each sub-
coloring can be computed by using the method from the SSTP algorithm. Therefore,
processing a join node takes time O(B2K+2

tw+2 · K · tw).
Extracting the optimum solution. Feasible solutions can be found in the root node of

the tree decomposition since it contains the root r which is a terminal in every scenario.
Hence, we search for the cost-minimal solution in the final table of T s root node satisfying
the following conditions. First, coloring γ0 has to induce exactly one connected component
containing r or all vertices are assigned color 0, respectively; the latter case represents
a solution with an empty first stage. Moreover, each sub-coloring has to comprise one
connected component containing all terminals of the root bag. Last but not least, the
solution cost has to be < +∞.

Analysis. The size of each table is bounded by O(BK+1
tw+2 · K · tw) and our look-up datas-

tructure requires O(BK+1
tw+2 · tw

K+1) space (same time bound for the construction). The most
time-consuming step during the bottom-up traversal is the join node where two tables are
combined. Hence, the overall running time can be bounded by O(B2K+2

tw+2 · K · tw · |V |).
To argue the correctness of the algorithm we observe the following three properties.

First, the terminal sets of all scenarios are connected appropriately which can be proven
by adopting the proof of Lemma 5.14. Second, the first stage is a tree containing the root
node r . This property is only crucial for the forget node because it is the only case with
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shrunken connected components. But notice that in this case any disconnected first stage
is penalized with cost +∞. Third, the cost of the optimum solution is computed correctly.
Again this can be seen by adopting the inductive proof of Lemma 5.14 where each solution
can be traced back to the child node (introduce and forget node) or it can be decomposed
into two solutions from both children (join node).

Theorem 5.17. Given a graph G = (V, E) and a tree decomposition with treewidth tw, the
rooted stochastic Steiner tree problem (rSSTP) can be solved to optimality in O(B2K+2

tw+2 · K ·
tw · |V |) time. This places the rSSTP into the complexity class FPT parameterized by the
combination of treewidth and number of scenarios.

Proof. Follows from the preceding discussion and in particular Lemma 5.13, 5.14, and
Theorem 5.15. �



Chapter 6

IP formulations

This chapter is dedicated to the IP formulations for the stochastic Steiner tree problems.
We recall known flow- and cut-based models in Section 6.1. Then, we adopt orientation
properties from the deterministic STP and develop stronger semi-directed models in Sec-
tion 6.2. For the rooted SSTP we present directed formulations in Section 6.3. Section 6.4
contains the comparison of the strength of the introduced models. Since the Steiner forest
problem is a special case of the SSTP we apply similar and further ideas and introduce
stronger models for the SFP in Section 6.5.

6.1 Undirected formulations

We start by introducing undirected cut- and flow-based formulations for the unrooted version
of the SSTP. Since the rooted version can be formulated by stronger directed formulations
it is considered in Section 6.3.

Undirected cut formulation. The following IP is a formulation based on undirected cuts
and it was already considered in the literature, e.g., by Gupta, Ravi, and Sinha [87]. It is
the classical expansion of formulation (STPuc) for the deterministic STP. Binary decision
variables for the first-stage edges are denoted by x0

e, ∀e ∈ E , and scenario edges of the kth
scenario by xke, ∀e ∈ E, ∀k ∈ K. The objective is to minimize the expected cost which is
the sum of the selected first-stage edges plus the sum of second-stage edges weighted by
the scenario probability.

(SSTPuc) min
∑
e∈E

c0
ex0

e +
∑
k∈K

pk
∑
e∈E

cke xke

s.t. (x0 + xk)(δ(S)) ≥ 1 ∀k ∈ K, ∀S ⊆ V : ∅ , Tk ∩ S , Tk (6.1)

x0 ∈ {0, 1} |E | (6.2)

x1...K ∈ {0, 1} |E | ·K (6.3)

Constraints (6.1) are undirected cuts ensuring the connectivity of each scenario terminal
set. Thereby, first-stage and second-stage edges can be used to satisfy a cut.

Undirected flow formulation. Here, we present a similar model to the one introduced
by Gupta, Ravi, and Sinha [87]. We modify the model such that we have a flow only in

75
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the second stage. Thereby, the flow can be constructed by using selected first-stage and
second-stage edges.

We again use variables x0 and xk, ∀k ∈ K, for modeling the solution edges. Moreover,
the bidirection with arc set A is considered and a flow is computed in each scenario
k ∈ K from a designated root node rk ∈ Tk to each terminal. We use variables f k,ti j

for each scenario k ∈ K, arc (i, j) ∈ A, and terminal t ∈ Tk
r with Tk

r := Tk\{rk}. Let
t∗r :=

∑
k∈K |Tk

r | denote the number of commodities. The undirected flow model for the
SSTP then reads as follows:

(SSTPuf) min
∑
e∈E

c0
ex0

e +
∑
k∈K

pk
∑
e∈E

cke xke

s.t. x0
e + xke ≥ f k,ti j ,

x0
e + xke ≥ f k,tji ∀k ∈ K, ∀e = {i, j} ∈ E, ∀t ∈ Tk

r (6.4)

f k,t (δ−(i)) − f k,t (δ+(i)) =


−1, if i = rk

1, if i = t
0, otherwise


∀k ∈ K, ∀t ∈ Tk

r ,

∀i ∈ V
(6.5)

f ∈ [0, 1] |A | ·t
∗
r (6.6)

x0 ∈ {0, 1} |E | (6.7)

x1...K ∈ {0, 1} |E | ·K (6.8)

In this model there has to be one unit of flow in each scenario from the root to each
terminal. This is enforced by the flow conservation constraints (6.5); the root has one
outgoing flow (first case), the terminal one ingoing flow (second case), and for all other
vertices the ingoing flow equals the outgoing flow. Edges which are used for routing the
flow are selected as solution edges by the capacity constraints (6.4), either as first-stage or
as second-stage edges. It is easy to see that the formulation (SSTPuf) is valid and that it is
equivalent to the flow model introduced by [87].

Due to the discussion on the deterministic STP it is not surprising that the cut-based
formulation is equivalent to the flow formulation, c.f. Section 6.4. However, there exist
stronger formulations based on orientation properties.

6.2 Semi-directed formulations

Semi-directed cut formulations. In the following we introduce semi-directed cut-based
formulations for the SSTP which are based on the application of orientation properties like
in the directed cut formulation for the deterministic STP. However, edge variables x0 for the
first stage remain undirected in all semi-directed formulations. As will be discussed at the
beginning of Section 6.3, using a directed first stage is difficult and no stronger formulation
is known. On the other hand, it is possible to consider the bidirected input graph in the
second stage.

In the first semi-directed model we use edge variables x0 and arc variables zka, ∀a ∈
A, ∀k ∈ K. We search for a first-stage edge set E0 and second-stage arc sets A1, . . . , AK

such that E0 ∪ Ak contains a semi-directed path from a designated terminal rk ∈ Tk to each
terminal in Tk

r = Tk\{rk}, for all scenarios k ∈ K. In other words, A0∪ Ak has to contain a
feasible arborescence for all scenarios k ∈ K, with A0 :=

⋃
{i, j }∈E0{(i, j), ( j, i)}. To shorten
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the notation we use Vk
r := V\{rk} and we write (x0 + zk)(δ−(S)) := x0(δ(S))+ zk(δ−(S)) =∑

(i, j)∈δ−(S) x0
{i, j }
+ zki j for semi-directed cuts.

(SSTPsdc1) min
∑
e∈E

c0
ex0

e +
∑
k∈K

pk
∑

e={i, j }∈E

cke (z
k
i j + zkji)

s.t. (x0 + zk)(δ−(S)) ≥ 1 ∀k ∈ K, ∀S ⊆ Vk
r : S ∩ Tk

r , ∅ (6.9)

x0 ∈ {0, 1} |E | (6.10)

z1...K ∈ {0, 1} |A | ·K (6.11)

This first formulation uses semi-directed cuts, i.e., each cut (6.9) for scenario k ∈ K
can be fulfilled by first-stage edges or by second-stage arcs from this scenario.

Lemma 6.1. Formulation (SSTPsdc1) models the stochastic Steiner tree problem correctly.

Proof. Let Ẽ0, Ẽ1, . . . , ẼK be an optimum solution for the stochastic Steiner tree problem.
Since this solution connects all terminals in all scenarios we can easily find 0/1-values for
x0 and zk, ∀k ∈ K, respectively, by using (and orienting) exactly the edges Ẽ0, . . . , ẼK such
that there is a semi-directed path from rk to each terminal in Tk

r , ∀k ∈ K.
On the other hand, due to constraints (6.9), an optimum solution (x̃0, z̃1...K ) to (SSTPsdc1)

connects the designated root node rk by semi-directed paths to each terminal in Tk
r . Hence,

using the selected undirected first-stage edges plus the undirected counterparts of the second-
stage arcs gives a feasible solution to the SSTP. In both cases the objective value remains
the same. �

In formulation (SSTPsdc1) a selected first-stage edge fulfills all related semi-directed
cuts. Hence, in the extreme case when all terminals are connected via first-stage edges this
model does not give stronger bounds than the undirected model.

This drawback is overcome by the second semi-directed formulation. It is based on
additional capacity constraints which enforce that selected first-stage edges have to be
incorporated into the second-stage solution and in particular, each selected first-stage edge
has to be oriented such that a feasible arborescence is established in each scenario. Due to
this change, the cut constraints are now purely directed and contain only second-stage arc
variables. Because of the different meaning of the second-stage arc variables we use the
identifier y1...K instead of z1...K as in (SSTPsdc1). The second semi-directed cut formulation
for the SSTP reads as follows:

(SSTPsdc2) min
∑
e∈E

c0
ex0

e +
∑
k∈K

pk
∑

e={i, j }∈E

cke (y
k
i j + ykji − x0

e)

s.t. yk(δ−(S)) ≥ 1 ∀k ∈ K, ∀S ⊆ Vk
r : S ∩ Tk

r , ∅ (6.12)

yki j + ykji ≥ x0
e ∀k ∈ K, ∀e = {i, j} ∈ E (6.13)

x0 ∈ {0, 1} |E | (6.14)

y1...K ∈ {0, 1} |A | ·K (6.15)

This model is basically a union of K directed Steiner tree formulations joined by
the first stage through capacity constraints (6.13). Compared to the previous cut-based
formulations the objective function contains a corrective term for subtracting the additional
cost that results from these constraints.
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Lemma 6.2. Formulation (SSTPsdc2) models the stochastic Steiner tree problem correctly.

Proof. An optimum solution Ẽ0, Ẽ1, . . . , ẼK to the SSTP can be easily translated into a
feasible solution for model (SSTPsdc2) by using the edge set Ẽ0 ∪ Ẽk for finding a feasible
arborescence in each scenario k ∈ K; then let variables x0 represent Ẽ0 and set arc variables
yk according to the arborescences, ∀k ∈ K. Due to the corrective term the objective values
are identical.

Contrarily, due to the correctness of (STPdc) for the deterministic STP an optimum
solution (x̃0, ỹ1...K ) to (SSTPsdc2) contains an rk-rooted arborescence in each scenario
k ∈ K. Hence, Ẽ0, Ẽ1, . . . , ẼK , with Ẽ0 := {e ∈ E | x̃0

e = 1} and ∀k ∈ K : Ẽk := {e =
{i, j} ∈ E | x̃0

e = 0 ∧ (ỹki j = 1 ∨ ỹkji = 1)}, is a feasible solution with the same objective
value. �

Let (SSTPrel:x
0

sdc2 ) denote formulation (SSTPsdc2) with the integrality constraint (6.14)
being relaxed to x0 ∈ [0, 1] |E |.

Lemma 6.3. The optimum solution to (SSTPrel:x0

sdc2 ) is integer.

Proof. Assume there exists an optimum solution (x̃0, ỹ1...K ) to (SSTPrel:x
0

sdc2 ) that is non-
integer. Let variable x̃0

e corresponding to edge e = {i, j} ∈ E be fractional, i.e., 0 < x̃0
e < 1.

The term in the objective function corresponding to edge e is:

c0
e x̃0

e +
∑
k∈K

pkcke (ỹ
k
i j + ỹkji − x̃0

e)

= c0
e x̃0

e −
∑
k∈K

pkcke x̃0
e +

∑
k∈K

pkcke (ỹ
k
i j + ỹkji)

= (c0
e − c∗e)x̃

0
e +

∑
k∈K

pkcke (ỹ
k
i j + ỹkji)

In case c0
e < c∗e set x̃0

e := 1 and if c0
e > c∗e set x̃0

e := 0. In both cases the resulting
solution is still feasible: Constraint (6.13) together with the integrality of y1...K ensures that
for all scenarios k ∈ K it holds ỹki j + ỹkji ≥ 1 and hence, (6.13) is still satisfied. Moreover,
the objective value improves which is a contradiction.

In case c0
e = c∗e variable x0

e has coefficient 0 in the objective function and can be fixed
to x̃0

e := 0. �

Notice that this property only holds for the non-decomposed formulation. It can only be
applied when the model gets solved directly with a single branch&cut algorithm. However,
when applying a decomposition approach like the two-stage branch&cut algorithm the
integrality constraints cannot be relaxed anymore.

We close the discussion on semi-directed formulations by rewriting the objective func-
tion of (SSTPsdc2). First, consider only the parts concerning the first-stage variables:

min
∑
e∈E

c0
ex0

e +
∑
k∈K

pk
∑
e∈E

−cke x0
e = min

∑
e∈E

c0
ex0

e +
∑
k∈K

∑
e∈E

−pkcke x0
e

=min
∑
e∈E

c0
ex0

e +
∑
e∈E

x0
e

∑
k∈K

−pkcke = min
∑
e∈E

c0
ex0

e +
∑
e∈E

−x0
ec∗e

=min
∑
e∈E

(c0
e − c∗e)x

0
e
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Now, we rewrite the objective function and call the resulting formulation (SSTPsdc2∗):

(SSTPsdc2∗)min
∑
e∈E

(c0
e − c∗e)x

0
e+

∑
k∈K

pk
∑

e={i, j }∈E

cke (y
k
i j + ykji)

s.t. (x0, y1...K ) satisfies (6.12)–(6.15)

Obviously, (SSTPsdc2∗) is identical to (SSTPsdc2). However, when the models get
decomposed the modified objective function does matter. Then, the master problem of
formulation (SSTPsdc2∗) has negative coefficients (due to assumption c∗e > c0

e) whereas the
coefficients in the master problem of (SSTPsdc2) are positive. Moreover, this change affects
the primal and dual subproblems and in particular, the generated L-shaped optimality cuts.
We discuss the differences w.r.t. the decomposition in Section 7.3 and the impact on the
performance in the computational study, cf. Section 8.3.2.

Remark 6.4. We like to shortly revisit formulation (SSTPuc) based on undirected cuts.
Notice that by adding similar capacity constraints xke ≥ x0

e, ∀k ∈ K, ∀e ∈ E , the undirected
cuts (6.1) contain only second-stage variables, as in model (SSTPsdc2). Then, it is possible
to relax the first-stage variables to x0 ∈ [0, 1] |E | without violating overall integrality; the
proof is similar to the one of Lemma (6.3). On the other hand, these modifications do not
influence the strength of the LP relaxation and this formulation is as strong as (SSTPuc).

Semi-directed flow formulation. The flow formulation can be strengthened as in the
deterministic setting. One simply has to enforce that a selected undirected edge cannot
be used for routing flow in both directions for the same commodity. Therefore, directed
arc variables yk, ∀k ∈ K, are used and constraints (6.4) are replaced by the stronger
constraints (6.16). To highlight the connection to formulation (SSTPsdc2) we use the same
capacity constraints (6.17).

(SSTPsdf) min
∑
e∈E

c0
ex0

e +
∑
k∈K

pk
∑

e={i, j }∈E

cke (y
k
i j + ykji − x0

e)

s.t. f satisfies (6.5)

yki j ≥ f k,ti j ∀k ∈ K, ∀(i, j) ∈ A, ∀t ∈ Tk
r (6.16)

yki j + ykji ≥ x0
e ∀k ∈ K, ∀e = {i, j} ∈ E (6.17)

f ∈ [0, 1] |A| ·t
∗
r (6.18)

x0 ∈ {0, 1} |E | (6.19)

y1...K ∈ {0, 1} |A | ·K (6.20)

Formulation (SSTPsdf) is the equivalent to (SSTPsdc2): instead of satisfying directed
cuts one has to find a feasible flow in each scenario and moreover, the scenarios are linked
to the first stage by capacity constraints (6.17).

Observation 6.5. Formulation (SSTPsdf) models the stochastic Steiner tree problem cor-
rectly.

6.3 Directed formulations

The last section presents semi-directed formulations for the stochastic Steiner tree problem
with first-stage decisions still being represented by undirected edges. The natural question is
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Figure 6.1: (a) The same SSTP instance as in Figure 4.2. There are two equally probable scenarios
with identical terminal set {1,3,4}; the edge costs for the first stage and the two scenarios are written
next to the edges (i.e., c0/c1/c2) with M being a sufficiently large positive value. The optimum
solution edges of the first stage are highlighted by thick edges; scenario 1 and 2 additionally purchase
edge e2 and e3, respectively. The optimum solution has cost 12. (b) Minimum arborescences (yk-
values) in the scenarios for formulation (SSTPsdc2). Solid arcs represent the first and dashed arcs
the second scenario.

whether the undirected edges are necessary or if it is possible to model the SSTPwith a fully
directed and stronger formulation. In the following, we briefly discuss difficulties coming
along with the unrooted SSTP and afterwards, we describe fully directed formulations for
the rSSTP.

Difficulties for the unrooted SSTP. Formulating the SSTP with a directed first stage
causes difficulties since first-stage solutions may be disconnected. Consider Figure 6.1
which depicts such an example. Here, the optimum first-stage solution is disconnected as
shown in Figure 6.1 (a). The optimum arborecences of the two scenarios are given in (b).
In particular, edge e4 is used in direction (3, 4) in one and direction (4, 3) in the other
scenario. Hence, already fixing an orientation in the first stage omits an optimum scenario
solution—or at least, makes the corresponding solution more expensive.

Open problem 6.1. Does there exist a directedmodel for the stochastic Steiner tree problem
(SSTP) which is stronger than the semi-directed model (SSTPsdc2)?

Remark 6.6. Of course, it is possible to replace the undirected edge variables in formulation
(SSTPsdc2) by directed arc variables y0 in the first stage and then, in the second stage, one
can use capacity constraints yki j + ykji ≥ y0

i j + y0
ji, ∀k ∈ K, ∀(i, j) ∈ A. However, this does

not yield a stronger formulation since the orientation of an edge is lost in the second stage;
it is easy to see that the arc variables can be replaced by undirected edge variables by
x0
e := y0

i j + y0
ji.

Directed cut formulations for the rSSTP. While we are not aware of a fully directed
and stronger cut-based formulation for the SSTP the rooted version of the SSTP permits
a stronger model with directed variables only. For the following formulations we again
consider the weighted bidirection Ḡ = (V, A, c) of the input graph.
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The first formulation is called (rSSTPdc1); afterwards, we introduce two more formula-
tions (rSSTPdc2) and (rSSTPdc2∗), respectively, similar to the semi-directed SSTP models.
We use directed arc variables z0 and zk for the first and second stage in scenario k ∈ K,
respectively. Let Vr := V\{r} and Tk

r := Tk\{r}, ∀k ∈ K.

(rSSTPdc1) min
∑
a∈A

c0
az0

a +
∑
k∈K

pk
∑
a∈A

ckazka

s.t. z0(δ−(S)) ≥ z0(δ−(v)) ∀∅ , S ⊆ Vr, ∀v ∈ S (6.21)

(z0 + zk)(δ−(S)) ≥ 1 ∀k ∈ K, ∀S ⊆ Vr : S ∩ Tk
r , ∅ (6.22)

z0 ∈ {0, 1} |A | (6.23)

z1...K ∈ {0, 1} |A | ·K (6.24)

Constraints (6.22) are directed cuts ensuring a feasible arborescence in each scenario
consisting of first- and second-stage arcs. Moreover, the additional directed cuts (6.21) are
used to enforce the required first-stage tree.

Lemma 6.7. Formulation (rSSTPdc1) models the rooted stochastic Steiner tree problem
correctly.

Proof. Let Ẽ0, Ẽ1, . . . , ẼK describe an optimum rSSTP solution. Since Ẽ0 induces a tree
the edges can be oriented from the root r outwards. Then, it is clear that for each scenario
k ∈ K the edge set Ẽk can be oriented such that Ẽ0 ∪ Ẽk contains an arborescence
with directed paths from r to each terminal. This orienting procedure gives a solution to
(rSSTPdc1) with the same cost.

On the other hand, an optimum solution to (rSSTPdc1) guarantees that every terminal
is reachable by a directed path from the root node due to constraints (6.22). Moreover,
constraints (6.21) plus the objective function ensure that the first stage is a tree rooted
at r . Hence, the related undirected edges yield a feasible solution to the rSSTP; again with
identical objective value. �

It is possible to use the same idea leading to the semi-directed formulation (SSTPsdc2)
for another directed formulation for the rSSTP. The variable identifier for the first-stage arcs
is z0 and the arc variables for the K scenarios are y1...K . Again, we use identifier y due to
the different meaning such that scenario arcs contain already selected first-stage arcs.

(rSSTPdc2) min
∑
a∈A

c0
az0

a +
∑
k∈K

pk
∑
a∈A

cka(y
k
a − z0

a)

s.t. z0(δ−(S)) ≥ z0(δ−(v)) ∀∅ , S ⊆ Vr, ∀v ∈ S (6.25)

yk(δ−(S)) ≥ 1 ∀k ∈ K, ∀S ⊆ Vr : S ∩ Tk
r , ∅ (6.26)

yka ≥ z0
a ∀k ∈ K, ∀a ∈ A (6.27)

z0 ∈ {0, 1} |A | (6.28)

y1...K ∈ {0, 1} |A | ·K (6.29)

Constraints (6.25) are identical to constraints (6.21) in (rSSTPdc1) and model the first-
stage tree. Capacity constraints (6.27) enforce the selection of first-stage arcs in each
scenario. Then, the directed cuts (6.26) in the scenarios contain only variables y.

The preceding discussions allow us to observe the correctness of this formulation.
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Observation 6.8. Formulation (rSSTPdc2) models the rooted stochastic Steiner tree prob-
lem correctly.

The objective function of model (rSSTPdc2) can be rewritten analogously to the semi-
directed formulation. We call the resulting formulation (rSSTPdc2∗) which is equivalent
to (rSSTPdc2) but the change in the objective function matters when a decomposition is
applied.

(rSSTPdc2∗) min
∑
a∈A

(c0
a − c∗a)z

0
a +

∑
k∈K

pk
∑
a∈A

ckay
k
a

s.t. (z0, y1...K ) satisfies (6.25)–(6.29)

If c0
a < c∗a :=

∑
k∈K pkcka holds for all arcs a ∈ A we can again relax the in-

tegrality restrictions on the first-stage variables without losing overall integrality. Let
(rSSTPrel:z0

dc2 ) denote formulation (rSSTPdc2) with the integrality constraint (6.28) being
relaxed to z0 ∈ [0, 1] |A |.

Theorem 6.9. If c0
a < c∗a holds for all arcs a ∈ A the optimum solution to (rSSTPrel:z0

dc2 ) is
integer.

Proof. Let (z̃0, ỹ1...K ) denote an optimum solution to (rSSTPrel:z0
dc2 ) which is non-integer.

We consider an arc α ∈ A with 0 < z̃0
α < 1 defined as follows. If there exists a fractional

arc (r, j) we set α := (r, j). Otherwise, we set α := (i, j) such that the directed path P from
the root r to vertex i consists only of selected arcs, i.e., z̃0

a = 1, ∀a ∈ P. Notice that arc α is
well-defined due to constraints (6.25).

We consider three main cases. In each case we construct a feasible solution (ẑ0, ŷ1...K )

with a better objective value than by (z̃0, ỹ1...K ). We always start with ẑ0 := z̃0, ŷ1...K :=
ỹ1...K and describe the necessary modifications.

Case 1: α = (i, r). Since α is an ingoing arc of the root r it is not contained in any directed
cut. Hence, setting ẑ0

α := 0 and ŷkα := 0, ∀k ∈ K, gives a feasible and better solution.

Case 2: α = (r, j). In this case set ẑ0
α := 1. First, notice that the objective value improves

since the term in the objective function with respect to arc α is c0
α z̃0
α+

∑
k∈K pkckα(ỹ

k
α− z̃0

α) =

c0
α z̃0
α +

∑
k∈K pkckα(1 − z̃0

α) = (c
0
α − c∗α)z̃

0
α + c∗α and c0

α < c∗α.
Second, we argue that the solution (ẑ0, ŷ1...K ) is feasible. Since ŷ1...K = ỹ1...K we do

not need to consider constraints (6.26). Constraints (6.25) are only crucial for vertex j since
for all other vertices the right-hand side does not change and the left-hand side does not
decrease. For vertex j notice that z0

α is contained in the left-hand and in the right-hand side
of any constraint; hence, the constraints are still satisfied. Constraint (6.27) is also only
interesting for arc α; but since z̃0

α > 0 it holds ŷkα = ỹkα = 1 and the constraint is also still
satisfied.

Case 3: α = (i, j) with i , r, j , r . Let L := {` ∈ V | (`, j) ∈ A, ` , i, z̃0
` j
> 0}, i.e., L is

the set of vertices ` , i with a (fractionally) selected arc (`, j).

Case 3.1: L = ∅. Hence, arc α is the only ingoing arc of j with z̃0
·, j > 0. In this case we

set ẑ0
α := 1.
The arguments are similar to Case 2. Again, the objective value improves and con-

straints (6.26) and (6.27) are still satisfied. Constraints (6.25) are again only crucial for
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Figure 6.2: Instance for the STP where (STPdc) has an integrality gap of 10/9. All edge costs
are 1 and terminals are drawn as rectangles. (a) shows the optimum fractional solution (dashed
arcs are set to 0.5) whereas (b) depicts an optimum integer solution. Moreover, this graph can be
used to construct an rSSTP instance where the optimum solution to (rSSTPrel:z0

dc1 ) is fractional but
(rSSTPrel:z0

dc2 ) is integer.

vertex j and are satisfied due to the properties of arc α: Recall that we set α such that the
directed path P from r to i consists of arcs a with z̃0

a = 1, ∀a ∈ P. Hence, any cut S with
j ∈ S, r < S, satisfies ẑ0(δ−(S)) ≥ z̃0(δ−(S)) ≥ 1 = ẑ0(δ−( j)).

Case 3.2: L , ∅. Since L , ∅ there exists at least one arc (`, j) with z̃0
` j
> 0, ` , i.

Hence, due to capacity constraints (6.27) and integrality of yk in any scenario k ∈ K it
holds ỹk(δ−( j)) = 1 + |L| ≥ 2. Since directed cuts have a right-hand side of 1 it is clear
that this solution is non-optimal.

Now, set ẑ0
α := 1, ẑ0

` j
:= 0, ∀` ∈ L, and ŷk

` j
:= 0, ∀` ∈ L, ∀k ∈ K. First, we argue that

this solution has a better objective value and afterwards, we discuss its feasibility.
As discussed in Case 2 increasing ẑ0

α leads to a decrease of the objective value. More-
over, deleting arcs from the solution by setting ẑ0

` j
:= 0, ∀` ∈ L, and ŷk

` j
:= 0, ∀` ∈ L, ∀k ∈

K, improves the objective, too. Hence, the newly constructed solution has a better objective
value.

To show the feasibility of this solution we consider the constraints one by one. Capacity
constraints (6.27) are satisfied by construction. The directed cuts in the scenarios (6.26)
are satisfied for every valid cut S 3 j since S crosses the path P or arc α where each arc
a ∈ P ∪ α has a value ŷka = 1, ∀k ∈ K, such that it holds ŷk(δ−(S)) ≥ 1. All other valid
cuts S = j are still satisfied since the arc variables crossing these cuts are not modified.

Last but not least, we have to consider constraints (6.25) where the arguments are again
similar. Consider any valid cut S for constraint (6.25). If j < S the constraint is still satisfied
since the related arc variables are unchanged. In case j ∈ S the cut S crosses P∪α such that
(i) ẑ0(δ−(S)) ≥ 1. Since arc costs are non-negative and the right-hand side of the directed
cuts is 1 any optimum solution satisfies (ii) z0(δ−(v)) ≤ 1, ∀v ∈ V . We modified z0 such
that (iii) ẑ0(δ−( j)) = 1. Combining (i)–(iii) shows that constraints (6.25) are satisfied. �

We like to shortly revisit the first directed cut formulation (rSSTPdc1) and show that
(rSSTPrel:z0

dc1 ) does not have the latter property; let (rSSTPrel:z0
dc1 ) denote model (rSSTPdc1)

with relaxed first-stage variables z0 ∈ [0, 1] |A |. An example is given by Figure 6.2 (a). The
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corresponding undirected graph depicts a classical instance for the deterministic STP (cf.
e.g., Polzin and Daneshmand [142]) where the directed cut formulation has an integrality
gap—here it is 10/9. Now, consider an rSSTP instance on that graph that contains one
scenario with the four terminals {1, 4, 5, 6} and with vertex 1 being the root node r . More-
over, let the cost in the first stage be 1 for each edge and in the scenario 2 for each edge
such that (rSSTPrel:z0

dc1 ) connects all terminals already in the first stage. Figure 6.2 (a) gives
the optimum solution with cost 4.5 for model (rSSTPrel:z0

dc1 ) where each dashed arc a is set
to z0

a := 0.5; moreover, z1...K := 0 is integer. Figure 6.2 (b) depicts the first stage of an
optimum solution with cost 5 for the described rSSTP instance which is also the optimum
solution to (rSSTPrel:z0

dc2 ).

Directed flow formulations for the rSSTP. We close the discussion on the formulations
for the rooted stochastic Steiner tree problem by introducing a polynomially sized model.
This formulation is again flow-based. Compared to the previously introduced flow formu-
lations it requires additional node variables w0

v ∈ {0, 1}, ∀v ∈ V , and additional first-stage
flow variables f 0,v

i j , ∀v ∈ Vr, ∀(i, j) ∈ A, for ensuring the first-stage tree.
The description of the formulation is split into several parts for better readability. First,

we introduce the variables. The solution is represented by arc variables z0 for the first stage
and y1...K for the K scenarios. Similar to the flow formulations (SSTPuf) and (SSTPsdf)
and the cut-based formulation (rSSTPdc2) we use capacity constraints to ensure that each
first-stage arc is also used in each scenario. Hence, we use the same identifier y1...K for the
second stage.

As for the semi-directed flow formulations we have flow variables f k,ti j for each scenario
k ∈ K, terminal t ∈ Tk

r , and arc (i, j) ∈ A. Moreover, we use the already mentioned flow
variables f 0,v

i j and binary node variables w0
v for the first stage.

f 0 ∈ [0, 1] |Vr | · |A | (6.30)

f 1...K ∈ [0, 1] |A | ·t
∗
r (6.31)

z0 ∈ {0, 1} |A| (6.32)

w0 ∈ {0, 1} |Vr | (6.33)

y1...K ∈ {0, 1} |A| ·K (6.34)

The constraints which contain first-stage variables are given as follows. Thereby,
w0
v = 1 implies that vertex v is contained in the first-stage tree. In this case a flow of unit

one needs to be send from the root to this vertex. This is ensured by the classical flow
conservation constraints (6.37); here with the right-hand side −w0

v and w0
v, respectively.

Constraints (6.36) ensure the correct assignment of the node variables.

z0
i j ≥ f 0,v

i j ∀v ∈ Vr, ∀(i, j) ∈ A (6.35)

w0
v ≥ z0(δ−(v)) ∀v ∈ Vr (6.36)

f 0,v(δ−(i)) − f 0,v(δ+(i)) =


−w0

v, if i = r
w0
v, if i = v

0, otherwise

 ∀v ∈ Vr, ∀i ∈ V (6.37)

Again, we use capacity constraints (6.38) to ensure that each first-stage arc is also used
in each scenario. These constraints link the first and second stage and they are the only
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constraints using both first- and second-stage variables.

yki j ≥ z0
i j ∀k ∈ K, ∀(i, j) ∈ A (6.38)

The remaining constraints are identical to the constraints in the semi-directed flow
formulation. They ensure that all arcs used for routing flow are also purchased in the
objective function and that the constructed flow is valid.

yki j ≥ f k,ti j ∀k ∈ K, ∀(i, j) ∈ A, ∀t ∈ Tk
r (6.39)

f k,t (δ−(i)) − f k,t (δ+(i)) =


−1, if i = r
1, if i = t
0, otherwise


∀k ∈ K, ∀t ∈ Tk

r ,

∀i ∈ V
(6.40)

Finally, the directed flow-based formulation reads as follows:

(rSSTPdf) min
∑
a∈A

c0
az0

a+
∑
k∈K

pk
∑
a∈A

cka(y
k
a − z0

a)

s.t. (z0, y1...K,w0, f ) satisfies (6.30)–(6.40)

Due to the preceding discussion we skip the proof about the correctness.

Observation 6.10. Formulation (rSSTPdf) models the rooted stochastic Steiner tree prob-
lem correctly.

6.4 Strength of the formulations

This section provides a comparison of the introduced formulations from a polyhedral point
of view. We consider the undirected and semi-directed formulations for the SSTP in
Section 6.4.1 and Section 6.4.2, respectively, while Section 6.4.3 focusses on the directed
models for the rooted problem.

6.4.1 Undirected formulations for the SSTP

We start by comparing the undirected formulations based on cuts and flows, respectively.
The related polytopes of the relaxed formulations are denoted by

PSSTP
uc =

{
x0...K ∈ [0, 1] |E | ·(K+1)

��� x0...K satisfies (6.1)
}

PSSTP
uf =

{
(x0...K, f ) ∈ [0, 1] |E | ·(K+1) × [0, 1] |A | ·t

∗
r

���
(x0...K, f ) satisfies (6.4) and (6.5)

}
In order to compare the formulations we project the variables of the flow formulation

onto the space of undirected edge variables, i.e.,

Projx0. . .K

(
PSSTP
uf

)
=

{
x0...K ��∃ f : (x0...K, f ) ∈ PSSTP

uf
}

As for the undirected cut-based and flow-based formulations of the deterministic STP
the two formulations for the SSTP are equally strong.
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Lemma 6.11. PSSTP
uc = Projx0. . .K

(
PSSTP
uf

)
, i.e., the undirected cut- and flow-based formu-

lations (SSTPuc) and (SSTPuf) are equivalent.

Proof. This lemma follows directly from the classical “max flow = min cut” theorem, cf.
Theorem 2.1, applied to each scenario. If there is a flow of one unit from the root node
to each terminal then every cut separating the terminal from the root node is satisfied. On
the other hand, if every undirected cut is satisfied it is possible to find a feasible flow from
the root node to every terminal using exactly those edges. In both models either first- or
second-stage edges can be used. �

6.4.2 Semi-directed formulations for the SSTP

Before comparing the formulationswe expand the semi-directed cut formulations by subtour
elimination constraints of size two (SEC2) in the second stage; constraints (6.41) are added
to (SSTPsdc1) and (6.42) to (SSTPsdc2), respectively:

zki j + zkji ≤ 1 ∀k ∈ K, ∀{i, j} ∈ E (6.41)

yki j + ykji ≤ 1 ∀k ∈ K, ∀{i, j} ∈ E (6.42)

We introduce the additional constraints to make the comparison of polytopes easier.
Although these constraints cut the polytopes of the LP relaxations they are not binding, i.e.,
any optimum solution satisfies the SEC2s anyway. As noted by Chopra and Rao [44] for
the STP: “the inequalities [. . .] are redundant but are added to make projection easier”.

Then, the polytopes of the relaxed cut formulations are denoted by

PSSTP
sdc1 =

{
(x0, z1...K ) ∈ [0, 1] |E | × [0, 1] |A | ·K

���
(x0, z1...K ) satisfies (6.9) and (6.41)

}
PSSTP
sdc2 =

{
(x0, y1...K ) ∈ [0, 1] |E | × [0, 1] |A | ·K

���
(x0, y1...K ) satisfies (6.12), (6.13), and (6.42)

}
Again, we consider the projections onto the space of undirected edge variables x0...K :

Projx0. . .K

(
PSSTP
sdc1

)
=

{
x0...K ��∃z1...K : (x0, z1...K ) ∈ PSSTP

sdc1 ,

xke = zki j + zkji, ∀k ∈ K, ∀e = {i, j} ∈ E
}

Projx0. . .K

(
PSSTP
sdc2

)
=

{
x0...K ��∃y1...K : (x0, y1...K ) ∈ PSSTP

sdc2 ,

xke = yki j + ykji − x0
e, ∀k ∈ K, ∀e = {i, j} ∈ E

}
We start by comparing the undirected and the first semi-directed cut formulation. Not

surprisingly, the additional directed parts of the formulation make it stronger.

Theorem 6.12. PSSTP
uc ) Projx0. . .K

(
PSSTP
sdc1

)
, i.e., the semi-directed cut-based formulation

(SSTPsdc1) is stronger than the undirected cut-based formulation (SSTPuc).
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(SSTPuc)

(SSTPsdc1)

(SSTPsdc2) (SSTPsdc2∗)

(SSTPuf)

(SSTPsdf)

Figure 6.3: Hierarchy of undirected and semi-directed formulations for the SSTP. The dashed line
and the additional clusters indicate that formulations are equivalent. An arrow indicates that the
target cluster contains stronger formulations than the formulations in the source cluster.

Proof. Let (x̃0, z̃1...K ) ∈ PSSTP
sdc1 and set x̂0 := x̃0, x̂ke := z̃ki j + z̃kji, ∀k ∈ K, ∀e = {i, j} ∈ E .

We obtain a solution x̂0...K for (SSTPuc); its validity is discussed in the following.
Bounds of the first-stage variables x̂0 are obviously satisfied. Moreover, it clearly holds

x̂ke ≥ 0 and due to constraints (6.41): x̂ke = z̃ki j + z̃kji ≤ 1. Hence, x̂0...K ∈ [0, 1] |E | ·(K+1).
We now show that the undirected cuts (6.1) are also satisfied by x̂0...K . Let S ⊆ V

represent a feasible cut set in scenario k ∈ K, i.e., ∅ , S ∩ Tk , Tk . Since cuts in
(SSTPsdc1) are semi-directed and ingoing we assume w.l.o.g. that it holds rk < S. Otherwise
one can simply consider the complementary setV\S, since δ(S) = δ(V\S) and then, it holds
rk < (V\S).

(x̂0 + x̂k)(δ(S)) =
∑

e∈δ(S)

x̂0
e + x̂ke

=
∑

e∈δ(S)

x̃0
e +

∑
{i, j }∈δ(S)

z̃ki j + z̃kji

≥ x̃0(δ(S)) + z̃k(δ−(S)) ≥ 1

The last inequality holds since (x̃0, z̃1...K ) satisfies constraint (6.9) for cut set S.
Intuitively, the strict inequality of the formulations results from the directed arcs in

the scenarios and the strength of the directed cut formulation for the deterministic STP.
Figure 6.4 gives a small example with this property. Here, everything is purchased in the
second stage and the semi-directed model gives a better lower bound. �

The following theorem shows that formulation (SSTPsdc2) is stronger than formulation
(SSTPsdc1).

Theorem 6.13. Projx0. . .K

(
PSSTP
sdc1

)
) Projx0. . .K

(
PSSTP
sdc2

)
, i.e., the semi-directed cut-based

formulation (SSTPsdc2) is stronger than the semi-directed cut-based formulation (SSTPsdc1).

Proof. Let (x̃0, ỹ1...K ) ∈ PSSTP
sdc2 and set x̂0

e := x̃0
e, ∀e ∈ E , and x̂ke := ỹki j + ỹkji − x̃0

e, ∀k ∈
K, ∀e = {i, j} ∈ E . We argue that x̂0...K ∈ Projx0. . .K (PSSTP

sdc1 ) by showing that there exists a
variable assignment ẑ1...K ∈ [0, 1]K · |A |, with ẑki j + ẑkji = x̂ke, ∀k ∈ K, ∀e = {i, j} ∈ E , such
that (x̂0, ẑ1...K ) ∈ PSSTP

sdc1 .
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1

2 3

e110/1 e2 10/1

e3

10/1

Figure 6.4: Example where the LP relaxation of (SSTPsdc1) gives a better lower bound than
(SSTPuc). There is one scenario and all vertices are terminals. Edge costs for the first stage are all
10 and for the scenario 1. Both formulations purchase edges only in the second stage. The optimum
solution to the undirected formulation has cost 1.5 with x1

e = 0.5, ∀e ∈ E . Since there is no valid
orientation using 0.5 of each edge the semi-directed formulation selects two arcs in the second stage
to connect the two remaining vertices to a root node leading to overall cost 2, e.g., for root node 1
set z1

(1,2) = z1
(1,3) = 1.

This solution is obtained by transforming (x̃0, ỹ1...K ) into a feasible (SSTPsdc1)-solution.
Thereby, the parameter αk

i j ∈ [0, 1], ∀k ∈ K, ∀(i, j) ∈ A, is used:

αk
i j :=


ỹki j

ỹki j+ỹ
k
j i

if ỹki j + ỹkji > 0

0 otherwise

This parameter allows us to split up the first-stage values among the two corresponding
directed arcs, independently for each scenario. With α at hand the directed arc variables
are set to ẑki j := ỹki j − α

k
i j x̃

0
e, ∀k ∈ K, ∀(i, j) ∈ A, with e = {i, j} ∈ E .

First we show that this is a valid projection. Notice that ∀k ∈ K, ∀e = {i, j} ∈ E:
αk
i j + α

k
ji ∈ {0, 1}; if ỹki j + ỹkji > 0 this value is 1 and 0 otherwise. Now, consider

edge e = {i, j} ∈ E in scenario k ∈ K with ỹki j + ỹkji > 0. Then, ẑki j + ẑkji = ỹki j −

αk
i j x̃

0
e + ỹkji − α

k
ji x̃

0
e = ỹki j + ỹkji − x̃0

e . In case αk
i j = αk

ji = 0, due to ỹki j + ỹkji = 0
and constraints (6.13), i.e., yki j + ykji ≥ x0

e , it follows x̃0
e = 0. Hence, it always holds

ẑki j + ẑkji = ỹki j + ỹkji − x̃0
e = x̂ke, ∀k ∈ K, ∀e = {i, j} ∈ E .

Now we are able to prove x̂0...K ∈ Projx0. . .K (PSSTP
sdc1 ). Due to the preceding discussion it

is clear that the subtour elimination constraints (6.41) are satisfied. Moreover, it obviously
holds x̂0

e ∈ [0, 1], ∀e ∈ E .
Next, we consider the bounds for the arc variables ẑki j, ∀k ∈ K, ∀(i, j) ∈ A. It holds

ẑki j ≤ 1 since ẑki j ≤ ỹki j ≤ 1. Non-negativity can be seen by considering two cases. (i) If
αk
i j > 0:

ẑki j = ỹki j − α
k
i j x̃

0
e = ỹki j − x̃0

e

ỹki j

ỹki j + ỹkji
= ỹki j

©«
1 −

≤1︷    ︸︸    ︷
x̃0
e

ỹki j + ỹkji

ª®®®®®¬
≥ 0

Inequality x̃0
e

ỹki j+ỹ
k
j i

≤ 1 is true due to capacity constraints (6.13). (ii) If αk
i j = 0 the

non-negativity follows directly since ẑki j = ỹki j ≥ 0.
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It remains to show that a valid cut S ⊆ Vr in scenario k ∈ K is satisfied by (x̂0, ẑ1...K ):

(x̂0 + ẑk)(δ−(S)) =
∑

(i, j)∈δ−(S)

x̂0
{i, j } + ẑki j =

∑
(i, j)∈δ−(S)

x̃0
{i, j } + ỹki j − α

k
i j x̃

0
{i, j }

=
∑

(i, j)∈δ−(S)

(1 − αk
i j)x̃

0
{i, j } + ỹki j

≥
∑

(i, j)∈δ−(S)

ỹki j ≥ 1

The last inequality is true due to the validity of solution ỹk for scenario k and con-
straints (6.12). This completes the “⊇”-part of the proof.

An example showing the strict inequality can be constructed by exploiting the different
meaning of the first-stage variables. In formulation (SSTPsdc1) a first stage edge e = {i, j}
contributes its value to cuts in both directions, i.e., δ−(S) and δ+(S). Contrarily, a feasible
solution for formulation (SSTPsdc2) has to find an orientation for this edge and distribute its
value to the related arcs. In a sloppy way, the same edge has a lesser value in the second
semi-directed formulation.

Hence, the same example from Figure 6.4 can be utilized to show the strict inequality;
one simply has to set the edge cost to 1 for all first-stage and 10 for the scenario edges,
respectively. There is still one scenario with all three vertices being terminals. Then,
formulation (SSTPsdc1) selects all three edges at 0.5 in the first stage satisfying all cuts in
the scenario. On the other hand, this solution is not valid for (SSTPsdc2) and there is none
with overall cost 1.5. �

To complete the hierarchy of SSTP formulations given in Figure 6.3 it remains to show
the equivalence of the semi-directed flow and cut-based formulations. To give the formal
proof we denote the polytope of the relaxed flow formulation and the projection onto the
same variable space as follows.

PSSTP
sdf =

{
(x0, y1...K, f ) ∈ [0, 1] |E | × [0, 1] |A | ·K × [0, 1] |A | ·t

∗
r

���
(x0, y1...K, f ) satisfies (6.5), (6.16), and (6.17)

}
Proj(x0,y1. . .K )

(
PSSTP
sdf

)
=

{
(x0, y1...K )

��∃ f : (x0, y1...K, f ) ∈ PSSTP
sdf

}
Lemma 6.14. PSSTP

sdc2 = Proj(x0,y1. . .K )

(
PSSTP
sdf

)
, i.e., the semi-directed cut- and flow-based

formulations (SSTPsdc2) and (SSTPsdf) are equivalent.

Proof. Restricting both models to one particular scenario, i.e., for one k ∈ K to yk

and (yk, f k), respectively, results in the related formulations (STPdc) and (STPdf). Since
the formulations for the deterministic STP are equivalent and the remaining parts of the
stochastic models are identical the lemma follows. �

6.4.3 Directed formulations for the rSSTP

To make the comparison of the polytopes easier we add the following constraints to the
directed cut formulations: (rSSTPdc1) is expanded by both constraints and (rSSTPdc2) by
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the second type of constraints (6.44):

z0
a + zka ≤ 1 ∀k ∈ K, ∀a ∈ A (6.43)

z0(δ−(v)) ≤ 1 ∀v ∈ Vr (6.44)

Both constraints (6.43) and (6.44) are obviously redundant since the right-hand side of
the directed cuts is 1.

The considered polytopes of the relaxed formulations are denoted as follows.

PrSSTP
dc1 =

{
z0...K ∈ [0, 1] |A | ·(K+1)

��� z0...K satisfies (6.21), (6.22), (6.43), and (6.44)
}

PrSSTP
dc2 =

{
(z0, y1...K ) ∈ [0, 1] |A| ·(K+1)

��� (z0, y1...K ) satisfies (6.25)–(6.27), and (6.44)
}

We use a projection for the second formulation to compare both models:

Projz0. . .K

(
PrSSTP
dc2

)
=

{
(z0, z1...K )

��� (z0, y1...K ) ∈ PrSSTP
dc2 ,

zka = yka − z0
a, ∀k ∈ K, ∀a ∈ A

}
Theorem 6.15. PrSSTP

dc1 = Projz0. . .K (PrSSTP
dc2 ), i.e., the directed cut-based formulations

(rSSTPdc1) and (rSSTPdc2) are equivalent.

Proof. “⊆”: Let z̃0...K ∈ PrSSTP
dc1 . We show that (ẑ0, ŷ1...K ) ∈ PrSSTP

dc2 with ẑ0 := z̃0, ŷk :=
z̃k + z̃0, ∀k ∈ K.

First, we consider the variable bounds. Since ẑ0 = z̃0 we have ẑ0 ∈ [0, 1] |A|. Moreover,
ŷk is obviously non-negative and due to (6.43): ŷk = z̃k + z̃0 ≤ 1, ∀k ∈ K.

Second, the directed cuts in the first stage, i.e., constraints (6.25), and constraints (6.44),
are identical in both formulations and hence, they are satisfied. This is also true for the
capacity constraints (6.27) since ŷka = z̃ka + z̃0

a ≥ ẑ0
a, ∀k ∈ K, ∀a ∈ A.

Third, consider a valid cut set S ⊆ Vr in scenario k ∈ K. Since z̃0...K is a valid
solution for (rSSTPdc1) it satisfies the directed cuts (6.22) which leads to ŷk(δ−(S)) =
(z̃k + z̃0)(δ−(S)) ≥ 1. Hence, the directed cuts (6.26) are satisfied by ŷ1...K .

“⊇”: The opposite direction is similar. Let (z̃0, ỹ1...K ) ∈ PrSSTP
dc2 . We set ẑ0 := z̃0, ẑk :=

ỹk − z̃0, ∀k ∈ K, such that ẑ0...K ∈ PrSSTP
dc1 .

Again, directed cuts in the first stage are obviously satisfied and the variable bounds
trivially hold for the first-stage variables. For the second-stage variables we have ẑk ≤ ỹk ≤

1 and ẑk = ỹk − z̃0 ≥ 0, ∀k ∈ K, due to constraints (6.27).
The added constraints (6.43) are satisfied since ẑ0

a + ẑka = z̃0
a + ỹka − z̃0

a = ỹka ≤ 1, ∀a ∈
A, ∀k ∈ K, and last but not least, a valid cut set S ⊆ Vr in scenario k ∈ K is satisfied since
(ẑ0 + ẑk)(δ−(S)) = (z̃0 + ỹk − z̃0)(δ−(S)) = ỹk(δ−(S)) ≥ 1. �

We close the discussion by comparing the directed flow formulation (rSSTPdf) to the
second directed cut formulation (rSSTPdc2).

PrSSTP
df =

{
(z0, y1...K,w0, f ) ∈ [0, 1] |A | ·(K+1) × [0, 1] |Vr | × [0, 1] |A | ·( |Vr |+t

∗
r )
���

(z0, y1...K,w0, f ) satisfies (6.35)–(6.40)
}

Proj(z0,y1. . .K )

(
PrSSTP
df

)
=

{
(z0, y1...K )

��∃(w0, f ) : (z0, y1...K,w0, f ) ∈ PrSSTP
df

}
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Theorem 6.16. PrSSTP
dc2 = Proj(z0,y1. . .K )

(
PrSSTP
df

)
, i.e., the directed cut- and flow-based

formulations (rSSTPdc2) and (rSSTPdf) are equivalent.

Proof. “⊆”: Let (z̃0, ỹ1...K ) ∈ PrSSTP
dc2 . We use (ẑ0, ŷ1...K ) := (z̃0, ỹ1...K ) to construct a

solution (ẑ0, ŷ1...K, ŵ0, f̂ ) ∈ PrSSTP
df . First, constraints (6.38) are contained in both models

and hence satisfied for (ẑ0, ŷ1...K ). Second, since w0 gives the connected vertices in the
first stage we set ŵ0

v := z̃0(δ−(v)), ∀v ∈ Vr ; due to (6.44) we have z̃0(δ−(v)) ∈ [0, 1].
Hence, bounds on ŵ0 are satisfied and moreover, (6.36) is satisfied with equality. Third,
the remaining part of formulation (rSSTPdf) contains the construction of the flows: we set
the flow variables f̂ such that in the first stage a flow with value ŵ0

v is send from the root to
every vertex and in every scenario a flow of value 1 from the root to every terminal. The
feasibility and correctness follows again from “max flow = min cut”.

“⊇”: Let (z̃0, ỹ1...K, w̃0, f̃ ) ∈ PrSSTP
df . Again, set (ẑ0, ŷ1...K ) := (z̃0, ỹ1...K ). First, (6.44)

is satisfied for all vertices v ∈ Vr since ẑ0(δ−(v)) ≤ w̃0
v due to (6.36). Second, due to

(6.35)–(6.37) there is a flow with value w̃0
v in the first stage from the root to a vertex v ∈ Vr

with w̃0
v > 0 and moreover, arcs used for routing flow are selected by z̃0 through (6.35).

Hence, again due to “max flow = min cut”, the directed cuts (6.25) are satisfied for ẑ0

for all v ∈ Vr . The same holds for the directed cuts (6.26) in the scenarios and variables
ŷk, ∀k ∈ K. Last but not least, (6.27) is satisfied since the constraints are contained in both
models. �

6.5 The Steiner forest problem

Since the Steiner forest problem can be directly solved by the stochastic Steiner tree problem,
compare Section 5.3, Theorem 5.5, the semi-directed formulation for the SSTP can be
utilized for modeling the Steiner forest problem. In this section we first introduce semi-
directed cut- and flow-based formulations for the SFP, we show their equivalence, and we
prove that these models are stronger than the undirected formulations. Afterwards, we
present a directed flow-based model with additional variables for modeling a hierarchy on
the terminal sets. We give a proof that this model is stronger than the semi-directed models.
Last but not least, we develop an equivalent cut-based formulation whose existence was
stated an open problem in the literature.

Semi-directed formulations. Our semi-directed formulation is based on the idea of re-
ducing the Steiner forest problem to the stochastic Steiner tree problem as in Theorem 5.5.
We use this reduction for describing the idea of the new model. Moreover, we use the same
terminology from the SSTP and consider two stages for constructing the solution. In a “first
stage” undirected edges are selected which need to be payed for. In a “second stage” this
set of undirected edges can be used to find a feasible arborescence for each terminal set:
each arborescence is an orientation of (and in particular, restricted to) the edge set of the
“first stage”. Hence, although the connectivity of a terminal set is primarily ensured by the
arborescence the “first-stage” edges already connect all terminal sets.

We use edge variables xe, ∀e ∈ E , for representing the solution and yka, ∀a ∈ A, for the
kth arborescence and terminal set Tk, k ∈ K = {1, . . . ,K}. Moreover, an arbitrary terminal
rk ∈ Tk is set as root node for terminal set k, ∀k ∈ K. Again, let Vk

r := V\{rk} and
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Tk
r := Tk\{rk}, ∀k ∈ K. The semi-directed cut formulation for the SFP reads as follows.

(SFPsdc) min
∑
e∈E

cexe

s.t. xe ≥ yki j + ykji ∀k ∈ K, ∀e = {i, j} ∈ E (6.45)

yk(δ−(S)) ≥ 1 ∀k ∈ K, ∀S ⊆ Vk
r : S ∩ Tk

r , ∅ (6.46)

x ∈ {0, 1} |E | (6.47)

y1...K ∈ {0, 1} |A | ·K (6.48)

Although it is possible to transform anSFP instance into an SSTP instance (Theorem5.5)
and directly use the semi-directed formulation (SSTPsdc2)—which is stronger than the
undirected model—we prefer this (cleaner) formulation instead which differs slightly from
the SSTP formulation. Basically, the capacity constraints (6.45) work in the opposite
direction: here, only relevant selected “first-stage” edges have to be oriented—an edge is
relevant if its removal disconnects Tk , otherwise it is irrelevant. Moreover, only selected
“first-stage” edges can be used for building valid arborescences.

Lemma 6.17. Formulation (SFPsdc) models the Steiner forest problem correctly.

Proof. Let Ẽ ⊆ E be an optimum solution to an SFP instance. Since any terminal set
Tk, k ∈ K, is connected by Ẽ it is possible to construct an rk-rooted arborescence containing
all vertices Tk by using only edges in Ẽ , for each set k ∈ K. Thereby, all irrelevant edges
can be ignored. Orienting the edges Ẽ in this way induces values for variables y1...K . By
setting x to the incidence vector representing Ẽ we obtain a solution which is valid for
(SFPsdc) and has the same objective value.

On the other hand, an optimum solution to (SFPsdc) implies that each designated
root node connects its related terminal set by directed paths (constraints (6.46)). The
constraints (6.45) enforce that an edge is payed for whenever a related arc is used. Hence,
the edge set Ẽ = {e ∈ E | xe = 1} gives a feasible solution to the Steiner forest problem
with the same objective value. �

Remark 6.18. This model and all following SFP models can be expanded and strengthened
by flow-balance constraints, as for the STP. For (SFPsdc) the flow-balance constraints read:

yk(δ+(v)) ≥ yk(δ−(v)) ∀k ∈ K, ∀v ∈ V\Tk (Fb)

Polzin and Daneshmand [142] mentioned that constraints (Fb) strengthen the directed
STP models (STPdc) and (STPdf). Unfortunately, the presented instance, which should
show the strict inequality, works only for the directed Steiner tree problem (where the input
graph does not need to be a bidirection). However, an instance can be found in the article
by Ljubić, Weiskircher, Pferschy, Klau, Mutzel, and Fischetti [125] (cf. Figure 3).

Although these constraints make the formulations stronger, we consider all following
SFP models without adding constraints (Fb) since they obviously do not influence the
relative strength and the relationships of the SFP models.

Let (SFPuc) denote the undirected cut-based formulation for the SFP, i.e., formulation
(NDPuc) from Section 3.2 with connectivity function (3.3) for the right-hand side of the
undirected cuts.
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The polytopes of the LP-relaxations of the SFP formulations are defined as follows:

PSFP
uc =

{
x ∈ [0, 1] |E |

��� x satisfies (3.1) with connectivity function (3.3)
}

PSFP
sdc =

{
(x, y1...K ) ∈ [0, 1] |E | × [0, 1] |A | ·K

��� (x, y1...K ) satisfies (6.45) and (6.46)
}

To compare the formulations we consider the linear projection of the semi-directed cut
formulation onto the space of undirected x variables, denoted by Projx

(
PSFP
sdc

)
.

Lemma 6.19. PSFP
uc ) Projx(PSFP

sdc ), i.e., the semi-directed cut-based formulation (SFPsdc)

is stronger than the undirected cut-based formulation (SFPuc).

Proof. The arguments are the same as in the proof of Lemma 6.17: any solution (x̃, ỹ1...K ) ∈

PSFP
sdc contains feasible arborescences for all terminal sets due to constraints (6.46). These

arborescences only use selected x variables (constraints (6.45)). Hence, dropping the y

variables leaves a feasible solution to formulation (SFPuc) with the same objective value.
The strict inequality follows from any example showing that the directed cut formulation

of the STP is stronger than the undirected cut formulation, cf. e.g., Figure 3.1. When
interpreted as SFP instance there is one terminal set and (SFPsdc) is identical to (STPdc)
whereas (SFPuc) is identical to (STPuc). �

Next, we introduce an equivalent flow-based formulation. Thereby, we again use
undirected edge variables which can be used for routing flow for every terminal set.

(SFPsdf) min
∑
e∈E

cexe

s.t. xe ≥ f k,t1i j + f k,t2ji

∀k ∈ K, ∀e = {i, j} ∈ E,
∀t1, t2 ∈ Tk

r
(6.49)

f k,t (δ−(i)) − f k,t (δ+(i)) =


−1, if i = rk

1, if i = t
0, otherwise


∀k ∈ K, ∀t ∈ Tk

r ,

∀i ∈ V
(6.50)

f ∈ [0, 1] |A | ·t
∗
r (6.51)

x ∈ {0, 1} |E | (6.52)

Restricting this model to a terminal set basically results in the flow-based Steiner tree
model (STPdf2). Hence, formulation (SFPsdf) models the Steiner forest problem correctly.

The polytope of this formulation is given as follows.

PSFP
sdf =

{
( f , x) ∈ [0, 1] |A | ·t

∗
r × [0, 1] |E |

��� ( f , x) satisfies (6.49), (6.50)
}

Let Projx
(
PSFP
sdf

)
denote the linear projection of PSFP

sdf into the x variable space.

Observation 6.20. Projx
(
PSFP
sdc

)
= Projx

(
PSFP
sdf

)
, i.e., the semi-directed cut- and flow-

based formulations (SFPsdc) and (SFPsdf) are equivalent.

Proof. Restricting both formulations to one k ∈ K results in models (STPdc) and (STPdf2),
respectively; Lemma 3.9 states the equivalence of these two models. �
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Figure 6.5: (a) Optimum solution to an SFP instance with 3 terminal set: circles (set 1), diamonds
(set 2), and rectangles (set 3), and their designated root nodes r1, r2, r3. (b) and (c) show optimal
arborescences for “scenario” 1 and “scenario” 2, respectively, w.r.t. the following α values of an
optimal solution to (SFPα:dc): α11 = 1, α22 = 1, α13 = 1. All remaining α variables are 0 and
moreover, “scenario” 3 does not use any arcs.

Notice that—analogously to the STP—it is possible to describe an equivalent flow-
based formulation by using arc variables zki j, z

k
ji, ∀{i, j} ∈ E, ∀k ∈ K, with constraints

zki j ≥ f k,ti j , ∀k ∈ K, ∀t ∈ Tk
r , ∀(i, j) ∈ A, and xe ≥ zki j + zkji, ∀e = {i, j} ∈ E, ∀k ∈ K, which

replace constraints (6.49).

Directed formulations. A long-standing open problem is the existence of a directed cut-
based formulation for the Steiner forest problem. Magnanti and Raghavan [130] remark
that “there does not seem to be a straightforward way to formulate a directed cut model”.
We (almost) close this gap by presenting an expanded directed cut-based model in the
following. Again, we assign an arbitrary terminal rk ∈ Tk as designated root node for
terminal set k, ∀k ∈ K.

Notice that if it is known which terminal sets are interconnected it is easy to find
feasible arborescences which connect all terminal sets by constructing disjoint Steiner
trees. Figure 6.5 illustrates a small example with a solution given by Figure 6.5 (a). Here,
sets 1 and 3 are connected whereas set 2 is contained in another connected component. By
using the root nodes with minimal indices the connected components can be oriented and
we obtain the disjoint directed trees depicted in Figure 6.5 (b) and (c), respectively.

There are two key ideas to our new formulation. First, we model a hierarchy of the
terminal sets and their designated root nodes, respectively, which indicates which sets are
connected. Second, for each terminal set k ∈ K we introduce a “scenario” in which rk is a
root node of an arborescence. In the following we describe both ideas in more detail.



6.5. The Steiner forest problem 95

To model the hierarchy, we introduce additional variables αi j ∈ {0, 1} for each pair
of terminal sets i, j ∈ K, with i ≤ j. Thereby, αi j = 1 if r j (and all vertices in T j) are
contained in the arborescence rooted at r i; αii = 1 implies that r i is a root node of an
arborescence itself, cf. Figure 6.5. We call r i with αii = 1 a parent node and say that r i

is the parent of r j if αi j = 1 and contrarily, r j is the child of r i; the same notation is used
for the sets. Each root node is either a parent or a child node and r1 is always a parent
node—we set α11 = 1 (this is implied in the model by constraints (6.54)).

Now, we introduce a “scenario” for each terminal set such that the kth “scenario”
contains exactly those edges of the tree rooted at rk . Again, consider Figure 6.5: “scenario” 1
contains the tree (arborescence) rooted at r1 which connects T1 and T3 as shown by
Figure 6.5 (b). Moreover, “scenario” 3 is empty since T3 is connected to r1 in “scenario” 1
and the solution of “scenario” 2 is shown in Figure 6.5 (c).

Although we mainly focus on cut-based formulations in this thesis we first introduce
the flow-based formulation here since the comparison of the formulations seems to be
more intuitive for flow-based models. Afterwards, we present an equivalent cut-based
formulation.

We need some additional notations. Let Tk...K :=
⋃

k≤`≤K T`, ∀k ∈ K, denote the
union of terminal sets k, . . . ,K , and let Tk...K

r := Tk...K\{rk} be the same set of terminals
without the kth root node. In the following model we have a flow from root node rk in
scenario k ∈ K to each terminal t ∈ Tk...K

r . Therefore, the overall number of commodities
is |A| ·

∑
k∈K Tk...K

r =: F. Last but not least, set(t) gives the index of the set containing a
terminal t ∈ T1...K , i.e., set(t) = i ⇔ t ∈ T i.

The directed flow-based formulation reads as follows.

(SFPα:df) min
∑
e∈E

cexe

s.t. xe ≥
∑
k∈K

xke ∀e ∈ E (6.53)∑
1≤ j≤k

αjk = 1 ∀k ∈ K (6.54)

αkk ≥ αk`
∀k ∈ K\{1,K},
∀` ∈ {k + 1, . . . ,K} (6.55)

xke ≥ f k,t1i j + f k,t2ji

∀k ∈ K, ∀e = {i, j} ∈ E,
∀t1, t2 ∈ Tk...K

r
(6.56)

f k,t (δ−(i)) − f k,t (δ+(i)) =


−αk`, if i = rk

αk`, if i = t
0, otherwise


∀k ∈ K, ∀t ∈ Tk...K

r ,

with set(t) = `,
∀i ∈ V

(6.57)

f ∈ [0, 1] |A | ·F (6.58)

α ∈ {0, 1}0.5·K ·(K+1) (6.59)

x ∈ {0, 1} |E | (6.60)

x1...K ∈ {0, 1} |E | ·K (6.61)

(6.54) and (6.55) imply a valid assignment of theα variables bymodeling a flat hierarchy
between the sets: a root node is either a parent or it is a child of exactly one other root node.
(6.54) states that every root rk, k ∈ K, has to be a parent (αkk = 1), or it has to be a child
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and it has to be contained in another arborescence (∃ j < k : αjk = 1). (6.55) states that if a
root node r` is a child of another root node rk then rk has to be a parent node.

Constraints (6.56) and (6.57) model a valid flow: a flow of value αk` is send from a root
node rk to a terminal t ∈ Tk...K

r with set(t) = `. Hence, if rk is the parent of set ` (` ≥ k)
each terminal in T` is reachable from rk .

The constraints (6.56) ensure the correct assignment of flow- and edge variables, similar
to the Steiner tree problem and formulation (STPdf2). Here, the constraint affects each
“scenario” separately. The fact that an optimum solution to the SFP consists of a disjoint
set of trees—hence, all “scenario” solutions are disjoint—is represented by the sum in
constraints (6.53): any edge used in any “scenario” needs to be payed for.

Lemma 6.21. (SFPα:df) models the Steiner forest problem correctly.

Proof. Let Ẽ ⊆ E be an optimal solution to the SFP. We construct a solution to (SFPα:df)
and start with x̃ being the incidence vector of Ẽ and with α̃ := 0. Now, for each connected
component C in G[Ẽ] set α̃ii = 1 if r i is the root node with lowest index contained in C
and for all other root nodes r j ∈ C, j > i, set α̃i j = 1. Notice that α̃ satisfies (6.54) and
(6.55) and that each terminal (set) has exactly one assigned parent node. After fixing the
α variables the remaining part of the model describes a union of disjoint Steiner trees, one
for each connected component. First, a connected component with parent node rk, k ∈ K,
is represented by edge variables x̃k . Second, Ẽ can be oriented such that each connected
component is an arborescence rooted at its parent node. Then, the arcs of the arborescences
can be used for constructing flows from each parent node rk to each terminal t ∈ Tk

r or
t ∈ T` with ` > k and αk` = 1. Since the connected components are disjoint constraint
(6.53) is satisfied. Overall, the constructed solution is feasible for (SFPα:df) and has the
same objective value.

An optimum solution ( f̃ , α̃, x̃, x̃1...K ) to (SFPα:df) implies a hierarchy of the terminal
sets with parent and child sets. Thereby, every set has exactly one assigned parent; in
particular, every terminal of a set has the same parent. Hence, due to (6.57) there exists
a flow of one unit from each terminal to the assigned parent such that every terminal is
connected. Constraints (6.56) and (6.53) collect the used edges, ensure the trees being
disjoint, and hence, Ẽ := {e ∈ E | x̃e = 1} is a feasible solution to the SFP with the same
cost. �

The polytope of the flow-based model (SFPα:df) is defined as follows.

PSFP
α:df =

{
( f , α, x, x1...K ) ∈ [0, 1] |A | ·F × [0, 1]0.5·K ·(K+1) × [0, 1] |E | × [0, 1] |E | ·K

���
( f , α, x, x1...K ) satisfies (6.53)–(6.57)

}
Let Projx

(
PSFP
α:df

)
denote the linear projection of PSFP

α:df into the x variable space.

Lemma 6.22. Projx(PSFP
sdf ) ) Projx(PSFP

α:df), i.e., the directed flow formulation (SFPα:df) is
stronger than the semi-directed flow formulation (SFPsdf) .

Proof. Let ( f̃ , α̃, x̃, x̃1...K ) ∈ PSFP
α:df. For better overview we divide the proof into several

parts. Parts (A)–(D) show that Projx(PSFP
sdf ) ⊇ Projx(PSFP

α:df) and (E) gives an example where
the strict inequality holds.
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Figure 6.6: Schematic view on the involved flows in the proof of Lemma 6.22. rk and r` are root
nodes for sets Tk and T` , respectively, with ` < k, and t ∈ Tk

r . (a) The original flows. (b) The
reverse flow f̌ k,r

` from rk to r` , cf. part (B) of the proof, and the combined flow f̄ k,`,t from rk to t
over r` , cf. part (C).

(A) Flows are acyclic. We assume that any flow f̃ k,t, ∀k ∈ K, ∀t ∈ Tk...K
r , is acyclic and

satisfies f̃ k,ti j = 0 ∨ f̃ k,tji = 0, ∀{i, j} ∈ E . Otherwise it is valid to modify the flow f̃ such
that the assumption is satisfied. Let a1 ∈ {(i, j), ( j, i)} and let a2 be the reverse arc, denoted
by rev(a1). Now, if (w.l.o.g.) f̃ k,ta1 ≥ f̃ k,ta2 > 0 we can set f̃ k,ta1 := f̃ k,ta1 − f̃ k,ta2 and f̃ k,ta2 := 0.
Afterwards, f̃ is still a valid flow (both f̃ (δ−(·)) and f̃ (δ+(·)) decrease by f̃ k,ta2 for i and j)
with the same value and all constraints in (SFPα:df) are still satisfied.

(B) Reverse flow. We introduce additional flow variables f̌ k,r
` , ∀` ∈ {1, . . . ,K − 1}, ∀k ∈

{` + 1, . . . ,K}, i.e., with k > `. Notice that these flow variables do not exist since we have
only flow variables f k,t for a set k and terminal t ∈ Tk...K

r , i.e., k ≤ set(t). The values of
the new variables are set such that the flow from r` to rk is reversed, cf. Figure 6.6:

∀a ∈ A, ∀` ∈ {1, . . . ,K − 1}, ∀k ∈ {` + 1, . . . ,K} : f̌ k,r
`

a := f̃ `,r
k

rev(a)

(C) Flow from rk to t over r` . Now, we construct a flow f̄ k,`,t for a set k ∈ K\{1}, a
terminal t ∈ Tk

r , and a set ` ∈ {1, . . . , k − 1}. This flow will send α̃`k from rk to t (over r`)
by using the reverse flow from r` to rk (cf. Figure 6.6):

f̄ k,`,t := f̃ `,t + f̌ k,r
`

(C.1) Feasibility and value. We show that f̄ k,`,t is a feasible flow from rk to t with value
α̃`k , ∀k ∈ K\{1}, ∀t ∈ Tk

r , ∀` ∈ {1, . . . , k − 1}. Let i ∈ V . We have:

f̄ k,`,t (δ−(i)) − f̄ k,`,t (δ+(i))

= f̃ `,t (δ−(i)) + f̌ k,r
`
(δ−(i)) − f̃ `,t (δ+(i)) − f̌ k,r

`
(δ+(i))

Case i = rk : f̃ `,t (δ−(rk)) − f̃ `,t (δ+(rk)) = 0 since rk is an internal node under flow
f̃ `,t . Moreover, f̌ k,r

`
(δ−(rk)) − f̌ k,r

`
(δ+(rk)) = −α̃`k (the reverse flow).

Case i = t: Similar arguments: f̌ k,r
`
(δ−(t)) − f̌ k,r

`
(δ+(t)) = 0 since t is an internal

node under f̌ k,r
` and f̃ `,t (δ−(t)) − f̃ `,t (δ+(t)) = α̃`k .
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Case i = r`: f̃ `,t (δ−(r`)) − f̃ `,t (δ+(r`)) = −α̃`k and f̌ k,r
`
(δ−(r`)) − f̌ k,r

`
(δ+(r`)) =

α̃`k . Hence, the sum is 0.
Otherwise : Since f̃ `,t and f̌ k,r

` are flows the sum is 0.

Hence, f̄ k,`,t is a feasible flow from rk to t with value α̃`k .

(C.2) Acyclic f̄ k,`,t . Again, we assume that f̄ is acyclic. Otherwise, we modify the flow
similar to before. Consider an edge {i, j} ∈ E . Let a1 ∈ {(i, j), ( j, i)} with a2 = rev(a1) and
with f̄ k,`,ta1 ≥ f̄ k,`,ta2 > 0. Then, we set f̄ k,`,ta1 := f̄ k,`,ta1 − f̄ k,`,ta2 = f̃ `,ta1 + f̌ k,r

`

a1 − f̃ `,ta2 − f̌ k,r
`

a2

and f̄ k,`,ta2 := 0. Notice that for any arc a1, with a2 = rev(a1), it holds f̄ k,`,ta1 ≤ max{0, f̃ `,ta1 +

f̌ k,r
`

a1 − f̃ `,ta2 − f̌ k,r
`

a2 }

(C.3) f̄ k,`,t1i j + f̄ k,`,t2ji ≤ x̃`e . Now, consider a set k ∈ K\{1}, two terminals t1, t2 ∈ Tk
r , ` ∈

{1, . . . , k − 1}, and an edge e = {i, j} ∈ E , again with the two related arcs a1 ∈ {(i, j), ( j, i)}
and a2 = rev(a1). We argue that f̄ k,`,t1a1 + f̄ k,`,t2a2 ≤ x̃`e .

If one flow is zero the inequality holds: E.g., if f̄ k,`,t2a2 = 0wehave: f̄ k,`,t1a1 + f̄ k,`,t2a2 = f̄ k,`,t1a1 =

f̃ `,t1a1 + f̌ k,r
`

a1 = f̃ `,t1a1 + f̃ `,r
k

a2 ≤ x̃`e . The last inequality is true due to constraint (6.56). The
part with f̄ k,`,t1a1 = 0 works analogously.

Otherwise, if both flows are > 0, we have: f̄ k,`,t1a1 + f̄ k,`,t2a2

(C.2)
= f̃ `,t1a1 + f̌ k,r

`

a1 − f̃ `,t1a2 − f̌ k,r
`

a2 +

f̃ `,t2a2 + f̌ k,r
`

a2 − f̃ `,t2a1 − f̌ k,r
`

a1 = f̃ `,t1a1 − f̃ `,t1a2 + f̃ `,t2a2 − f̃ `,t2a1 ≤ x̃`e , again by constraint (6.56).

(D) Solution to PSFP
sdf . Due to the previous discussion we are now able to construct a

solution ( f̂ , x̂) ∈ PSFP
sdf with the same objective value.

(D.1) Variable assignment. We use the same values for the undirected edges by assigning
x̂ := x̃. Trivially, x̂ ∈ [0, 1] |E |.
The flow variables f̂ k,t, ∀k ∈ K, ∀t ∈ Tk

r , are assigned the following values:

f̂ k,t := f̃ k,t +
∑

1≤`<k
f̄ k,`,t

In case k = 1 the sum over ` is empty. Obviously, it holds f̂ k,t ≥ 0; the upper bound of 1
follows from (D.3).

(D.2) Flow conservation and flow value 1. Consider a set k ∈ K, a terminal t ∈ Tk
r , and a

vertex i ∈ V . By inserting the definition we get:

f̂ k,t (δ−(i)) − f̂ k,t (δ+(i))

= f̃ k,t (δ−(i)) +
∑

1≤`<k
f̄ k,`,t (δ−(i)) − f̃ k,t (δ+(i)) −

∑
1≤`<k

f̄ k,`,t (δ+(i))

Case i = rk : f̃ k,t (δ−(rk)) − f̃ k,t (δ+(rk)) = −α̃kk and for each `, 1 ≤ ` < k, it
holds f̄ k,`,t (δ−(rk)) − f̄ k,`,t (δ+(rk)) = −α̃`k (due to (C.1)). Overall we get −α̃kk +∑

1≤`<k −α̃`k = −1 (due to constraint (6.54)).
Case i = t: Analogously, f̃ k,t (δ−(t)) − f̃ k,t (δ+(t)) = α̃kk and for each `, 1 ≤ ` < k,
it holds f̄ k,`,t (δ−(t)) − f̄ k,`,t (δ+(t)) = α̃`k (due to (C.1)). Overall we get α̃kk +∑

1≤`<k α̃`k = 1 (due to constraint (6.54)).
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Figure 6.7: Instance for the Steiner forest problem where the LP relaxation of the directed flow
formulation gives a better bound than the semi-directed flow formulation, cf. part (E) in the proof
of Lemma 6.22. (a) depicts the input graph, (b) and (c) give valid flows for sets 1 and 2 (dashed
arcs route flow of 0.5), and (d) gives an optimum integer solution which is also an optimum solution
(projected to undirected x variables) of the LP relaxation of (SFPα:df).

Otherwise: Since f̃ k,t and f̄ k,`,t (δ−(i)), 1 ≤ ` < k, are flows from rk to t (see (C.1))
the sum is 0.

We conclude that f̂ k,t is a flow with value 1 from rk to t, ∀k ∈ K, ∀t ∈ Tk
r .

(D.3) x̂e ≥ f̂ k,t1i j + f̂ k,t2ji . Last but not least, we need to show that constraints (6.49) are

satisfied. Let e = {i, j} ∈ E , k ∈ K, and t1, t2 ∈ Tk
r .

f̂ k,t1i j + f̂ k,t2ji ≤ f̃ k,t1i j +
∑

1≤`<k
f̄ k,`,t1i j + f̃ k,t2ji +

∑
1≤`<k

f̄ k,`,t2ji

(6.56)
≤ x̃ke +

∑
1≤`<k

(
f̄ k,`,t1i j + f̄ k,`,t2ji

)
(C.3)
≤ x̃ke +

∑
1≤`<k

x̃`e ≤
∑

1≤k≤K
x̃ke

(6.53)
≤ x̃e = x̂e

Notice that in case k = 1 the sum(s) over ` < k are again empty.

(E) Example for strict inequality. Figure 6.7 gives an example with x ∈ Projx(PSFP
sdf ) but

x < Projx(PSFP
α:df). The instance for the SFP has unit edge costs and two terminal sets

T1 = {1, 4} and T2 = {2, 3} with r1 = 1, r2 = 2. The optimum solution to (SFPsdc) sets
xe := 0.5, ∀e ∈ E , and the flows are given by Figure (b) and (c) with dashed arcs routing a
flow of value 0.5. Hence, the optimum solution value of the LP relaxation of (SFPsdf) is 2.

On the other hand, this solution is not valid for model (SFPα:df). A value of 0.5 for each
edge implies a flow for the first terminal set as depicted in Figure (b). Then, it is not possible
to route any flow for the second set (from node 2 to 3) without increasing the x variables.
Hence, it has to hold α12 = 1. However, sending a flow with value 1 from node 1 to nodes 2
and 3 while using the same arcs as in (b) is not possible. It is easy to see that the optimum
solution to the LP relaxation of (SFPα:df) has a value of 3 (e.g., as in Figure (d)). �
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With (SFPα:df) at hand we are able to formulate a directed cut-based formulation for the
Steiner forest problem. Thereby, constraints (6.63) and (6.64) for the correct assignment of
the α variables are the same as in the flow-based model (SFPα:df).

(SFPα:dc) min
∑
e∈E

cexe

s.t. xe ≥
∑
k∈K

(zki j + zkji) ∀e = {i, j} ∈ E (6.62)∑
1≤ j≤k

αjk = 1 ∀k ∈ K (6.63)

αkk ≥ αk` ∀k ∈ K\{1,K}, ∀` ∈ {k + 1, . . . ,K} (6.64)

zk(δ−(S)) ≥ αk`
∀k ∈ K, ∀` ∈ {k, . . . ,K},
∀S ⊆ V : S ∩ T` , ∅, rk < S

(6.65)

α ∈ {0, 1}0.5·K ·(K+1) (6.66)

x ∈ {0, 1} |E | (6.67)

z1...K ∈ {0, 1} |A| ·K (6.68)

Constraints (6.65) are the directed cuts which depend on the “scenario” k, the terminal
set `, and the related αk` variable. If a root node rk is an assigned parent node for terminal
set T` , i.e., αk` > 0, then all directed cuts separating rk from any terminal in T` need to
have a value of at least αk` .

Constraint (6.62) is a simple capacity constraint which implies that any used arc in any
“scenario” is payed for in the objective function.

Lemma 6.23. (SFPα:dc) models the Steiner forest problem correctly.

Proof. This proof is similar to the proof of Lemma 6.21 (correctness of (SFPα:df)). Let
Ẽ ⊆ E be an optimal solution to the SFP. Startwith α̃ := 0. For each connected componentC
inG[Ẽ] set α̃ii = 1 if r i is the root node with lowest index contained in C and ∀r j ∈ C, j > i,
set α̃i j = 1. Now, Ẽ can be oriented such that each connected component is an arborescence
rooted at its parent node. This procedure gives values to variables z1...K and x and induces
a feasible solution to (SFPα:dc) with the same objective value.

The opposite direction follows directly from the preceding discussion: an optimum
solution (α̃, x̃, z̃1...K ) to (SFPα:dc) implies a hierarchy of the terminal sets with parent and
child sets and constraints (6.65) ensure that each terminal set is connected to its parent node.
Hence, Ẽ := {e ∈ E | x̃e = 1} is a feasible solution to the SFP with the same cost. �

As final step we compare both directed flow- and cut-based models. The polytope of
the cut-based model is denoted by:

PSFP
α:dc =

{
(α, x, z1...K ) ∈ [0, 1]0.5·K ·(K+1) × [0, 1] |E | × [0, 1] |A| ·K

���
(α, x, z1...K ) satisfies (6.62)–(6.65)

}
Let Projx

(
PSFP
α:dc

)
denote the linear projection of PSFP

α:dc into the x variable space.
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Lemma 6.24. Projx
(
PSFP
α:df

)
= Projx

(
PSFP
α:dc

)
, i.e., the directed flow- and cut-based formu-

lations (SFPα:df) and (SFPα:dc) are equivalent.

Proof. The constraints concerning the α variables are identical in both models. When
considering one particular terminal set k ∈ K constraints (6.57) model a flow of value αk`
from rk to each terminal t ∈ T` , for each ` ∈ {k, . . . ,K} (except rk itself). On the other
hand, the directed cuts (6.65) ensure that each directed cut separating rk and t has a value
of at least αk` . This is obviously equivalent. Moreover, similar to the equivalence of the
STP models (STPdf), (STPdc), and (STPdf2), constraints (6.53) and (6.56) on the one hand
and constraint (6.62) on the other hand are equivalent, too. �

Remark 6.25. We like to shortly mention a possibility for modeling a cut-based formulation
with fewer variables. This model contains the same α variables and variables z ∈ {0, 1} |A |
instead of x and z1...K . Then, the objective function minimizes

∑
e={i, j }∈E ce(zi j + zji). The

constraints are the previously used constraints (6.63) and (6.64) combined with the directed
cuts z(δ−(S)) ≥

∑
1≤i≤k: r i<S αik, ∀k ∈ K, ∀S ⊆ V : S ∩ Tk , ∅.

We remark that this model contains fewer variables, but it is also weaker than (SFPα:dc).

Improved undirected flow formulation. Magnanti and Raghavan [130] and Raghavan
[146] introduced an improved undirected flow formulation for the SFP; we denote this model
by (SFPiuf). The formulation builds a set of arborescences which connect the terminal sets.
Thereby, several sets can be contained in the same arborescence. This flow formulation is
shown to be stronger than the undirected cut and flow formulation. A drawback is the large
size of the formulation: the number of commodities is about

∑
k∈K k · |Tk | and the number

of constraints is at least
∏

1≤k≤K |Tk...K | and hence, exponential in K .
It is not clear how this formulation is related to our formulations. On the one hand,

(SFPiuf) is not weaker than (SFPsdc) and (SFPsdf) since it gives a better bound on the instance
presented in Figure 6.7. However, the strict inequality is not clear and moreover, we are not
aware of any instances where (SFPα:df) and (SFPα:dc) give different bounds than (SFPiuf).

Open problem 6.2. What is the relationship of the semi-directed and directed flow- and
cut-based formulations and the improved undirected flow formulation [130] for the Steiner
forest problem?

6.5.1 Partial 2-trees

Partial 2-trees are an interesting graph class since many NP-hard problems can be solved in
polynomial time on such graphs. Moreover, many problems can be characterized completely
by an LP formulation.

For the Steiner tree problem there exists a polynomial-time algorithm by Wald and
Colbourn [170] and complete descriptions were given by Margot, Prodon, and Liebling
[132] and Goemans [72, 73].

The Steiner forest problem is solvable in polynomial time, too, due to an algorithm by
Bateni, Hajiaghayi, and Marx [13]. However, to the best of our knowledge, there does not
exist a complete LP characterization of the SFP on partial 2-trees. The strongest known
formulation (SFPiuf) by Magnanti and Raghavan [130]—see also Section 6.5—does not
have this property; an instance is given by Figure 6.8. Here, all edges have unit cost and
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(a)

1
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(b)

1

2 3

4

(c)

Figure 6.8: Instance for the SFPwhere the input graph is a partial 2-tree and the LP relaxations of the
directed formulation (SFPα:dc) and the improved undirected flow formulation [130] have a fractional
optimum solution. We have unit edge costs and T1 = {1, 4}, T2 = {2, 3}, and r1 = 1, r2 = 2.
(a) shows the input graph. (b) and (c) depict valid assignments for the z variables in model (SFPα:dc)

and for terminal sets 1 and 2, respectively. Thereby, every dashed arc has value 0.5 and the α
variables are assigned values α11 = 1, α12 = 0.5, α22 = 0.5.

the terminal sets are T1 = {1, 4} and T2 = {2, 3}. As discussed by Raghavan [146] the
optimum solution to the LP relaxation sets xe := 0.5 for all edges e leading to a solution
value of 2.5.

Notice that the optimum solution to the LP relaxation of (SFPsdc) has a value of 2; here,
xe := 0.5 for all edges e except x{2,3} := 0. Moreover, the optimum solution to the LP
relaxation of (SFPα:dc) is fractional, too. The solution is given by Figure 6.8 (b) and (c).

However, if vertex sets are instead T1 = {2, 3} and T2 = {1, 4}, with the same root
nodes, the optimum solution to the LP relaxation of (SFPα:dc) and (SFPα:df) is integer:
here, three arcs are selected, e.g., {(2, 1), (2, 3), (2, 4)}. The same holds for the improved
undirected flow formulation, see [130].

Open problem 6.3. Does there exist a complete linear description for the Steiner forest
problem on partial 2-trees?

For the stochastic Steiner tree problems there is no polynomial-time algorithm known,
cf. Section 5.2 and Open problem 5.4. Moreover, since the SFP is a special case of the
SSTP there is no complete description known.

Open problem 6.4. Does there exist a complete linear description for the (rooted) stochas-
tic Steiner tree problem on partial 2-trees?



Chapter 7

Two-stage branch&cut algorithm

This chapter introduces the decomposition of the stochastic cut-based models and contains
further details of the implemented two-stage branch&cut algorithm. We describe and
concentrate on the semi-directed formulation (SSTPsdc2). In Section 7.1, we start with
the master problem and the primal and dual subproblem. In the second part, Section
7.2, several types of optimality cuts for the two-stage b&c algorithm are introduced: L-
shaped optimality cuts with the method for strengthening these cuts (Section 7.2.1), integer
optimality cuts (Section 7.2.2), and further optimality cuts (Section 7.2.3). Moreover, we
consider the disaggregation of all constraints (Section 7.2.4) and a possibility for improving
the lower bound L (Section 7.2.5). In the last part, Section 7.3, the necessary adaptations
for—and differences to—the other semi-directed and directed formulations are described.

7.1 Decomposition

We start by recalling the semi-directed formulation (SSTPsdc2) introduced in Section 6.2.
Although it is possible to expand all stochastic models by additional constraints—in the first
stage as well as in the second stage—these inequalities do not strengthen the formulations.
We restrict the description to the base version and consider the additional inequalities and
their impacts on the algorithm in Section 8.1.4.

We follow the description of the two-stage b&c algorithm given in Section 2.3.3 and use
the same notations as before: K denotes the number of scenarios, K is the set of scenario
indices, x0 are the undirected first-stage variables, and yk the directed arc variables of the
kth scenario with k ∈ K.

(SSTPsdc2) min
∑
e∈E

c0
ex0

e +
∑
k∈K

pk
∑

e={i, j }∈E

cke (y
k
i j + ykji − x0

e)

s.t. yk(δ−(S)) ≥ 1 ∀k ∈ K, ∀S ⊆ Vk
r : S ∩ Tk

r , ∅ (6.12)

yki j + ykji ≥ x0
e ∀k ∈ K, ∀e = {i, j} ∈ E (6.13)

x0 ∈ {0, 1} |E | (6.14)

y1...K ∈ {0, 1} |A | ·K (6.15)

Following the description of Benders’ decomposition (Section 2.3.2) and the two-stage
b&c algorithm (Section 2.3.3) this model can be decomposed by introducing K + 1 new
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variables θ, θ1, . . . , θK which represent and replace the K scenarios as lower bounds for the
second-stage cost.

To improve readability we remove the specifier “SSTP” and the current first-stage
solution x̃0 from the identifier of the linear programs. The relaxed master problem reads as
follows.

(RMPsdc2) min
∑
e∈E

c0
ex0

e + θ

s.t. θ ≥
∑
k∈K

pkθk (7.1)

Optimality cuts (7.2)

x0 ∈ [0, 1] |E | (7.3)

θ, θ1, . . . , θK ≥ 0 (7.4)

Constraint (7.1) relates the overall second-stage cost represented by θ and the K second-
stage costs for the scenarios represented by θ1, . . . , θK . Constraints (7.2) are separated
optimality cuts as described in Section 7.2: L-shaped optimality cuts, integer optimality
cuts, and further optimality cuts. Notice that we again focus on the description of the
disaggregated L-shaped optimality cuts and moreover, notice that the master problem in its
basic version does not contain any further constraints.

The relaxed primal of the kth subproblem, k ∈ K, for a (fractional) first-stage solution
x̃0 ∈ [0, 1] |E | looks as follows.

(RSPsdc2) min
∑

e={i, j }∈E

cke (y
k
i j + ykji) −

∑
e∈E

cke x̃0
e

s.t. yk(δ−(S)) ≥ 1 ∀S ⊆ Vk
r : S ∩ Tk

r , ∅ (7.5)

yki j + ykji ≥ x̃0
e ∀e = {i, j} ∈ E (7.6)

yk ≥ 0 (7.7)

The LPs of the subproblems are similar to the directed cut-based model for the STP,
see Section 3.3.2. The models differ in the capacity constraints (7.6) such that any solution
is enforced to select some arcs corresponding to the selected first-stage edges and find a
feasible orientation. On the other hand, the directed cuts (7.5) are classical Steiner cuts.
Hence, we refer to these subproblems as restricted Steiner arborescence problems.

Notice that the constraint yk ≤ 1 is redundant since all right-hand sides are at most 1
and any solution ŷk � 1 is non-optimal (recall that edge costs are positive).

7.2 Optimality cuts

This part introduces several types of optimality cuts for the two-stage b&c algorithm: L-
shaped optimality cuts together with a strengthening procedure and a heuristic for improving
the cuts (Section 7.2.1), integer optimality cuts (Section 7.2.2), and further optimality cuts
(Section 7.2.3), respectively. Moreover, we consider the disaggregation of all introduced
constraints in Section 7.2.4. Last but not least, Section 7.2.5 discusses a possibility for
improving the lower bound L for the second-stage cost.
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7.2.1 L-shaped optimality cuts

To generate a disaggregated L-shaped optimality cut (Lc) as described in Section 2.3.2
an optimum solution to the dual subproblem is required. Consider a scenario k ∈ K and
let Sk denote the set of valid directed cuts, i.e., Sk := {S ⊆ Vk

r | S ∩ Tk
r , ∅}. The

dual subproblem of scenario k ∈ K is obtained by assigning variable αk
S
to each directed

cut S ∈ Sk and a constraint of type (7.5), and βke to each edge e ∈ E and a capacity
constraint (7.6). Moreover, there exists a constraint for each directed arc (i, j) ∈ A.

Notice that the term −
∑

e∈E cke x̃0
e in the objective function of (RSPsdc2) is a constant.

The kth dual problem for the first-stage solution x̃0 reads as follows.

(D:RSPsdc2) max
∑
S∈Sk

αk
S +

∑
e∈E

x̃0
eβ

k
e −

∑
e∈E

cke x̃0
e

s.t.
∑

S∈Sk : (i, j)∈δ−(S)

αk
S + β

k
e ≤ cke ∀(i, j) ∈ A, e = {i, j} (7.8)

αk, βk ≥ 0 (7.9)

Let (α̃k, β̃k) denote an optimum solution to (D:RSPsdc2) w.r.t. x̃0 with solution value
Rk(x̃0). An L-shaped optimality cut for formulation (SSTPsdc2) and scenario k ∈ K looks
as follows:

θk ≥
∑
S∈Sk

α̃k
S +

∑
e∈E

x0
e β̃

k
e −

∑
e∈E

cke x0
e

⇔ θk +
∑
e∈E

(
cke − β̃

k
e

)
x0
e ≥

∑
S∈Sk

α̃k
S (7.10)

Let θ̃k denote the current kth scenario cost. If θ̃k <
∑

S∈Sk α̃k
S
+

∑
e∈E x̃0

e(β̃
k
e − cke ), the

cut is violated and can be added to the master problem (RMPsdc2).
Notice that the right-hand side of the L-shaped cut and the coefficient next to x0

e, e ∈ E ,
is non-negative. The right-hand side is non-negative since αk ≥ 0 and due to the dual
constraints (7.8) it holds βke ≤ cke, ∀e ∈ E .

For the solution x0 = x̃0 the cut states that θk ≥ Rk(x̃0) which is the desired lower
bound on θk . Modifying the first stage gives different bounds. A component-wise larger first
stage (possibly) decreases the bound on θk whereas a smaller first-stage solution (possibly)
increases the bound. Let x̂0, x̌0 ∈ [0, 1] |E | such that x̂0  x̃0, i.e., x̂0

e ≥ x̃0
e, ∀e ∈ E ,

and ∃ê ∈ E : x̂0
ê
> x̃0

ê
, and x̌0 � x̃0 be defined analogously with ∃ě ∈ E : x̌0

ě
< x̃0

ě
.

Then, inserting x̂0 into the cut gives θk ≥ r̂ , with r̂ ≤ Rk(x̃0) − (x̂0
ê
− x̃0

ê
)(ck

ê
− β̃k

ê
) and

hence, the right-hand side is at most Rk(x̃0). Similarly for x̌0 the cut yields θk ≥ ř , with
ř ≥ Rk(x̃0) + (x̃0

ě
− x̌0

ě
)(ck

ě
− β̃k

ě
) which is at least Rk(x̃0).

Deriving stronger L-shaped optimality cuts. Since the (relaxed) master problemmainly
consists of L-shaped optimality cuts, the number of master iterations of the two-stage b&c
approach—and hence, the overall running time—is highly influenced by the strength of
the generated L-shaped cuts. Here, we propose a new and fast way of strengthening the
generated L-shaped cuts.

Most of the previously proposed strengthening approaches (cf. e.g., Fischetti, Salvagnin,
and Zanette [65], Magnanti and Wong [131], Papadakos [138], Sherali and Lunday [162],
Wentges [171]) require solving an auxiliary LP in order to generate a stronger L-shaped
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cut. Contrarily, our new approach is very efficient and it is able to find a stronger L-shaped
cut in linear time (with respect to the number of primal variables).

Let (x̃0, θ̃, θ̃1, . . . , θ̃K ) denote the current solution to the master problem (RMPsdc2).
Consider any scenario k ∈ K with the current optimum dual solution (α̃k, β̃k). Instead
of optimizing an additional problem, the L-shaped cuts (7.10) can be strengthened by
modifying (α̃k, β̃k) directly.

Notice that if for an edge e ∈ E the current first-stage solution satisfies x̃0
e = 0 then

the corresponding dual variable βke does not appear in the objective function of the dual
(D:RSPsdc2). Hence, it is not difficult to see that we deal with a highly degenerate LP
and one can expect that the optimum solutions to the dual subproblem (D:RSPsdc2) usually
produce positive slacks in the constraints (7.8); typically, if possible, a dual variable with
coefficient zero in the objective function will be set to zero by an LP solver. The idea
is to produce another LP-optimal solution (α̂k, β̂k) of the dual subproblem such that the
corresponding slacks are reduced to zero. Therefore, the values of the dual multipliers in
the associated L-shaped cut will be increased as follows:

For each edge e = {i, j} ∈ E set

β̂ke :=


cke − max

a∈{(i, j),(j,i)}

{ ∑
S∈Sk : a∈δ−(S)

α̃k
S

}
if x̃0

e = 0

β̃ke otherwise.
(7.11)

If β̂ke > β̃ke holds for at least one edge e ∈ E the strengthened L-shaped cut is given as

θk +
∑
e∈E

(
cke − β̂

k
e

)
x0
e ≥

∑
S∈Sk

α̃k
S (7.12)

Theorem 7.1. The strengthened L-shaped optimality cut (7.12) is valid and stronger than
the standard L-shaped optimality cut (7.10).

Proof. Consider two L-shaped cuts: the standard one implied by the optimum dual solution
(α̃k, β̃k) and the strengthened one implied by (α̃k, β̂k)with β̂k being set by (7.11). Obviously,
(α̃k, β̂k) is a feasible and LP-optimal solution to the dual subproblem (D:RSPsdc2) since β̂k
is set without violating any dual constraints.

Furthermore, notice that β̂ke ≥ β̃ke , for all e ∈ E , and that the right-hand side of both
cuts is identical. Since there exists e1 ∈ E such that β̂ke1

> β̃ke1
, the coefficient of x0

e1
is

strictly smaller for the strengthened L-shaped cut than for the standard one which concludes
the proof. �

Similar approaches were used for stabilizing a column generation approach for con-
strained tree problems, see Leitner, Ruthmair, and Raidl [121] and Leitner [120]. Moreover,
Álvarez-Miranda, Fernández, andLjubić [4] adopt ourmethod for aBenders’ decomposition
approach for the robust facility location problem.

Strengthening cuts through laminarity. Our method for strengthening L-shaped cuts
modifies only the βk variables of the current optimum dual solution. In particular, the
values of the αk variables remain unchanged and moreover, the set of αk variables remains
unchanged. By considering a different set of directed cuts the set of αk variables changes
and the dual solution may imply a different and stronger L-shaped cut. In this part we
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a1 a2a3

a4a5

a6

a7

Si Sj

Si∪j

Si∩j

Figure 7.1: Sketch of two crossing cuts Si and Sj with Si∪j and Si∩j , and all possible arcs lying in
the cuts. The cuts are drawn as dashed circles and arcs as solid lines.

discuss a heuristic for strengthening the L-shaped cuts. This approach is based on the
property of a laminar set of cuts and non-crossing cuts, cf. Figure 7.1.

Let Si, Sj ⊂ V, Si , Sj , be two non-empty and valid cuts. We say that Si covers Sj iff
δ(Si) ( δ(Sj). Let Sk be the set of valid cuts which are separated for scenario k ∈ K. If no
cut in Sk is covered we call Sk cover-free.

Observation 7.2. One may assume w.l.o.g. that Sk is cover-free.

Proof. We can check the property for all pairs of cuts in polynomial time in the size of |Sk |

and |E |. Now assume there exist Si, Sj ∈ S
k such that Si covers Sj . Let (α̃k, β̃k) denote the

current optimum dual solution. It is easy to see that there exists a dual solution for cut set
Sk \ {Sj} with the same objective value implying an L-shaped cut that is not weaker.

Consider the alternative solution (α̂k, β̂k) with α̂k
Si

:= α̂k
Si
+ α̃k

S j
, α̂k

S j
:= 0, and α̂k

S`
:=

α̃k
S`
, ∀S` ∈ Sk\{Si, Sj}. Each α variable has the same objective function coefficient and

hence, (α̂k, β̂k) has the same objective value. All dual constraints are also still satisfied
since the set of constraints αk

Si
is contained in is a subset of the constraints αk

S j
is contained

in. Hence, (α̂k, β̂k) is valid and still optimum. The L-shaped cut cannot be weaker since the
right-hand side remains unchanged and the values of the βk variables are unchanged—it
might even be possible to strengthen the cut since

∑
S∈Sk :(i, j)∈δ−(S) α

k
S
decreases for edges

contained in δ(Sj \ Si). �

Due to this observation we assume from now on that any separated and considered set
of cuts is cover-free.

Definition 7.3 (Laminarity, (non)-crossing Cuts). Two non-empty cuts Si, Sj ⊂ V, Si ,
Sj are non-crossing if and only if Si ⊂ Sj , or Sj ⊂ Si, or Si ∩ Sj = ∅. Do none of the
properties hold we call the two cuts crossing. A set of cuts S ⊆ 2V is called laminar if
each pair of cuts Si, Sj ∈ S, Si , Sj , is non-crossing.

Now, consider a scenario k ∈ K and two crossing cuts Si, Sj ∈ S
k , with Si , Sj ,

such that the intersection contains a terminal, i.e., with the notation Si∩j := Si ∩ Sj and
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Si∪j := Si ∪ Sj , it holds Tk
r ∩ Si∩j , ∅. Figure 7.1 sketches the situation and depicts a set

of relevant arcs {a1, . . . , a7} which are contained in δ−(Si), δ−(Sj), δ
−(Si∩j), and δ−(Si∪j),

respectively.
If α̃k

Si
> 0 and α̃k

S j
> 0 it is possible to utilize the current optimum dual solution (α̃k, β̃k)

and construct a new dual solution (α̂k, β̂k) by the followingmethod called Laminarizewhich
sets αk

Si
= 0 or αk

S j
= 0 (or both) and results in a laminar set (at least w.r.t. Si, Sj, Si∪j, Si∩j).

0. Input: Two crossing cuts Si, Sj ∈ S
k , Si , Sj , with Tk

r ∩ Si∩j , ∅, α̃k
Si
> 0, and

α̃k
S j
> 0

1. Initialization: (α̂k, β̂k) := (α̃k, β̃k), αk
min := min{α̃k

Si
, α̃k

S j
}

2. Increase-Step: α̂k
Si∪ j

:= α̃k
Si∪ j
+ αk

min, α̂
k
Si∩ j

:= α̃k
Si∩ j
+ αk

min

3. Decrease-Step: α̂k
S j

:= α̃k
S j
− αk

min, α̂
k
Si

:= α̃k
Si
− αk

min

4. Cut strengthening: Apply the cut strengthening (equation (7.11)) to (α̂k, β̂k)

The following lemmata show that the generated dual solution leads to a feasible and
stronger L-shaped optimality cut.

Lemma 7.4. After Step 1–3 of Laminarize the solution (α̂k, β̂k) is an optimumdual solution.

Proof. We verify the non-negativity of the variables and the feasibility of the dual con-
straints (7.8). First, α̂k ≥ 0 follows directly since αk

min is the minimum of α̃k
Si

and α̃k
S j

and
these are the only two variables with a decreasing value.

Second, we obviously only need to consider a constraint (7.8) corresponding to an arc
(u, v) which lies in one of the modified cuts δ−(Si), δ−(Sj), δ−(Si∪j), or δ−(Si∩j). Now,
consider such an arc (u, v) with the related constraint

∑
S∈Sk : (u,v)∈δ−(S) α̂

k
S
+ β̂ke ≤ cke . All

such types of arcs are depicted in Figure 7.1. The following table also summarizes the
relationship of the arcs and the related directed cuts: If an arc a` ∈ A is contained in a
cut S ∈ Sk we denote this with a filled or empty circle in the corresponding cell [S, a`] of
the matrix. Thereby, each row contains either filled or empty circles which depends on the
modification of the αk variable (decreased =̂ empty circle, increased =̂ filled circle).

a1 a2 a3 a4 a5 a6 a7

Si ◦ ◦ ◦ ◦

Sj ◦ ◦ ◦ ◦

Si∪j • • •

Si∩j • • •

As one can see, the number of filled circles in each column is not larger than the number
of empty circles. Hence, the value

∑
S∈Sk : (u,v)∈δ−(S) α̂

k
S
does not increase for any arc

(u, v) ∈ A (in particular, the sum decreases for arcs a6 and a7, respectively, which will be
important for Lemma 7.5). Since we consider β̂k = β̃k it follows that (α̂k, β̂k) is a feasible
dual solution.

Last but not least, we show that the objective value does not decrease. First, it is clear
that the second sum in the objective function does not change:

∑
e∈E x̃0

e β̃
k
e =

∑
e∈E x̃0

e β̂
k
e .
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For the first sum we need to recall that Si∪j and Si∩j are valid directed cuts since
Si∪j, Si∩j ⊆ Vk

r and both sets contain at least one terminal. Moreover, since αk
Si
+ αk

S j

decreases by 2αk
min and α

k
Si∪ j
+αk

Si∩ j
increases by 2αk

min it follows
∑

S∈Sk α̃k
S
=

∑
S∈Sk α̂k

S
.�

Lemma 7.5. If there exists an edge {u, v} ∈ E with u ∈ Si, v ∈ Sj, u, v < Si∩j then (α̂k, β̂k),
as the result of Laminarize, implies a stronger L-shaped optimality cut than (α̃k, β̃k).

Proof. The final application of the cut strengthening does not affect the validity of the dual
solution, cf. Theorem 7.1. Hence, (α̂k, β̂k) is a valid L-shaped optimality cut.

Now assume there exists an edge e = {u, v} ∈ E with u ∈ Si, v ∈ Sj, u, v < Si∩j . Notice
that the arcs (u, v) and (v, u) of the bidirection are arcs of type a6 and a7, respectively,
as depicted by Figure 7.1. As discussed in the proof of Lemma 7.4 for both arcs a ∈
{(u, v), (v, u)} it holds

∑
S∈Sk : a∈δ−(S) α̂

k
S
=

∑
S∈Sk : a∈δ−(S) α̃

k
S
− αk

min. Hence, β̂ke can be
increased by αk

min > 0 without violating both dual constraints. This procedure gives a
stronger optimality cut. �

Pareto optimal L-shaped cuts. The definition of Pareto optimal cuts was introduced by
Magnanti and Wong [131]. Informally, an L-shaped cut dominates another L-shaped cut
if the obtained bounds for the second-stage cost are never worse, and the bound has to be
strictly better for at least one first-stage solution. Originally, [131] described the aggregated
version of the optimality cuts (Lc1) but it is possible to extend this definition to the multicut
version (Lc), which we consider in the following.

Let the primal and dual subproblem be defined by (RSP(k, x̃0)) and (D:RSP(k, x̃0)),
respectively. Let X0 denote the set of feasible solutions for the master problem (RMP) and
Π̃k
opt the set of optimal dual solutions for (D:RSP(k, x̃0)).

Definition 7.6 (Dominance, Pareto optimality). Let π̂k, π̃k ∈ Π̃k
opt. The L-shaped opti-

mality cut θk + (π̂k)>Tk x0 ≥ (π̂k)>hk dominates the cut θk + (π̃k)>Tk x0 ≥ (π̃k)>hk if and
only if the two following properties hold:

1. ∀x̄0 ∈ X0 : (π̂k)>hk − (π̂k)>Tk x̄0 ≥ (π̃k)>hk − (π̃k)>Tk x̄0

2. ∃x̄0 ∈ X0 : (π̂k)>hk − (π̂k)>Tk x̄0 > (π̃k)>hk − (π̃k)>Tk x̄0

An L-shaped optimality cut θk + (π̂k)>Tk x0 ≥ (π̂k)>hk is Pareto optimal if and only if
there exists no dominating cut. Since a cut is implied by its dual solution we use both terms
analogously for dual solutions.

Magnanti and Wong [131] introduced a linear program for generating a Pareto optimal
L-shaped cut, which is an expansion of the dual problem (D:RSP(k, x̃0)):

(MW(k, x̃0, x̌0)) max πk(hk − Tk x̌0)

s.t. πk ∈ Π̃k
opt (7.13)

This LP is parameterized by the current first-stage solution x̃0 and another first-stage
solution x̌0. The objective is tomaximize the same objective function of the dual subproblem
but with x̌0 as multipliers. Moreover, the solution has to be optimal for the dual subproblem
w.r.t. x̃0, which is ensured by (7.13). If x̌0 is a core-point, i.e., it lies in the relative interior
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Figure 7.2: Counter example for Pareto optimality of the generated (and strengthened) L-shaped
optimality cuts for formulation (SSTPsdc2), cf. text. The directed cuts are indicated by dashed circles.

of the convex hull of X0, then the optimal solution to (MW(k, x̃0, x̌0)) implies a Pareto
optimal L-shaped cut, cf. [131].

Although the strengthened L-shaped optimality cuts perform very well in practice, see
Section 8.3 and 10.2, the cuts are not Pareto optimal in the sense of Magnanti and Wong. A
counter example is given by Figure 7.2. We consider the empty first-stage solution x̃0 = 0,
a scenario with terminal set {r, a, b}, and all edge costs are 1. Clearly, the optimum primal
solution to the subproblem is integer with x0

e1
= x0

e2
= 1 and cost 2. Figure 7.2 (a) and (b)

depict three valid directed cuts Sa, Sb, Sac. (a) shows an optimum dual solution (α̃k, β̃k)

by using Sa and Sb and by setting α̃k
Sa
= α̃k

Sb
= 1. Analogously, (b) gives a solution

(α̂k, β̂k) with α̂k
Sac
= α̂k

Sb
= 1. Hence, the dual βk variables for e1, e2, e4 are 0 for both

dual solutions. However, edge e3 is affected only by the first solution such that β̃ke3
= 0

whereas β̂ke3
= 1. Hence, the L-shaped optimality cut induced by solution (α̃k, β̃k) reads

θk + x0
e1
+ x0

e2
+ x0

e3
+ x0

e4
≥ 2 and for solution (α̂k, β̂k) the cut states θk + x0

e1
+ x0

e2
+ x0

e4
≥ 2.

Clearly, the second cut dominates the first one and both solutions are feasible and optimal
solutions to (D:RSP(k, x̃0)). Moreover, notice that the cut set of this example is laminar and
hence, the described method Laminarize does not give Pareto optimal L-shaped cuts either.

Open problem 7.1. Does there exist a combinatorial polynomial-time algorithm that gen-
erates a Pareto optimal L-shaped cut (for the SSTP)?

We close the discussion on Pareto optimal L-shaped cuts by mentioning two further
related publications. Sherali and Lunday [162] consideredmaximal nondominated cutswith
the property that “a Pareto optimal [. . . ] cut generated in the sense of Magnanti and Wong
(1981) is also maximal provided that the core point x0 is positive, but the converse is not
necessarily true”. The example of Figure 7.2 shows that the strengthened and laminarized
L-shaped cuts are also not maximal nondominated.

Papadakos [138] described enhancements to the method of Magnanti and Wong [131]
by showing that the constraint πk ∈ Π̃k

opt in the linear program (MW(k, x̃0, x̌0)) is not
necessary for generating a Pareto optimal L-shaped cut. However, the generated cut does
not cut off any particular first-stage solution anymore and the idea is to add some of these
cuts at the beginning of an L-shaped algorithm.
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7.2.2 Integer optimality cuts

In this section we use a similar notation as in Section 2.3.3. Moreover, we consider several
binary first-stage solutions x̃0, x̂0, x̌0, etc. with the associated 1-index sets S̃, Ŝ, Š, etc., with,
e.g., S̃ = {i | x̃0

i = 1}. In the following we skip these definitions and we always use the
same accent to indicate a solution and its corresponding index set. We use an index set
as representative for a solution such that the index set equals an edge set, and we use both
index set and solution interchangeably.

Let q̃ denote the value of the second-stage recourse function w.r.t. a binary first-stage
solution x̃0, i.e., q̃ :=

∑
k∈K pk q̃k with q̃k = Qk(x̃0) being the optimum solution value of

the subproblem (SP(k, x̃0)). Last but not least, let L be a valid lower bound for the expected
second-stage cost.

The standard integer optimality cut w.r.t. x̃0 and S̃ reads as follows.

θ ≥ (q̃ − L) ©«
∑
e∈S̃

x0
e −

∑
e<S̃

x0
e − |S̃ | + 1ª®¬ + L

⇔ θ +
∑
e∈S̃

(L − q̃)x0
e +

∑
e<S̃

(q̃ − L)x0
e ≥ (L − q̃)(|S̃ | − 1) + L (Ic)

Deriving stronger integer optimality cuts. By considering a binary first-stage solution
it is possible to derive new and stronger integer optimality cuts. The idea is based on the
following observation.

Observation 7.7. Let S̃ denote a first-stage solution with second-stage cost q̃. Then, q̃ is a
lower bound for the second-stage cost of any solution Š ⊆ S̃.

This is obviously true since removing an edge from the first stage cannot decrease the
cost in any scenario. By removing an edge existing connections are lost which can be
ignored (if an edge is not necessary for satisfying connections in a scenario) or need to be
newly established. In the latter case the new solution cannot be cheaper than the previous
one; this would be a contradiction to the optimality.

By following Observation 7.7 we introduce new integer optimality cuts:

θ + (q̃ − L)
∑
e<S̃

x0
e ≥ q̃ (Ic−)

The idea is that any sub-solution of S̃ has the same lower bound q̃ on the second-stage
cost and the lower bound for any other solution is L.

Lemma 7.8. Constraint (Ic−) is a valid integer optimality cut.

Proof. For proving validity and to improve readability we reformulate the cuts as follows:

θ ≥ q̃ + (L − q̃)
∑
e<S̃

x0
e . (7.14)

Inserting the first-stage solution S̃ gives the correct bound θ ≥ q̃ (since
∑

e<S̃ x̃0
e = 0).

Now, consider a first-stage solution Š with Š ( S̃. It holds e < S̃ ⇒ e < Š and hence,∑
e<S̃ x̌0

e = 0, and the cut states θ ≥ q̃; this is a valid bound due to Observation 7.7.
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Figure 7.3: Sketch showing the validity of the lower bound for the second-stage cost when the first
stage is expanded by E ′. In this example we consider the simplest case E ′ = {e}. (a) A fist-stage
solution S̃ (solid edges) with an optimum scenario solution S̃k (dashed edges). (b) A fist-stage
solution Ŝ with Ŝ = S̃ ∪ {e}, e < S̃, and the corresponding optimum scenario solution Ŝk (dotted
edges). (c) The solution Ŝk ∪ {e} for the same scenario under S̃. Since (c) depicts a heuristic
scenario solution to S̃ its scenario cost is at least as expensive as the cost of the solution in (a).

Last but not least, consider a solution S̄ with S̄\S̃ , ∅. With∆ :=
∑

e<S̃ x̄0
e the right-hand

side of (Ic−) is q̃ + (L − q̃)∆ = ∆L − (∆− 1)q̃ = L + (∆− 1)(L − q̃). Since L ≤ q̃ and ∆ ≥ 1
it follows that (∆ − 1)(L − q̃) ≤ 0 and hence, the right-hand side of (Ic−) is at most L. �

Lemma 7.9. If it holds q̃ > L and |S̃ | ≥ 1, then the integer optimality cut (Ic−) is stronger
than (Ic).

Proof. We show (i) that a solution which is feasible for (Ic−) is feasible for (Ic), too, and
(ii) that there exists a solution which is feasible for (Ic) but it is infeasible for (Ic−).

(i) Let (θ̄, x̄0) be feasible for (Ic−). We start by inserting (θ̄, x̄0) into (7.14):

θ̄ ≥ q̃ + (L − q̃)
∑
e<S̃

x̄0
e

⇒ θ̄ ≥ (q̃ − L) ©«−
∑
e<S̃

x̄0
e + 1ª®¬ + L

⇒ θ̄ ≥ (q̃ − L) ©«|S̃ | −
∑
e<S̃

x̄0
e − |S̃ | + 1ª®¬ + L

⇒ θ̄ ≥ (q̃ − L) ©«
∑
e∈S̃

x̄0
e −

∑
e<S̃

x̄0
e − |S̃ | + 1ª®¬ + L

This concludes the first part of the proof since this is equal to inserting (θ̄, x̄0) into (Ic).
(ii) Consider a binary solution x̌0 with Š ( S̃ and |Š | = |S̃ | − 1. The bound on θ given

by (Ic) for x̌0 is θ ≥ L. On the other hand, (Ic−) implies θ ≥ q̃ > L. �

Constraints (Ic−) are derived by considering a sub-solution and by removing edges. In
the following we consider the opposite direction.

Again, S̃ ( E denotes the current first-stage solution and q̃ :=
∑

k∈K pk q̃k , with q̃k

being the optimum solution value of (SP(k, x̃0)). Now, let Ŝ ) S̃ be a first-stage solution
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with E ′ = Ŝ \ S̃. Consider any scenario k ∈ K and let Ŝk be the optimum second-stage
solution w.r.t. Ŝ with cost q̂k ; analogously, q̂ :=

∑
k∈K pk q̂k . Clearly, Ŝk ∪ E ′ is a feasible

solution to scenario k and first-stage solution S̃, as depicted by Figure 7.3.
This relationship allows us to deduce the following lemma.

Lemma 7.10. Let Ŝ, S̃ denote first-stage solutions with Ŝ ) S̃, E ′ = Ŝ \ S̃, and second-stage
costs q̂ and q̃, respectively. It holds q̂ ≥ q̃ −

∑
e∈E′ c∗e.

Proof. Consider any scenario k ∈ K and first-stage solution S̃. Since q̃k is the optimum
solution cost of (SP(k, x̃0)) and Ŝk is a feasible solution to scenario k and first-stage solution
(S̃ ∪ E ′) it holds q̃k ≤ q̂k +

∑
e∈E′ cke . Hence:

q̃ =
∑
k∈K

pk q̃k ≤
∑
k∈K

pk
(
q̂k +

∑
e∈E′

cke

)
=

∑
k∈K

pk q̂k +
∑
e∈E′

c∗e = q̂ +
∑
e∈E′

c∗e

Rearranging the equation gives the desired statement. �

The preceding Lemma 7.10 leads to another type of integer optimality cuts:

θ +
∑
e<S̃

c∗ex0
e ≥ q̃ (7.15)

Lemma 7.11. Constraint (7.15) is a valid integer optimality cut.

Proof. Inserting a first-stage solution Š ⊆ S̃ gives the valid bound θ ≥ q̃ (Observation 7.7).
The bound for a solution Ŝ ) S̃, with E ′ := Ŝ\S̃, is θ ≥ q̃ −

∑
e∈E′ c∗e, which is also valid

due to Lemma 7.10.
Now consider any other solution S̄ and the intersection S1 of S̄ and S̃, S1 := S̄∩ S̃, which

is possibly empty. Due to Observation 7.7 it holds that q̃ is a valid lower bound for the
second-stage cost of S1. Then, we can apply Lemma 7.10 with S1 as base solution, with q̃
as lower bound on the second-stage cost, and with E ′ := S̄ \ S1. It follows that q̃−

∑
e∈E′ c∗e

is a valid lower bound for the second-stage cost of S1 and hence, since S1 ⊆ S̄, it is a valid
lower bound for q̄. �

By considering the minimum of c∗e and q̃ − L, for all e ∈ E , constraints (7.15) can be
strengthened as follows:

θ +
∑
e<S̃

min
{
c∗e, q̃ − L

}
x0
e ≥ q̃ (Ic+)

Lemma 7.12. Constraint (Ic+) is a valid integer optimality cut.

Proof. If for all edges e < S̃ it holds min{c∗e, q̃ − L} = c∗e then (Ic+) is equivalent to (7.15)
and Lemma 7.11 implies the validity. Hence, assume there exists an edge e1 < S̃ with
q̃ − L < c∗e1

and consider any solution S̄ with e1 ∈ S̄. Then, constraint (Ic+) states that
θ ≥ L−r , with r ≥ 0, which is a valid bound on θ. If the number of edges with the property
q̃ − L < c∗e is greater than one then the right-hand side gets even smaller (since q̃ ≥ L). �
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Lemma 7.13. Constraint (Ic+) is not weaker than constraint (Ic−). If there exists an edge
e1 < S̃ with c∗e1

< q̃ − L then (Ic+) is stronger than (Ic−).

Proof. First, the right-hand side of both constraints is equal and θ has the same coefficient.
Second, the coefficient of every edge e ∈ E in (Ic+) is not greater than the one in (Ic−).
Third, if there exists an edge e1 < S̃ with c∗e1

< q̃ − L then the coefficient of e1 is strictly
smaller in (Ic+). �

The next Lemma follows directly from Lemmata 7.9 and 7.13.

Lemma 7.14. If it holds q̃ > L and |S̃ | ≥ 1, then the integer optimality cut (Ic+) is stronger
than (Ic).

7.2.3 Further optimality cuts

No-good cuts. During the two-stage b&c algorithm, cf. Section 2.3.3, it is sometimes
possible to identify and forbid the current (non-optimal) integer first-stage solution. Notice
that after Step 3.3.1 a feasible and overall integer solution is computed. In particular, the
exact second-stage cost w.r.t. the current first-stage solution is known. Hence, it is valid
to insert another optimality cut in Step 3.3.3 to prevent the algorithm from considering the
same first-stage solution again.

Consider the following optimality cut which we refer to as no-good cut, see, e.g.,
D’Ambrosio, Frangioni, Liberti, and Lodi [54] and references therein.∑

i∈S̃

x0
i −

∑
i<S̃

x0
i ≤ |S̃ | − 1 (Ng)

These cuts are considered in several publications, e.g., Codato and Fischetti [48] used
the constraints in a similar way and called them combinatorial Benders cuts.

The constraints (Ng) do not contain the θ variable and are important when implementing
an exact algorithm since the coefficients of these cuts are all binary and hence, they are
numerically more stable, see Section 10.2. The validity of these cuts is obvious since only
the current first-stage solution sums up to |S̃ | on the left-hand side; for any binary first-stage
solution x̄0 , x̃0, i.e., ∃i : x̄0

i , x̃0
i , it holds

∑
i∈S̃ x̄0

i −
∑

i<S̃ x̄0
i ≤ |S̃ | − 1.

The integer optimality cut (Ic) gives only a strong bound for θ for the current first-stage
solution x̃0; for every other solution the constraint implies at most the trivial bound L. On
the other hand, (Ng) cuts off any solution (θ, x̃0).

Lemma 7.15. Constraint (Ng) together with the trivial constraint θ ≥ L is stronger than
constraint (Ic).

Proof. Consider the following reformulation of (Ic):

θ ≥ (q̃ − L) ©«
∑
e∈S̃

x0
e −

∑
e<S̃

x0
e
ª®¬ − (q̃ − L)(|S̃ | − 1) + L

For every (θ̄, x̄0) valid for (Ng) with θ̄ ≥ L it holds
∑

i∈S̃ x̄0
i −

∑
i<S̃ x̄0

i ≤ |S̃ | − 1. When
inserting x̄0 into the corresponding integer optimality cut (Ic) the right-hand side of (Ic) is
at most L, i.e., θ ≥ L. Hence, (θ̄, x̄0) is valid for (Ic).

On the other hand, the solution (θ̃, x̃0)with θ̃ = q̃ is valid for (Ic) but not valid for (Ng).�
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Notice that constraints (Ng) can only be inserted into the first-stagemaster problemwhen
the exact second-stage cost is known. The integer optimality cuts can even be inserted when
the second-stage cost is only given as a lower bound, e.g., when the second stage is solved
as relaxed problem or by a heuristic.

Cut-based constraints. The following first-stage constraints can be derived from valid
cuts in the scenarios. Consider any scenario k ∈ K and a valid cut ∅ , S ⊆ Vk

r . A
feasible overall solution has to satisfy S with a first-stage edge e1 ∈ δ(S) or by using an
edge e2 in scenario k at cost pkcke . Now, let KS denote the set of scenarios for which S is
a valid cut and let ck

δ(S)
denote the minimum cost of an edge in S for scenario k ∈ KS , i.e.,

ck
δ(S)

:= min{cke | e ∈ δ(S)}, ∀k ∈ KS .
Therefore, a feasible first-stage solution (x0, θ) has to satisfy

∑
e∈δ(S) x0

e ≥ 1 or
θ ≥

∑
k∈KS

pkck
δ(S)

. With c∗
δ(S)

:=
∑

k∈KS
pkck

δ(S)
this leads to the following cut-based

constraints:

θ +
∑

e∈δ(S)

c∗δ(S)x
0
e ≥ c∗δ(S) (Cc)

Lemma 7.16. (Cc) is a valid constraint for the first-stage master problem.

Proof. If a first-stage solution x̄0 does not contain any edge e ∈ δ(S) the cut states θ ≥ c∗
δ(S)

.
This cost is the lowest possible cost to satisfy the given cut in each scenario and hence, this
cost is a valid lower bound for the second-stage cost. On the other hand, if∃e ∈ δ(S) : x̄0

e = 1
then (Cc) gives at most the trivial bound θ ≥ 0. �

Notice that—in contrast to all other optimality cuts—constraints (Cc) do not depend on
the current first-stage solution. Hence, these constraints are the only constraints that can be
inserted into the first-stage master problem at any time. In particular, they can be used to
strengthen the initial first-stage master problem; one only needs to find a valid cut set for at
least one scenario.

The constraints (Cc) can be expanded by considering several edge-disjoint cuts. Let
S1, S2, . . . , S`, ` ≥ 2, be valid and pairwise edge-disjoint cuts and c∗

δ(Si )
be defined as above,

∀i ∈ {1, . . . , `}. Then, the cut-based constraint reads as follows:

θ +
∑

1≤i≤`

∑
e∈δ(Si )

c∗δ(Si )x
0
e ≥

∑
1≤i≤`

c∗δ(Si ) (Cc)

Open problem 7.2. Is there another type of constraints or optimality cuts that is indepen-
dent of the current first-stage solution?

Improved integer optimality cuts. Laporte and Louveaux [117] introduced improved
integer optimality cuts which can be derived when “more information is available on
Q(x0)”; here, we have q̃ = Q(x̃0). With a parameter a defined later the cut reads as follows:

θ ≥ a ©«
∑
e∈S̃

x0
e −

∑
e<S̃

x0
e
ª®¬ + q̃ − a|S̃ |

⇔ θ −
∑
e∈S̃

ax0
e +

∑
e<S̃

ax0
e ≥ q̃ − a|S̃ | (iIc)
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Thereby, a := max{q̃ − λ(1, S̃), (q̃ − L)/2} with λ(1, S̃) ≤ Q(x̄0) = q̄ for all feasible
first-stage solutions x̄0 with

∑
i∈S̃ x̄0

i −
∑

i<S̃ x̄0
i = |S̃ | − 1 (all 1-neighbors of x̃0). Hence,

λ(1, S̃) is a valid lower bound for the second-stage cost for all 1-neighbors. Compared to
(Ic) these constraints improve the bound on all 1-neighbors of x̃0 if λ(1, S̃) > L: for x̃0

the cut states θ ≥ q̃, for all 1-neighbors the bound is θ ≥ λ(1, S̃), and for alle s-neighbors,
s ≥ 2, the bound is at most θ ≥ L.

These constraints highly depend on a good estimate for λ(1, S̃) which is a lower bound
on the second-stage cost for all feasible 1-neighbors of the current first-stage solution. This
is obviously problem-dependent and may be difficult to compute in practice.

For the SSTP it is possible to combine the bounds given by Observation 7.7 and
Lemma 7.10. Let N(1, S̃) denote the set of 1-neighbors of S̃: N(1, S̃) := {x0 |

∑
e∈S̃ x0

e −∑
e<S̃ x0

e = |S̃ | − 1}. Moreover, let c̃∗max := max{c∗e | e ∈ E\S̃}.

Lemma 7.17. Let x̄0 ∈ N(1, S̃). It holds q̄ ≥ q̃ − c̃∗max.

Proof. Since x̄0 is a 1-neighbor of x̃0 there exists exactly one edge e1 with x̄0
e1
, x̃0

e1
. We

distinguish between two cases.
(i) e1 ∈ S̃, x̃0

e1
= 1, and x̄0

e1
= 0. By Observation 7.7 we get q̄ ≥ q̃.

(ii) e1 < S̃, x̃0
e1
= 0, and x̄0

e1
= 1. Using Lemma 7.10 with E ′ = {e1} we get q̄ ≥ q̃− c∗e1

.
Since we need a lower bound for all 1-neighbors q̄ ≥ q̃ − c̃∗max is valid. �

The preceding lemma gives a valid bound for λ(1, S̃) and a feasible value for the
parameter a in (iIc): λ(1, S̃) ≥ q̃ − c̃∗max and constraint (iIc) holds with a = max{c̃∗max, (q̃ −
L)/2}. Unfortunately, using this value for a does not improve the bounds given by (Ic+)
which will be argued in the following.

Laporte and Louveaux [117] showed that the bound for an s-neighbor of S̃ is q̃ − as.
Hence, for S̃ the bound is still θ ≥ q̃. With a defined as above, for a 1-neighbor the bound
is at most θ ≥ q̃ − c∗max. And for an s-neighbor, s ≥ 2, the bound is still at most θ ≥ L.

On the other hand, (Ic+) implies the same bound for S̃ and obviously not weaker bounds
for s-neighbors, s ≥ 2. Notice that in the latter case it is possible that the bound is stronger.

The case of a 1-neighbor deserves a closer look. First, consider S̄ with S̃ = S̄ ∪ {e1}.
In this case (Ic+) gives the stronger bound θ ≥ q̃.

Second, for S̄ = S̃∪{e1} (Ic+) states that θ ≥ q̃−min{c∗e1
, q̃− L}. If c∗e1

is the minimum
then (Ic+) does not give a weaker bound since c∗e1

≤ c∗max. If q̃ − L is the minimum we have
q̃ − L ≤ c∗e1

≤ c∗max ⇔ L ≥ q̃ − c∗max; therefore, (iIc) does not improve the trivial bound
θ ≥ L.

Open problem 7.3. Is there a better lower bound for the second-stage cost of 1-neighbors
leading to stronger improved integer optimality cuts?

7.2.4 Disaggregated optimality cuts

As for the L-shaped optimality cuts (cf. Section 2.3.2 and Section 7.2.1) it is possible to
disaggregate all θ-related (integer optimality) cuts into K cuts, one for each scenario. We
always use the prefix “D-” to indicate a disaggregated constraint. As θ =

∑
k∈K pkθk

one has to consider q̃k = Qk(x̃0) instead of q̃ =
∑

k∈K pk q̃k . Analogously to the global
lower bound L we assume there exists a lower bound Lk for the second-stage cost of each
scenario k. Again, it is valid to assume Lk ≥ 0, ∀k ∈ K.
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Then, the classical integer optimality cuts (Ic) as disaggregated cuts read as follows:

θk ≥ (q̃k − Lk)
©«
∑
e∈S̃

x0
e −

∑
e<S̃

x0
e − |S̃ | + 1ª®¬ + Lk

⇔ θk +
∑
e∈S̃

(Lk − q̃k)x0
e +

∑
e<S̃

(q̃k − Lk)x0
e ≥ (L

k − q̃k)(|S̃ | − 1) + Lk (D-Ic)

Observation 7.18. Constraint (D-Ic) is a valid integer optimality cut.

Proof. The proof is similar to the one given in [20] about the validity of (Ic) and sketched
as follows: For x̃0 the cut states θk ≥ q̃k which is a valid bound since q̃k = Qk(x̃0). For
every other first-stage solution the bound on θk is at most Lk . �

Similarly, one can decompose the new integer optimality cuts (Ic−) and (Ic+). For the
constraints (Ic−) we can observe a similar result as given by Observation 7.7, namely: q̃k is
a lower bound for the second-stage cost of scenario k for any solution Š with Š ⊆ S̃. Then,
the disaggregated cut is the result of a simple replacement of q̃ by q̃k :

θk + (q̃k − Lk)
∑
e<S̃

x0
e ≥ q̃k (D-Ic−)

Following our discussions it is clear that constraints (D-Ic−) are valid integer optimality
cuts. We conclude without proof:

Observation 7.19. Constraint (D-Ic−) is a valid integer optimality cut.

For the disaggregation of (Ic+) we recall a result of Lemma 7.10: q̃k ≤ q̂k +
∑

e∈E′ cke
which holds for a first-stage solution Ŝ with Ŝ = S̃ ∪ E ′, E ′ , ∅, and E ′∩ S̃ = ∅. This leads
to the disaggregation of constraints (7.15):

θk +
∑
e<S̃

cke x0
e ≥ q̃k . (D-7.15)

Analogously to the aggregated version, these cuts can be strengthened by using the
minimum of cke and q̃k − Lk as coefficient for each edge e < S̃:

θk +
∑
e<S̃

min
{
cke, q̃

k − Lk
}

x0
e ≥ q̃k (D-Ic+)

Again, we skip the proof of validity which is very similar.

Observation 7.20. Constraint (D-Ic+) is a valid integer optimality cut.

Last but not least, a disaggregated cut-based constraint for a scenario k w.r.t. the cuts
S1, . . . , S` , ` ≥ 1, with ck

δ(Si )
:= min{cke | e ∈ δ(Si)}, ∀i ∈ {1, . . . , `}, reads as follows:

θk +
∑

1≤i≤`

∑
e∈δ(Si )

ckδ(Si )x
0
e ≥

∑
1≤i≤`

ckδ(Si ) (D-Cc)

Observation 7.21. (D-Cc) is a valid constraint for the first-stage master problem.
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7.2.5 Obtaining lower bounds for the second-stage cost

The integer optimality cuts (Ic), (Ic−), (Ic+), and (iIc) contain the global lower bound L on
the second-stage cost. Improving this bound leads to stronger optimality cuts. However, a
feasible solution for the stochastic Steiner tree problem can be constructed by connecting
all terminals already in the first stage, and with empty second-stage edge sets. Since all
edge costs are assumed to be positive a feasible value is L = 0.

During the two-stage b&c algorithm branching on the first-stage variables allows for
improvements on this bound. Consider a branching step on a first-stage variable, say x0

e1
corresponding to edge e1 ∈ E . In the first branch x0

e1
= 1 is imposed. By adding an edge

to the first stage the second-stage cost cannot increase and L cannot be improved.
However, the second branch with the constraint x0

e1
= 0 might lead to a stronger L.

Consider a scenario k ∈ K and a valid cut ∅ , S ⊆ Vk
r and assume that we are in a node of

the b&b tree where all edge variables contained in S are fixed to 0. In this case, the graph
induced by the current solution is disconnected and any scenario k where S is a valid cut,
i.e., k ∈ KS , has to install at least one edge crossing the cut. Hence, for this branch L can
be increased by c∗

δ(S)
=

∑
k∈KS

pkck
δ(S)

with ck
δ(S)
= min{cke | e ∈ δ(S)}, ∀k ∈ KS; for the

definitions compare with the paragraph introducing the cut-based constraints (Cc).
Notice that this setting is indeed possible: Since the first-stage master problem contains

integer and L-shaped optimality cuts it is possible that the current first-stage solution x̃0

satisfies 0 < x̃0
e1
< 1 although e1 is the only edge in the cut with an unfixed variable.

Since the experiments on the SSTP showed that the two-stage b&c mostly has a low
number of b&b nodes, see Section 8.3, we do not investigate further methods for improving
the lower bound L and close this discussion with the following open problem.

Open problem 7.4. Is it possible to further improve the lower bound L (during the two-
stage branch&cut algorithm)?

7.3 Adaptation to other formulations

In the previous descriptions the focus lies on the semi-directed formulation (SSTPsdc2). In
this section we describe the differences and necessary modifications for the other introduced
formulations. Section 7.3.1 considers the semi-directed SSTP models and Section 7.3.2
contains the description of the directed rSSTP models.

7.3.1 Semi-directed formulations

(SSTPsdc1). In (SSTPsdc1) a subproblem k ∈ K contains (in its basic version) only the
directed cuts (6.9). For a first-stage solution x̃0 and a valid cut S ⊆ Vk

r : S ∩ Tk
r , ∅, the

constraint is zk(δ−(S)) ≥ 1 − x̃0(δ(S)). This implies two main differences: (i) the dual and
hence, the L-shaped cuts, and (ii) the separation of the directed cuts.

Regarding (i) the dual only contains variables αk
S
, one for each cut S ∈ Sk , with Sk

being the set of valid cuts. The objective function then reads max
∑

S∈Sk αk
S
(1 − x̃0(δ(S))

and the generated disaggregated L-shaped cut for the dual solution α̃k is

θk +
∑
e∈E

x0
e
©«

∑
S∈Sk : e∈δ(S)

α̃k
S
ª®¬ ≥

∑
S∈Sk

α̃k
S (7.16)
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Hence, the proposed cut strengthening (Section 7.2.1) is not applicable and we are not
aware of any similar and fast method for strengthening the optimality cuts. The method
Laminarize, on the other hand, can be used for improving the dual solution heuristically.

(ii) The separation of directed cuts (6.9), described in detail in Section 8.1.3, needs a
minor modification. Here, the capacity of an arc (i, j) ∈ A, with e = {i, j} ∈ E , is set to
z̃ki j + x̃0

e for the computation of the minimum cuts.
Theorem 6.13 shows that (SSTPsdc1) is weaker than (SSTPsdc2). This statement also

holds for the decomposition. The subproblem of (SSTPsdc1) is weaker (gives worse bounds)
and hence, the generated L-shaped optimality cuts are weaker.

(SSTPsdc2∗). The obvious difference to model (SSTPsdc2) lies in the objective function. In
(SSTPsdc2) the term −

∑
e∈E c∗ex0

e is contained in the subproblem whereas in (SSTPsdc2∗) the
term is part of the master problem, i.e, the objective function readsmin

∑
e∈E (c0

e−c∗e)x
0
e+θ.

This influences several parts of the decomposition. In the first stage, the edge co-
efficients are negative and, in particular at the beginning of a b&c algorithm with few
L-shaped optimality cuts, the first-stage solutions contain many edges. Moreover, the pri-
mal and dual subproblems do not subtract the constant term anymore. For scenario k ∈ K
and a first-stage solution x̃0 ∈ [0, 1] |E | the primal objective function reads as follows:
min

∑
e={i, j }∈E cke (y

k
i j + ykji); the constraints are identical to (RSPsdc2).

Then, with (α̃k, β̃k) as optimum solution to the dual subproblem a disaggregated L-
shaped optimality cut looks as follows:

θk +
∑
e∈E

(−β̃ke )x
0
e ≥

∑
S∈Sk

α̃k
S (7.17)

Notice that the same cut strengthening method as described in (7.11) is still valid and,
if applicable, it leads to a stronger L-shaped cut.

Similar to before, let (RMPsdc2∗) and (RSPsdc2∗) denote the relaxed master problem and
relaxed subproblem of (SSTPsdc2∗)Although both models are equivalent it is not reasonable
to compare the polytopes of (RMPsdc2) and (RMPsdc2∗) directly since the master polytope
of (SSTPsdc2) is a strict superset of the master polytope of (SSTPsdc2∗). The reason is
that both models enforce the selection of used first-stage edges in the second stage due to
constraints yki j + ykji ≥ x̃0

e, ∀e = {i, j} ∈ E , but (RSPsdc2) subtracts this cost and gives the
true second-stage cost whereas (RSPsdc2∗) gives the cost of the solution as if it would be
bought solely in the second stage. Hence, for any x̃0 ∈ [0, 1] |E | the second-stage cost (the
lowest feasible value for θ) for (RMPsdc2∗) is not lower than the cost for (RMPsdc2).

This comparison raises the question if both models are equally strong under the decom-
position. To answer this question we remark that the relaxed master problem (RMPsdc2∗)
of (SSTPsdc2∗) is basically the same as the one of (SSTPsdc2). However, it is possible to
expand (RMPsdc2∗) by the following constraints, one for each scenario k ∈ K, which induce
stronger lower bounds for the second-stage costs.

θk ≥
∑
e∈E

cke x0
e (7.18)

First, we observe the correctness of the newly added constraints.

Observation 7.22. Constraints (7.18) are valid for (RMPsdc2∗).
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Proof. (RSPsdc2∗) contains the constraints yki j + y
k
ji ≥ x̃0

e, ∀e = {i, j} ∈ E . Hence, for a first-
stage solution x̃0 ∈ [0, 1] |E | the objective value of the kth subproblem is

∑
e∈E cke (y

k
i j+y

k
ji) ≥∑

e∈E cke x̃0
e . �

Now, we are able to compare both decompositions.

Lemma 7.23. The decompositions and in particular, the L-shaped optimality cuts, of
models (SSTPsdc2) and (SSTPsdc2∗) are equally strong.

Proof. We show (a stronger result) that (RMPsdc2) and (RMPsdc2∗) consider the same first-
stage solutions, if three assumptions concerning the computation of optimum solutions are
satisfied. We highlight the assumptions by (A1)–(A3) in the following.

In the first iteration the set of optimality cuts is empty. Then, the optimum solution to
(RMPsdc2) is (x0 = 0, θ = 0) and the optimum solution value to (RMPsdc2∗) is also 0. We
assume that (A1) the selected optimum solution to (RMPsdc2∗) is (x0 = 0, θ = 0).

Since (RSPsdc2) and (RSPsdc2∗) and their duals are equivalent (except for the constant
term), the generatedL-shaped optimality cuts are equivalent in the sense that the values to the
dual variables α, β are identical. Here, we assume that (A2) for each first-stage solution x̃0

both models always generate the same directed cuts and find the same optimum (primal and
dual) solution. Hence, if an L-shaped cut θk+

∑
e∈E (cke− β̃

k
e )x

0
e ≥

∑
S∈Sk α̃k

S
is generated for

(RMPsdc2) and some x̃0 then there exists an L-shaped cut θk +
∑

e∈E (−β̃
k
e )x

0
e ≥

∑
S∈Sk α̃k

S

in (RMPsdc2∗), and vice versa.
Now assume we are at some iteration and all previously considered first-stage solutions

are identical. We argue that the next first-stage solution is identical, too.
“⇒”: Let (x̂0, θ̂, θ̂1, . . . , θ̂K ) be an optimum solution to (RMPsdc2). We show that

(x̄0, θ̄, θ̄1, . . . , θ̄K ) with x̄0 := x̂0, θ̄k := θ̂k +
∑

e∈E cke x̂0
e , and θ̄ :=

∑
k∈K pk θ̄k , is valid to

(RSPsdc2∗) and has to same objective value.
Clearly, it holds x̄0 ∈ [0, 1] |E | and (θ̄, θ̄1, . . . , θ̄K ) ≥ 0 as well as the constraint θ̄ ≥∑

k∈K pk θ̄k . Moreover, ∀k ∈ K : θ̄k = θ̂k +
∑

e∈E cke x̂0
e ≥

∑
e∈E cke x̄0

e , hence, constraints
(7.18) are satisfied. It is easy to see that the objective values are the same:∑

e∈E

(c0
e − c∗e)x̄

0
e + θ̄ =

∑
e∈E

(c0
e − c∗e)x̂

0
e +

∑
k∈K

pk(θ̂k +
∑
e∈E

cke x̂0
e) =

∑
e∈E

c0
e x̂0

e + θ̂

Last but not least, consider an L-shaped optimality cut w.r.t. scenario k and dual solution
(α̃, β̃) in (RMPsdc2∗):

θ̄k +
∑
e∈E

(−β̃ke )x̄
0
e ≥

∑
S∈Sk

α̃k
S

⇔ θ̂k +
∑
e∈E

cke x̂0
e +

∑
e∈E

(−β̃ke )x̂
0
e ≥

∑
S∈Sk

α̃k
S

⇔ θ̂k +
∑
e∈E

(cke − β̃
k
e )x̂

0
e ≥

∑
S∈Sk

α̃k
S

“⇐”: For an optimum solution (x̄0, θ̄, θ̄1, . . . , θ̄K ) to (RSPsdc2∗) the solution given by
x̂0 := x̄0, θ̂k := θ̄k −

∑
e∈E cke x̄0

e , θ̂ :=
∑

k∈K pk θ̂k , is valid to (RMPsdc2). The preceding
transformations show that both objective values are identical and that each L-shaped cut is
satisfied. Finally, it holds θ̂k ≥ 0, ∀k ∈ K, due to constraints (7.18).

We have shown that the same x0-solution is optimal for both models. If we assume that
(A3) both master problems always find this very solution both decompositions behave the
same. �
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Integer optimality cuts for (SSTPsdc2∗). As mentioned before (RSPsdc2∗) gives the cost
of the second-stage as if it would be bought solely in the second stage although selected first-
stage edges need to be purchased in the second-stage, too. Therefore, Observation (7.7),
i.e., the second-stage cost does not decrease when a first-stage edge is removed, is not valid
for this formulation. Then, integer optimality cuts (Ic−) and (Ic+) are not feasible, too. On
the other hand, since the no-good cuts (Ng) are independent of any cost these cuts are valid
for (SSTPsdc2∗).

Now, we introduce new integer optimality cuts which are based on the following obser-
vation; it can be seen as counterpart to Observation (7.7).

Observation 7.24. Let S̃ denote a first-stage solution with second-stage cost q̃. Then, q̃ is
a lower bound for the second-stage cost of any solution Ŝ ⊇ S̃.

The observation holds since (RSPsdc2∗) forces the selection of edges and hence, this
may lead to a costlier solution. This leads to the following integer optimality cuts:

θ + (q̃ − L)
∑
e∈S̃

(1 − x0
e) ≥ q̃ (Ic−∗ )

Inserting S̃ into (Ic−∗ ) gives the valid bound θ ≥ q̃. A solution Ŝ ) S̃ is assigned the
bound q̃ which is correct due to Observation 7.24. For any other solution the bound is at
most L. Hence, the cuts (Ic−∗ ) are valid constraints for the first-stage master problem of
model (SSTPsdc2∗).

Analogously to (Ic−), these cuts can also be strengthened to cuts (Ic+∗ ) as follows. For
this purpose, let Š ( S̃ and E ′ := S̃ \ Š. Moreover, let S̃k , Šk be the optimum solution to
(SP(k, x̃0)) and (SP(k, x̌0)), respectively. Notice that S̃k ⊇ S̃ and Šk ⊇ Š, due to the capacity
constraints in (RSPsdc2∗).

Lemma 7.25. Let Š, S̃ denote first-stage solutions with Š ( S̃, E ′ = S̃ \ Š, and second-stage
cost q̌ and q̃, respectively. It holds q̌ ≥ q̃ −

∑
e∈E′ c∗e.

Proof. Let k ∈ K. Since S̃ ) Š the cost of (S̃k \ S̃) is at most the cost of (Šk \ Š). Moreover,
since S̃ = E ′ ∪ Š we get:

q̃k −
∑
e∈E′

cke −
∑
e∈Š

cke ≤ q̌k −
∑
e∈Š

cke

⇔ q̃k −
∑
e∈E′

cke ≤ q̌k

Hence:

q̌ =
∑
k∈K

pk q̌k ≥
∑
k∈K

pk
(
q̃k −

∑
e∈E′

cke

)
= q̃ −

∑
e∈E′

c∗e

�

The preceding lemma leads to the following optimality cuts:

θ +
∑
e∈S̃

c∗e(1 − x0
e) ≥ q̃ (7.19)
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The constraint gives the bound q̃ to all solutions Ŝ ⊇ S̃ which is valid due to Observa-
tion 7.24. A solution Š ⊆ S̃ is assigned the bound from Lemma 7.25. Finally, for any other
solution S̄ consider the solution S1 = S̄ ∩ S̃. Since S1 ⊆ S̃ we get a valid lower bound on
this cost. Adding the edges in the set S̄ \ S1 does not change this bound. Hence, we get a
correct bound on the cost for S̄.

Similar to (Ic+) it is possible to strengthen the cut to:

θ +
∑
e∈S̃

min{c∗e, q̃ − L}(1 − x0
e) ≥ q̃ (Ic+∗ )

The arguments for proving the validity are similar to before. If it holds min{c∗e, q̃−L} =
c∗e, ∀e ∈ S̃, the cut is identical to (7.19). Therefore, we now assume there exists e1 ∈ S̃
such that q̃ − L < c∗e1

and we consider a solution S̄ with e1 < S̄. In this case the cut states
θ ≥ L − r , for some r ≥ 0.

Last but not least, notice that all introduced L-shaped and integer optimality cuts can
be disaggregated, too, as described in Section 7.2.4 for (SSTPsdc2).

Lower bound for (SSTPsdc2∗). Let lbk, ∀k ∈ K, be a lower bound for the cost of solving
scenario k as Steiner tree problem, for example, the value of the relaxed STP lbk = Rk(0),
the STP lbk = Qk(0), or any other lower bound from the STP. Then, L0 :=

∑
k∈K pk lbk is

a valid lower bound for the second-stage cost of model (SSTPsdc2∗); the reason is that the
empty first-stage solution has the cheapest second-stage cost (due to Observation 7.24).

Moreover, contrarily to (SSTPsdc2), where L can be increased in a zero-branch, it might
be possible to improve L in a one-branch. Let E1 be the set of edges with their edge
variables being fixed to 1 by a branching step in the master problem and let lbk1, ∀k ∈ K,
be a lower bound for solving scenario k as STP while all edges fixed in E1 are contracted.
Then, L1 :=

∑
k∈K pk lbk1 +

∑
e∈E1 c∗e is a valid lower bound for L.

To obtain these bounds one has to solve all scenarios (as Steiner tree problems) to
(integer) optimality. However, L0 should be given “for free” since the first solution should
be 0 anyway.

7.3.2 Directed formulations

In this section we consider the decomposition of the directed formulations for the rSSTP.
We first focus onmodel (rSSTPdc2) and afterwards we summarize the differences for models
(rSSTPdc1) and (rSSTPdc2∗). As we will see the decompositions of all three models are
equivalent.

(rSSTPdc2). Decomposing (rSSTPdc2) works similar to the decomposition of (SSTPsdc2).
The two main differences are (i) the arc variables instead of edge variables and (ii) the
additional directed cuts in the master problem.
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The relaxed master problem of (rSSTPdc2) reads as follows.

(RMPdc2) min
∑
a∈A

c0
az0

a + θ

s.t. θ ≥
∑
k∈K

pkθk (7.20)

Optimality cuts (7.21)

z0(δ−(S)) ≥ z0(δ−(v)) ∀∅ , S ⊆ Vr, ∀v ∈ S (7.22)

z0 ∈ [0, 1] |A| (7.23)

θ, θ1, . . . , θK ≥ 0 (7.24)

The relaxed subproblem for scenario k ∈ K and first-stage solution z̃0 is:

(RSPdc2) min
∑
a∈A

ckay
k
a −

∑
a∈A

cka z̃0
a

s.t. yk(δ−(S)) ≥ 1 ∀S ⊆ Vr : S ∩ Tk
r , ∅ (7.25)

yka ≥ z̃0
a ∀a ∈ A (7.26)

yk ≥ 0 (7.27)

Again, let Sk be the set of valid directed cuts, i.e., Sk = {S ⊆ Vr | S∩Tk
r , ∅}. We use

dual variables αk
S
, S ∈ Sk , and βka, a ∈ A, assigned to the directed cuts (7.25) and capacity

constraints (7.26), respectively.

(D:RSPdc2) max
∑
S∈Sk

αk
S +

∑
a∈A

z̃0
aβ

k
a −

∑
a∈A

cka z̃0
a

s.t.
∑

S∈Sk : a∈δ−(S)

αk
S + β

k
a ≤ cka ∀a ∈ A (7.28)

αk, βk ≥ 0 (7.29)

Let (α̃k, β̃k) denote an optimum solution to (D:RSPdc2) w.r.t. z̃0 and scenario k ∈ K.
A disaggregated L-shaped optimality cut for formulation (rSSTPdc2) and scenario k ∈ K
looks as follows:

θk +
∑
a∈A

(cka − β̃
k
a)z

0
a ≥

∑
S∈Sk

α̃k
S (7.30)

The L-shaped cuts can be strengthened similarly by increasing the values of the dual βk
variables. Here, the procedure is even simpler since a βka variable is affected only by one
dual constraint. Hence, if this constraint has a positive slack (in case z̃0

a = 0), the related
βka variable can be set to β̂ka := cka −

∑
S∈Sk : a∈δ−(S) α̃

k
S
. Then, this solution is a valid and

still optimal dual solution that implies a stronger L-shaped cut.
Figure 7.4 gives an example instance where the generated and strengthened L-shaped

cuts are not Pareto optimal. The current first-stage solution is 0, the considered scenario
contains two terminals a, b with root node r , and all edge costs are 1. The optimum primal
solution selects arcs a1 and a3 at cost 2. (a) indicates an optimum dual solution with
α̂k
Sb
= α̂k

Sabc
= 1 and (b) gives an alternative optimum dual solution with α̃k

Sab
= α̃k

Sbc
=

1. The arrows at the edges indicate the affected arcs and dual variables, respectively.



124 Chapter 7. Two-stage branch&cut algorithm

r

a

b

c

a1 a2

a3 a4

Sb
Sabc

(a)

r

a

b

c

a1 a2

a3 a4

a5

a6

Sab Sbc

(b)

Figure 7.4: Counter example for Pareto optimality of the generated and strengthened L-shaped
optimality cuts for model (rSSTPdc2). The dashed and dotted circles represent the cut sets
Sb, Sabc, Sab, Sbc . (a) and (b) give different dual solutions such that the first L-shaped cut dominates
the second one.

Hence, L-shaped cut (a) reads θk + z0
a1
+ z0

a2
+ z0

a3
+ z0

a4
≥ 2 which dominates cut (b)

θk + z0
a1
+ z0

a2
+ z0

a3
+ z0

a4
+ z0

a5
+ z0

a6
≥ 2.

When we apply method Laminarize to this example and cut set {Sab, Sbc}, the crossing
cuts Sab and Sbc are removed, we get the laminar cut set {Sb, Sabc}, and the dual solution
as in (a). Hence, in this case Laminarize gives a Pareto optimal cut. However, we cannot
give a proof—or a counter example—that a laminar and cover-free set of cuts gives a
Pareto optimal cut; notice that—with straight-forward modifications—Observation 7.2 is
applicable to the directed formulations, too.

Open problem 7.5. Are the strengthened L-shaped cuts for the directed rSSTPmodels and
for a laminar and cover-free set of cuts Pareto optimal?

All introduced constraints for the first stage, as described in Sections 7.2.2–7.2.4, are
still valid for the directed model. In general, one only has to replace the edge variables
by arc variables. Moreover, since for the SSTP every first-stage solution is feasible and
for the rSSTP a connected first stage is required the preconditions and arguments in the
observations and lemmata have to be modified slightly such that only feasible tree solutions
are considered.

(rSSTPdc2∗). Comparing both directed models (rSSTPdc2) and (rSSTPdc2∗) works analo-
gously to the semi-directed case. Again, subproblem (RSPdc2) gives the true second-stage
cost whereas the cost of (RSPdc2∗) is increased by

∑
a∈A cka z̃0

a. This very sum is contained
in the subproblem (RSPdc2) and on the other hand, in the master problem (RMPdc2∗). As
discussed for the semi-directed model it is valid to add the following constraints to the
master problem of (rSSTPdc2∗): θk ≥

∑
e∈E ckaz0

a, ∀k ∈ K.
Then, both decompositions are equivalent, as stated by the next Lemma. We skip the

proof since it is very similar to the one of Lemma 7.23; we just need to use directed arc
variables instead.
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Lemma 7.26. The decompositions and in particular, the L-shaped optimality cuts, of
models (rSSTPdc2) and (rSSTPdc2∗) are equally strong.

Moreover, the directed equivalent of the new integer optimality cuts (Ic−∗ ) and (Ic+∗ ) are
valid for model (rSSTPdc2∗) as are the ideas on the lower bound L at the end of Section 7.3.1.

(rSSTPdc1). The decomposition of model (rSSTPdc1) looks slightly different since this
model does not contain the additional capacity constraints in the second stage. However,
the relaxed master problem is identical to (RMPdc2)—as we will argue this even holds for
the L-shaped optimality cuts. The relaxed subproblem for scenario k ∈ K and first-stage
solution z̃0 is:

(RSPdc1) min
∑
a∈A

ckazka

s.t. zk(δ−(S)) ≥ 1 − z̃0(δ−(S)) ∀S ⊆ Vr : S ∩ Tk
r , ∅ (7.31)

zk ≥ 0 (7.32)

The corresponding dual reads as follows:

(D:RSPdc1) max
∑
S∈Sk

αk
S(1 − z̃0(δ−(S)))

s.t.
∑

S∈Sk : a∈δ−(S)

αk
S ≤ cka ∀a ∈ A (7.33)

αk ≥ 0 (7.34)

In the following we use this transformation:

∑
S∈Sk

αk
Sz0(δ−(S)) =

∑
S∈Sk

αk
S

©«
∑

a∈δ−(S)

z0
a
ª®¬ =

∑
a∈A

©«
∑

S∈Sk : a∈δ−(S)

αk
S
ª®¬ z0

a (7.35)

Using (7.35) an optimum solution α̃k implies the following L-shaped optimality cut:

θk +
∑
a∈A

©«
∑

S∈Sk : a∈δ−(S)

α̃k
S
ª®¬ z0

a ≥
∑
S∈Sk

α̃k
S (7.36)

Lemma 7.27. The L-shaped optimality cuts of (rSSTPdc1) and the strengthened L-shaped
cuts of (rSSTPdc2) are equivalent.

Proof. We argue that for any first-stage solution z̃0 ∈ [0, 1] |A | and a scenario k ∈ K both
(D:RSPdc1) and (D:RSPdc2) are able to generate the same L-shaped cut.

“⇒”: Let ᾱk denote an optimum solution to (D:RSPdc1). We use α̂k := ᾱk and
β̂ka := cka −

∑
S∈Sk : a∈δ−(S) ᾱS, ∀a ∈ A, as a solution to (D:RSPdc2). As shown in the

following, this solution is valid, has the same objective value, and yields the same L-shaped
cut.

Validity: (α̂k, β̂k) ≥ 0 since ᾱ ≥ 0 and cka −
∑

S∈Sk : a∈δ−(S) ᾱS ≥ 0, ∀a ∈ A, due to the
dual constraints (7.33).
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Solution value: ∑
S∈Sk

α̂k
S +

∑
a∈A

z̃0
a β̂

k
a −

∑
a∈A

cka z̃0
a

=
∑
S∈Sk

ᾱk
S +

∑
a∈A

z̃0
a
©«cka −

∑
S∈Sk : a∈δ−(S)

ᾱk
S
ª®¬ −

∑
a∈A

cka z̃0
a

=
∑
S∈Sk

ᾱk
S −

∑
a∈A

z̃0
a
©«

∑
S∈Sk : a∈δ−(S)

ᾱk
S
ª®¬

(7.35)
=

∑
S∈Sk

ᾱk
S −

∑
S∈Sk

ᾱk
S z̃0(δ−(S)) =

∑
S∈Sk

ᾱk
S(1 − z̃0(δ−(S)))

L-shaped optimality cut:

θk +
∑
a∈A

(cka − β̂
k
a)z

0
a ≥

∑
S∈Sk

α̂k
S

⇔ θk +
∑
a∈A

©«cka −
©«cka −

∑
S∈Sk : a∈δ−(S)

ᾱk
S
ª®¬ª®¬ z0

a ≥
∑
S∈Sk

ᾱk
S

⇔ θk +
∑
a∈A

©«
∑

S∈Sk : a∈δ−(S)

ᾱk
S
ª®¬ z0

a ≥
∑
S∈Sk

ᾱk
S

“⇐”: With (α̂k, β̂k) as optimum (and strengthened) solution to (D:RSPdc2) we use
ᾱk := α̂k as solution to (D:RSPdc1). Since (α̂k, β̂k) is a strengthened solution it holds∑

S∈Sk : a∈δ−(S) α̂
k
S
+ β̂ka = cka, ∀a ∈ A. Then, all previous transformations are still valid. �

Since (D:RSPdc1) only contains the dual variables α the proposed cut strengthening
(Section 7.2.1) is not applicable for this model. However, the L-shaped optimality cuts can
be improved heuristically by Laminarize, see Section 7.2.1, and compare the discussion on
model (rSSTPdc2).



Chapter 8

Computational study

In the first part of this chapter we describe details about the implementation (Section 8.1)
with the direct approach (Section 8.1.1), the decomposition (Section 8.1.2), the separation of
the directed cuts (Section 8.1.3), additional constraints for the second stage (Section 8.1.4),
and the implemented primal heuristic (Section 8.1.5). Section 8.2 describes the method for
generating the stochastic instances and gives an overview of some instance statistics. The
main part of this chapter is Section 8.3 which presents the results of the computational study
concerning the SSTP and rSSTP. We evaluate different cutpool strategies in Section 8.3.1,
the performance of the semi-directed models—direct approaches and decomposition—for
the SSTP in Section 8.3.2 and the directed models for the rSSTP in Section 8.3.3. Moreover,
we compare the models for the SSTP and rSSTP and the differences of both problems in
Section 8.3.4. In Section 8.3.6 we discuss further experiments and Section 8.3.7 contains
detailed results of the experiments.

Again, the following descriptions of the algorithms and the implementation focus on
the semi-directed formulation (SSTPsdc2) and the decomposition approach. Whenever
necessary, we mention necessary modifications for the other formulations or the direct
approach, respectively.

8.1 Implementation

All algorithms are implemented in C++ using the branch&cut framework ABACUS in
version 3.0, see Jünger and Thienel [103] and [1]. For the representation of graphs and the
implementation of further graph algorithms we use the Open Graph Drawing Framework
(OGDF), seeChimani, Gutwenger, Jünger, Klau, Klein, andMutzel [42] and [137]. The only
exception is the computation of minimum cuts where we use an efficient implementation
of the push-relabel method in C by Cherkassky and Goldberg [36]. Moreover, we use IBM
ILOG CPLEX 12.2 [97] via ABACUS and the COIN Open Solver Interface [49] as solver
for the linear programs.

8.1.1 Direct approach

We implemented each model as direct approach without using any decomposition. Hence,
the direct approach is a single-stage b&c algorithm with a straight-forward implementation
similar to the deterministic STP. We have one ABACUS master problem which initializes
the basic IP with all first- and second-stage variables. Moreover, an ABACUS subproblem
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is generated for each node in the b&b tree. The directed cuts in the scenarios—as well as
the directed cuts in the first stage for the directed rSSTP formulations—are separated by the
standard procedure described in Section 8.1.3.

8.1.2 Decomposition

For implementing the two-stage b&c algorithm we use two ABACUSmaster and two ABA-
CUS subproblems: one pair for the first and one pair for the second stage, respectively. We
distinguish them by calling the first stage “SSTP master problem” and “SSTP subproblem”
and the second stage “STP master problem” and “STP subproblem”, respectively.

Since all scenarios depend on the same graph and contain the same type of constraints
we decided to use exactly one instance of the STP master problem which is shared by all
scenarios. The benefit of this approach is the possibility to skip the initialization of the
variables and the basic LP when a scenario is (re)solved and the current first-stage solution
has to be initialized only once for all scenarios. Then, each time a scenario is solved the
coefficients in the objective function and the basic constraints are updated. Furthermore,
the right-hand sides of the separated directed cuts in the cutpool (see Section 8.3.1) are
updated, too.

To achieve a good performance we modified ABACUS directly, in particular the classes
ABA_SUB and ABA_MASTER. In the following we describe the modifications to the ABACUS
classes and give some details of the SSTP and STP master problems and subproblems,
respectively.

ABA_SUB. Calling a primal heuristic for the SSTP can be time consuming since all sce-
narios need to be solved (optimally or heuristically). To restrict the number of calls we
modified the original behavior such that the primal heuristic is called at most once per
subproblem. The call occurs right before a branching step.

In combination with our cutpool strategies, cf. Section 8.3.1, we implemented a proce-
dure for cleaning the pool and removing old constraints. Thereby, a constraint is old if it has
not been active in the last 5 master iterations: actually, the number of necessary iterations
is implemented as a parameter and we use 5 in the experiments.

SSTP_SUB. The core of the stochastic master problem is the twofold separation procedure:
one for the separation of L-shaped and the second one for the separation of integer optimality
cuts. In case of the directed formulations and the rSSTP we have an additional separation
procedure for the directed cuts in the first stage. First, directed cuts are separated, afterwards
L-shaped cuts (by solving the relaxed subproblems), and—if the solution is integer—integer
optimality cuts (by solving subproblems to integer optimality). In the latter case, one can
obviously skip scenarios with an integer solution in the previous separation of L-shaped
cuts.

STP_SUB. This class contains the implementation of the scenarios which is similar to the
directed formulation of the deterministic STP. The difference is that we have to take the
current first-stage solution x̃0 (or z̃0) into account. For model (SSTPsdc1) and (SSTPdc1)
the right-hand side of the directed cuts and hence, the dual objective function, is affected.
Models (SSTPsdc2(∗)) and (rSSTPdc2(∗)) contain additional capacity constraints which depend
on x̃0 (or z̃0). Here, the right-hand sides of these constraints, the objective function, and the
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right-hand sides of the dual constraints need to be adapted. Moreover, this class contains
the procedures for the strengthening of the L-shaped cuts by modifying the dual solution
values.

ABA_MASTER. We implemented a reoptimize procedure which is similar to the original
optimizemethod and which allows for the optimizations of the second stage subproblems.
Here, most parts of the initialization are skipped and a new subproblem is set as root node
of the b&b tree. The optimize method itself remains identical. It is called only once in
the very first iteration and afterwards, reoptimize is used.

SSTP_MASTER. As already described, the SSTP master holds exactly one instance of
the STP master problem. Moreover, we have exactly one instance of the maximum
flow/minimum cut algorithm which needs to be initialized once and afterwards, a faster
update-procedure can be used.

STP_MASTER. During the two-stage b&c algorithm we generate one instance of the STP_-
MASTER class which represents each scenario. To solve one scenario the current first-stage
solution, the set of terminals, and the edge weights have to be updated and the STP master
problem can be (re)optimized.

This class manages the cutpool(s) for the separated directed cuts of the scenarios,
depending on the strategy, cf. Section 8.3.1. These constraint pools are all non-duplicate
pools.

8.1.3 Separation of directed cuts

Let ỹk ∈ [0; 1] |A | be an optimum solution to the kth second-stage subproblem. A violated
directed cut yk(δ−(S)) ≥ 1, S ⊆ Vk

r : S ∩ Tk
r , ∅, can be found in polynomial time by

computing a maximum flow. The source is set to the root rk and the sink is a terminal
t ∈ Tk

r . Then, an arc (i, j) ∈ A is assigned the capacity ỹki j . If the maximum flow between
rk and t is at least one there is no violated directed cut separating rk and t. Otherwise, there
exists a maximum flow with value less than one which implies a minimum cut separating
rk and t.

For the semi-directed formulation (SSTPsdc1) and the directed formulation (rSSTPdc1)
the arc capacities also depend on the current first-stage solution. For (SSTPsdc1) and first-
stage solution x̃0 an arc (i, j) gets capacity z̃ki j + x̃0

{i, j }
. Similarly, in formulation (rSSTPdc1)

an arc a is assigned capacity z̃ka + z̃0
a.

For the rooted SSTP and the directed formulations the first stage contains additional
directed cuts to ensure the first-stage tree: z0(δ−(S)) ≥ z0(δ−(v)), ∀∅ , S ⊆ Vr, ∀v ∈ S.
These cuts are separated analogously. The only difference is the selection of the sink and
the right-hand side. Since there are no terminals all vertices v ∈ Vr with z0(δ−(v)) > 0 are
valid sinks.

As for the deterministic STP, the separation procedure can be influenced by several
modifications, as described by e.g. Koch and Martin [112]: shuffle terminals, back-cuts,
nested-cuts, andminimum cardinality cuts. In our implementations we use all modifications
by default.
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For the direct approach we have one additional modification. Similar to the terminal
shuffling we consider the scenarios in a random sequence, i.e., we shuffle the scenarios at
the beginning of each separation procedure.

8.1.4 Additional constraints

Here we discuss additional constraints by considering valid inequalities for the deterministic
STP as described by, e.g., Koch and Martin [112] and Polzin and Daneshmand [140].

Flow-balance constraints. These constraints are derived from the flow-conservation con-
dition and relate the in- and outdegree of non-terminal vertices. Polzin and Daneshmand
[140] discussed that constraints (Fb) strengthen the directed formulations (STPdc) and
(STPdf), respectively; an instance with strict inequality was given by Ljubić, Weiskircher,
Pferschy, Klau, Mutzel, and Fischetti [125].

yk(δ+(v)) ≥ yk(δ−(v)) ∀v ∈ V\T (Fb)

Unfortunately, these constraints are not valid for our stochastic models. Since first-stage
solutions might contain irrelevant parts w.r.t. one particular scenario, i.e., there might be
parts of the first-stage solution that can be pruned without violating the feasibility of the
solution in this scenario, these constraints would enforce the selection of unnecessary arcs.
Notice that this holds for the directed formulations, too (in the first and in the second stage).

Open problem 8.1. Are there flow-balance-like constraints that can be added to, and
strengthen, the stochastic Steiner tree models?

Subtour elimination constraints. For the first stage it is possible to add (generalized)
subtour elimination constraints ((G)SEC) to forbid the construction of cycles. SECs are
used for many models and problems, first by Dantzig, Fulkerson, and Johnson [57]. For
example, Goemans [73] used (G)SECs for the vertex-weighted STP.

The classical subtour elimination constraints for undirected first-stage variables x0 look
as follows:

x0(E(S)) ≤ |S | − 1 ∀S ⊂ V, |S | ≥ 2 (SEC)

The generalized subtour elimination constraints (GSEC) can be obtained by introducing
additional binary vertex variables ωv, ∀v ∈ V . These variables indicate whether a vertex v

is connected by first-stage edges, i.e., ωv ≥ x0
e, ∀e ∈ δ(v).

x0(E(S)) ≤ ω(S\{v}) ∀S ⊂ V, |S | ≥ 2, ∀v ∈ S (GSEC)

These constraints can be separated in O(|V |4) time by using at most 2|V | − 2 minimum
cut computations, cf. Fischetti, Hamacher, Jørnsten, and Maffioli [64]. Unfortunately, the
semi-directed models cannot take advantage of the stronger GSECs directly. The additional
vertex variables appear in the semi-directed models only in the GSECs and with coefficient
zero in the objective function. Hence, all ω variables can be set to 1 which gives the
classical subtour elimination constraint. This can be overcome by setting the objective
function coefficients of the ω variables to a small ε. Although we do not support this by
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an experimental study, from our experience the first stage does not contain cycles often
anyway. Hence, the separation and addition of the GSECs seems to be an unnecessary
overhead.

Open problem 8.2. Do subtour elimination constraints improve the performance of the
two-stage b&c algorithm for the semi-directed models?

Further constraints. All following constraints are valid for any scenario k ∈ K and—
although they are not binding—they can be added to the initial model to fasten the compu-
tation time:

yki j + ykji ≤ 1 ∀e = {i, j} ∈ E (SEC2)

yk(δ−(rk)) = 0 (8.1)

yk(δ+(rk)) ≥ 1 (8.2)

yk(δ−(v)) = 1 ∀v ∈ Tk
r (8.3)

yk(δ−(v)) ≤ 1 ∀v ∈ Vk
r \T

k
r (8.4)

Adding the constraints influences two parts of the decomposition approaches. First,
the subproblems are directly affected due to new constraints. This might improve the
running time for solving the scenarios. Second, the dual of the subproblems is modified.
Although the formulations do not get stronger and hence, the L-shaped cut cannot get
stronger theoretically, the constraints have an influence on the generated L-shaped cuts.

8.1.5 Primal heuristic

We implemented a rudimentary primal heuristic which is called right before a branching
step and it works as follows. We start by rounding the current first-stage solution x̃0 to the
next integer solution, i.e., 0.5 or higher becomes 1, a value < 0.5 becomes 0. Then, we
compute minimum spanning trees on the induced connected components. Thereby the cost
of an edge e is set to 1 − x̃0

e . The union of these trees is used as first-stage solution and the
scenarios are solved to integer optimality.

The primal heuristic for the rSSTP works differently since we need to construct a tree
in the first-stage. Here we start a breadth-first-search from the root node r using only arcs
with z̃0

a ≥ 0.5. Thereby, arcs closing cycles are omitted. This simple procedure results in
an r-rooted tree, which is used as first-stage solution, and the scenarios are again solved to
optimality.

Notice that since we solve the second stage to integer optimality it is possible to add
integer optimality cuts after a call to the primal heuristic. However, we do not investigate the
impacts of these additional cuts in our experimental study since rudimentary experiments
did not show any positive effect.

Open problem 8.3. Do integer optimality cuts generated by the primal heuristic improve
the performance of the two-stage b&c algorithm?
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|V | |E |
Group nr. min max min max avg |E |

|V | avg |T | avg |T |
|V |

Copenhagen ind 5 16 114 23 228 1.79 17.60 0.43
rc 5 21 247 35 486 1.83 52.00 0.45

Lin 01–03 3 53 57 80 84 1.49 6.00 0.11
04–06 3 157 165 266 274 1.68 9.67 0.06
07–10 4 307 321 526 540 1.70 12.00 0.04

PCSTP K100 11 22 45 64 191 3.70 9.82 0.34
P100 5 66 91 163 237 2.52 22.40 0.29

pucn 3 64 125 192 750 4.50 11.00 0.14
Vienna 2 160 290 237 439 1.50 28.50 0.13
wrp3 A 4 84 138 149 257 1.83 13.00 0.11

B 4 132 204 230 374 1.86 18.75 0.11
C 6 233 311 431 613 1.88 20.83 0.08

Table 8.1: Summarized statistics for the considered base instances (STP and PCSTP). The last three
columns are average values over all instances of one (sub)group.

8.2 Instances

We use a representative set of instances from the literature on the deterministic STP and the
prize-collecting STP to generate instances for the SSTP and rSSTP. The original instances
are taken from the SteinLib [113], from the instances used at the DIMACS challenge on the
STP [101], and from the prize-collecting Steiner tree problem [124].

Overall we consider 55 base instances with 16–321 vertices and 23–750 edges. An
overview of some instance properties is given by Table 8.1 and further details can be found
in Table 8.10 in Section 8.3.7. The instances can be categorized into 6 groups with the
main characteristics described as follows.

• Copenhagen [101]: Instances from the obstacle-avoiding rectlinear Steiner tree
problem which are transformed into STP instances. These instances have many
terminals; on average 44% of the vertices are terminals. There are two similar
subgroups ind and rc.

• Lin [113]: Grid graphs with holes from VLSI design. These instances are sparse
(density at most 1.71) and have few terminals (at most 14%). We distinguish three
groups (Lin01–Lin03, Lin04–Lin06, Lin07–Lin10) based on the graph size.

• PCSTP [124]: These instances were originally generated by Johnson, Minkoff, and
Phillips [100] to simulate street networks for the prize-collecting STP. They were
preprocessed by Ljubić, Weiskircher, Pferschy, Klau, Mutzel, and Fischetti [125],
have a high density (average 3.33), and many terminals (on average 32% of the
vertices). There are two subgroups K100 and P100.

• pucn [101, 113]: Constructed difficult instances for the STP based on hypercubes.
The instances are unweighted and the graphs have the highest density (average 4.5).

• Vienna [101, 122, 123]: These instances originate from real-world telecommunica-
tion networks in Austrian cities and are modified by an advanced preprocessing. The
graphs are quite sparse (average density is 1.5). Due to the size we only use the two
smallest instances I052 (|V | = 160, |E | = 237) and I056 (|V | = 290, |E | = 439).
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• wrp3 [113]: Instances obtained from wire routing problems in industry. Based
on the graph size we distinguish three groups A, B, and C with instances wrp3-
{11,12,14,15}, wrp3-{16,17,19,23}, and wrp3-{13,20,21,22,24,25}, respectively.
The original instances contain some edges with very high edge costs (100 000)
compared to the other edges (avgerage edge cost 5.77); for our instances we scale
each 100 000 down to 1 000 to reduce numerical problems.

We use each base instance to generate a set of instances for the stochastic Steiner
tree problems as follows. Thereby, we randomly and independently generate K̄ = 1 000
scenarios.

1. The probabilities of the scenarios are set by distributing 10 000 points (1 point
corresponds to a probability of 0.01%) over all K̄ scenarios:

(a) We start by assigning 1 point to each scenario.
(b) Then, we distribute the remaining 10 000 − K̄ points by selecting one of the K̄

scenarios uniformly at random and increasing its number of points by 1. This
procedure continues until all 10 000 points are distributed.

(c) Hence, at the end, each scenario has a probability ≥ 0.0001 and all probabilities
sum up to 1 (since 10 000 points are distributed)

2. Edge costs c0 in the first stage are set to the original edge costs from the deterministic
instance.

3. Edge costs for each edge e and a scenario k ∈ {1, . . . , K̄} are randomly drawn from
the interval [1.1c0

e, 1.3c0
e].

4. For each scenario k ∈ {1, . . . , K̄} we construct the terminal set Tk by independently
selecting each original terminal or non-terminal vertex with probability 0.3 and
0.05, respectively. Moreover, each instance is assigned a special root node which is
an original terminal with maximum degree and is contained in every terminal set.
Hence, each instance is a valid input for the SSTP as well for the rSSTP.

Now, for each deterministic instance and the generated K̄ scenarios we take the first
K ∈ K∗ scenarios to obtain an stochastic instance. Here, we use 14 values for K:
K∗ = {5, 10, 20, 50, 75, 100, 150, 200, 250, 300, 400, 500, 750, 1 000}. Probabilities for the
scenarios of the instances with K < K̄ are scaled appropriately.

Hence, we obtain an instance set for the stochastic Steiner tree problems which consists
of 55·14 = 770 instances. All instances can be downloaded from our SSTP homepage [178].
The stochastic instances from the setsLin, PCSTP, andwrp3 are contained in the benchmark
library of the 11th DIMACS challenge [101].

Table 8.2 summarizes some statistics of the stochastic instances; Table 8.10 in Sec-
tion 8.3.7 gives more details. Overall, the average terminal density of each subgroup is
between 6% and 19% with the Copenhagen instances having the highest average terminal
density of all instances. Moreover, since the deterministic Lin instances Lin04–Lin010
have few terminals (avg. 5%) the scenarios contain on average more terminals (avg. 64%
more) than the related deterministic instances. This property only holds for this subgroup
of instances; for all other instances the scenarios contain fewer terminals than the original
problem.
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Group avg |T | avg |T |
|V | avg2 t∗ avg2 t∗

|T | avg2 t∗

|V |

Copenhagen ind 17.60 0.43 8.13 0.46 0.19
rc 52.00 0.45 21.13 0.42 0.19

Lin 01–03 6.00 0.11 5.36 0.93 0.10
04–06 9.67 0.06 11.42 1.29 0.07
07–10 12.00 0.04 19.58 1.90 0.06

PCSTP K100 9.82 0.34 4.99 0.51 0.17
P100 22.40 0.29 10.79 0.49 0.14

pucn 11.00 0.14 8.00 0.73 0.10
Vienna 28.50 0.13 19.79 0.69 0.09
wrp3 A 13.00 0.11 10.16 0.78 0.09

B 18.75 0.11 14.63 0.80 0.08
C 20.83 0.08 19.45 0.98 0.08

Table 8.2: Statistics for the generated (r)SSTP instances. The second and third column is taken
from Table 8.1 and gives statistics for the deterministic instances. We use t∗ := avgk∈K |Tk | as the
average number of terminals. Moreover, “avg2” means that we take the average over all stochastic
instances (implied by different number of scenarios) of one base instance and then the average over
all instances of one (sub)group.

Basic instance set. Weuse a smaller subset of these instances formost of the experiments;
we refer to this test set as Basic. This instance set consists of instances K100, Lin01–03,
andwrp3-A and the number of scenarios is in the range from 5 to 250 scenarios. Hence, the
Basic instances contain 162 instances (18 instances times 9 scenario sizes) with the number
of vertices varying between 22–138 and the number of edges between 64–257. When each
instance is solved in 5 independent runs this leads to 810 calls of an algorithm.

As the experiments will show the Lin01–03 instances are very easy and can be solved
by all approaches, the K100 instances are more difficult such that the slower semi-directed
approaches fail on some instances (reach the time limit), and the wrp3-A set contains the
hardest instances such that all semi-directed models have difficulties.

8.3 Experiments

Experimental setup. All experiments are made on the following two computers: Comp1:
Intel Xeon E5-2640 2.5GHz, six cores, 64GBRAM,Ubuntu 12.04;Comp2: AMDOpteron
2378 2.4 GHz, four cores, 16 GB RAM, Ubuntu 12.04. Most of the experiments are made
on Comp1; we use Comp2 only for the comparison of the cutpool strategies. Each run is
performed on a single core. Each instance is solved independently 5 times by the same
method (the randomized terminal shuffling during the separation of directed cuts affects the
running time). The running times are reported in seconds.

Implemented approaches and used notation. We implemented the direct approach
which uses one IP and one single b&c algorithm, and the two-stage b&c decomposition
approach for the following models. To shorten the notation we use the abbreviation as
placeholder for all models and write the approaches in capital letters.

• Semi-directed models for the SSTP:

– (SSTPsdc1): direct approach DA:sdc1 and decomposition sdc1
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– (SSTPsdc2): decomposition sdc2
– (SSTPsdc2∗): direct approach DA:sdc2∗ and decomposition sdc2∗

• Directed models for the rSSTP:

– (rSSTPdc1): direct approach DA:dc1 and decomposition dc1
– (rSSTPdc2): decomposition dc2
– (rSSTPdc2∗): direct approach DA:dc2∗ and decomposition dc2∗

As described in Section 7.3 the direct approach of the formulations (s)dc2 and (s)dc2∗

is identical but for the two-stage b&c we distinguish between the (s)dc2 and (s)dc2∗

formulations (sdc2 vs. sdc2∗ and dc2 vs. dc2∗).
To indicate different strategies, we use additional prefixes. For the direct approaches

we use the prefix “DA:”. For the decomposition we use “NoCS:” for the approach without
the strengthened L-shaped cuts and “AGL:” for aggregated L-shaped cuts. For example,
we use sdc2 for the decomposition of model (SSTPsdc2) or dc1 for the decomposition of
(rSSTPdc1) and the corresponding direct approaches are denoted byDA:sdc2∗ andDA:dc1.

Standard setup for approaches. If we do not use any prefix the following standard
setup is used (all other introduced modifications, constraints, and cuts are not used): the
decomposition is applied, L-shaped optimality cuts are disaggregated, no-good cuts (Ng)
are added, and the method for strengthening the L-shaped cuts is applied (for sdc2, sdc2∗,
dc2, and dc2∗). Moreover, the cutpool strategy with the cleaning as described in Section
8.3.1 is used. For separating the directed cuts the classical modifications as for the STP are
used, cf. Section 8.1.3: terminals are shuffled, and back, nested, and minimum cardinality
cuts are computed. The constraints (SEC2) and (8.1)–(8.4) are not added. Last but not
least, the primal heuristic is used and called right before a branching step.

Boxplots. To present running times visually we mostly use boxplots which can be de-
scribed as follows, and which contain the following information. Consider a sorted set of
data points such that Q0 is the minimum, Q4 is the maximum, Q2 is the median, Q1 is
the median of the interval [Q0,Q2] and Q3 is the median of [Q2,Q4]. Hence, the interval
[Q1,Q2] contains the second quartile with data points from 25%–50%, and the interval
[Q2,Q3] contains the third quartile with data points from 50%–75%.

The horizontal line in a boxplot gives the median value Q2 and the box indicates the
second and third quartile. The whiskers connect the boxes with the smallest and largest
data point in the interval [Q1 − 1.5R,Q3 + 1.5R] with interquartile range R := Q3 −Q1. All
other points represent outlier points. All boxplots and diagrams are generated with R [68].

Speedup in running time. When comparing two approaches we use two variants of
computing the speedup. The overall speedup is computed as follows. First, for each
instance and each approach we take the average running time over the 5 runs. Then,
we compute the speedup for each instance by using the average values. We report the
median and the average speedup, the maximum speedup, and the standard deviation over
all instances.

Alternatively, we consider the running time for each approach grouped by the number
of scenarios. Afterwards, for each number of scenarios (i.e., 5, 10, 20, . . . ) we compute
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the average or median running time and then, we report the average or median speedup,
respectively.

Time limit and reported values. In the experiments we mostly use a time limit of 2 hours
(= 7 200 sec.); for some experiments, e.g., for the direct approaches of the directed models,
the time limit is 1 hour.

If an algorithm reaches the time limit this run is nevertheless taken into account when
computing and reporting the overall running time for solving a set of instances or for the
average or median running time. This has to be kept in mind since this method sometimes
shows some strange results. For example, if a slower approach A1 does not solve all
instances the number of b&b nodes may be smaller than for a faster approach A2 which
solves all instances sinceA1 simply is not able to process as many b&b subproblems asA2.
Moreover, some table entries then seem to be odd because of this behavior; in particular
since we highlight important or best values of a row, column, or category with a bold font.

8.3.1 Cutpool

Throughout the implementation we try to benefit from the scenario similarities and increase
their synergy. Since the graph itself is identical and terminals may coincide generated
directed cuts can be useful in several scenarios. Moreover, each scenario gets solved many
timeswith changing first-stage solutions for each L-shaped cut generation and the previously
separated directed cuts can still be violated in the next SSTP master iteration. Therefore, we
implemented several strategies for managing the separated directed cuts in one or several
cutpools. We distinguish between three basic strategies:

• Str1: one global cutpool; all scenarios share a global pool of separated directed cuts

• StrK: K separate cutpools; each scenario maintains a pool of separated directed cuts

• Str1K: combination of Str1 and StrK; a single pool for each scenario and one
global pool

However, we did not implement Str1K because of the worse performance of Str1,
compare the following results.

Moreover, due to back cuts, nested cuts, and the cutpools it is possible that cuts are
generated and added to the pool several times. Therefore, we implemented all cutting pools
as non-duplicate pools. Each time a constraint is added it is compared to all contained
constraints through assigned hashkeys; if the hashkeys are identical both cuts need to be
compared through their vertex sets.

While using a pool of separated cuts the question arises when and how often the pool
should be used for separation. We implemented 3 approaches:

• SepOff: no pool separation at all; hence, this strategy turns off the whole cutpool
mechanism

• Sep1: separate cuts from the pool only in the first iteration, i.e., after solving the first
LP of a subproblem

• SepAll: separate cuts from the pool in every iteration of each considered STP
subproblem
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Figure 8.1: The median running time of the decomposed model dc1 on theBasic instances grouped
by the number of scenarios and with different cutpool strategies.

SepAll and Sep1 separate cuts first from the pool and afterwards, cuts are separated via
the minimum cut computation. It is possible to combine each basic pool strategy with each
separation strategy leading to 5 combinations: Str1×SepAll, Str1×Sep1, StrK×SepAll,
StrK×Sep1, and Off.

To control the size of the cutpool(s) we implemented a pool cleaning procedure. For
this purpose each directed cut is assigned an integer value which is 0 if the cut was active in
the last LP of a solved subproblem, and in case the cut is inactive this value is incremented
by one. Then, depending on a parameter CleanIt, the pool gets cleaned every CleanIt
iterations by removing all constraints being inactive the last CleanIt iterations. In our
experiments, we use CleanIt=5 but we also try CleanIt=10 and CleanIt=∞, i.e., no pool
cleaning.

Experiments. Figure 8.1 shows the median running time (grouped by the number of
scenarios) of the directed model dc1 for the different cutpool strategies on the Basic
instances. Although there are not huge differences strategy StrK (each scenario has its
own cutpool, no shared cutpool) seems to perform better. We report that the results (i.e.,
relative performance of the strategies) for the semi-directedmodel sdc2 are almost identical.
Hence, we decided to use StrK for the decompositions. Diagram 8.1 also indicates that
StrK×SepAll is slightly faster than StrK×Sep1. But this decision does not have a big
impact; for (rSSTPdc1) the average difference of the median running time is only 1%.

We also compare different pool cleaning iteration settings. However, for the Basic
instances, the differences are negligible. This also holds when considering all combinations



138 Chapter 8. Computational study

5 10 20 50 75 100 150 200 250

0

2000

4000

6000

D
A

:S
D

C
1

D
A

:S
D

C
2*

S
D

C
1

S
D

C
2

D
A

:S
D

C
1

D
A

:S
D

C
2*

S
D

C
1

S
D

C
2

D
A

:S
D

C
1

D
A

:S
D

C
2*

S
D

C
1

S
D

C
2

D
A

:S
D

C
1

D
A

:S
D

C
2*

S
D

C
1

S
D

C
2

D
A

:S
D

C
1

D
A

:S
D

C
2*

S
D

C
1

S
D

C
2

D
A

:S
D

C
1

D
A

:S
D

C
2*

S
D

C
1

S
D

C
2

D
A

:S
D

C
1

D
A

:S
D

C
2*

S
D

C
1

S
D

C
2

D
A

:S
D

C
1

D
A

:S
D

C
2*

S
D

C
1

S
D

C
2

D
A

:S
D

C
1

D
A

:S
D

C
2*

S
D

C
1

S
D

C
2

model

ru
nt

im
e 

[s
ec

.]

nr. scenarios

Figure 8.2: Running times of direct approaches DA:sdc1 and DA:sdc2∗ and decompositions sdc1
and sdc2 for K100 instances with 5–250 scenarios.

of (CleanIt=5, CleanIt=10, CleanIt=∞) and (StrK×SepAll, StrK×Sep1). In the end,
we decided to use a conservative setting with CleanIt=5. The intention is to restrict the
size of the cutpools and the used internal memory.

8.3.2 Semi-directed formulations for the SSTP

Performance of sdc1. Section (6.4.2) shows that (SSTPsdc1) is weaker than (SSTPsdc2).
In this part, we evaluate the computational performance of sdc1.

First, let us focus on the direct approachesDA:sdc1 andDA:sdc2∗. Figure 8.2 contains
a boxplot with the running time of the two direct approaches DA:sdc1 and DA:sdc2∗, and
the two decompositions of sdc1 and sdc2 for the K100 instances with 5–250 scenarios.
The diagram shows that DA:sdc1 obviously does not scale well with an increasing number
of scenarios. It is much slower and already for 20 scenarios it does not solve all instances.
Overall, DA:sdc1 is not able to solve 12 out of 99 K100 instances within the time limit;
DA:sdc2∗ solves all instances in at most 288 sec. Table 8.3 gives some more details which
support the previous observations. In particular, the number of b&b nodes is very large for
DA:sdc1 compared to DA:sdc2∗. For all Basic instances the speedup is 16.77 (median)
and 301.5 (average) with a standard deviation of 1370.84.
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avg. runtime avg. nr. b&b nodes
K DA:sdc1 DA:sdc2∗ sdc1 sdc2 DA:sdc1 DA:sdc2∗ sdc1 sdc2
5 37.25 0.09 459.56 0.36 1 378.64 1.73 1 284.85 1.55

10 70.62 0.24 462.51 0.57 725.36 1.18 616.02 1.18
20 751.53 0.74 133.21 0.77 6 195.98 1.36 184.96 1.36
50 1 388.12 2.93 313.66 1.63 1 630.05 1.00 128.13 1.00
75 1 388.72 7.05 666.20 2.41 687.80 1.18 133.80 1.18
100 1 082.43 10.50 587.44 3.06 227.00 1.00 106.42 1.00
150 1 829.90 33.77 800.23 4.79 216.75 1.18 110.38 1.18
200 1 890.40 67.10 886.67 6.70 90.82 1.18 90.93 1.18
250 2 411.19 86.95 1 003.20 8.30 59.87 1.00 77.25 1.00

Table 8.3: Average running times and average number of b&b nodes (of the master problem) for
the direct approaches DA:sdc1 and DA:sdc2∗ and decompositions sdc1 and sdc2 on the K100
instances with 5–250 scenarios.

Now, we compare the decompositions of sdc1 and sdc2. Again, consider Figure 8.2
and Table 8.3 for the K100 instances. It can bee seen that sdc1 is slower than sdc2 (due
to many more b&b nodes) but also slower than the direct approach DA:sdc2∗, it produces
many more outlier points, and there are always unsolved instances when the number of
scenarios exceeds 75. Out of the 99 K100 instances sdc1 does not solve 5 instances and
sdc2 solves all instances in at most 29 seconds. The overall speedup is 18.75 (median),
132.8 (average), with standard deviation of 361.41.

For the Lin01–03 instances with 5–250 scenarios the picture is similar although these
instances are easier and can be solved by all models within the time limit. The maximum
running times are 2198.48 sec. (DA:sdc1), 340.93 sec. (sdc1), 50.93 sec. (DA:sdc2∗), and
7.23 sec. (sdc2). Here, the speedup from sdc1 to sdc2 is 5.34 (median), 73.1 (average),
with standard deviation 184.43.

The instances from the wrp-A set are more difficult; sdc1 solves only 6 out of 36
instances. On the other hand, sdc2 is able to solve all instances—although there are three
instances where not all runs are successful due to numerical issues and tailing off effects.
The median speedup is 103.3, on average it is 188.1, with a standard deviation of 265.12;
but the high number of unsolved instances needs to be kept in mind.

The overall running time for theBasic instances for sdc1 is approximately 16.67 days—
sdc2 only needs 32.6 hours. Moreover, sdc1 produces many more b&b nodes: for allBasic
instances it is 209 320 and 1 828 for sdc2.

Cut Strengthening. These experiments investigate the effects of the method for strength-
ening the L-shaped cuts as described in Section 7.2.1. We mainly compare sdc2 with and
without applying the method; the latter approach is denoted by NoCS:sdc2. We remark
that the results and differences for sdc2∗ and NoCS:sdc2∗ are similar.

Figure 8.3 shows the running time for the Basic instances. Since there are many outlier
points, the plot is restricted to 1 500 seconds to allow for focusing on the important parts.
Clearly, the strengthening method significantly reduces the running time. Table 8.4 gives
some more details for sdc2. sdc2 is significantly faster than NoCS:sdc2 and the speedup
is very good. Over all instances, the speedup from NoCS:sdc2 to sdc2 is 21.31 (median)
and 73.56 (average) with standard deviation 208.89.

The required running time for sdc2 for the instance set is 32.6 hours while the runs
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Figure 8.3: Running times of the semi-directed formulations with (sdc2, sdc2∗) and without cut
strengthening (NoCS:sdc2, NoCS:sdc2∗) on the Basic instances. The plot is restricted to 1 500
seconds such that many outlier points are not shown.

for NoCS:sdc2 take 330.06 hours. The overall number of b&b nodes is 1 828 (sdc2) and
13 864 (NoCS:sdc2). Over all instances, the median number of b&b nodes is 1 for both
approaches, but the average increases from 2.26 to 17.12 with standard deviations 51.0 and
795.0, respectively.

sdc2 solves all instances at least once while 8 runs reach the time limit (0.9% of the
runs). On the other hand, NoCS:sdc2 has 145 unfinished runs (17.9%) and 24 instances
are always unsolved (at least one instance for each number of scenarios).

sdc2 vs. sdc2∗. Comparing sdc2 and sdc2∗ does not show a clearwinner and surprisingly,
the ranking is different and depends on the cut strengtheningmethod. If it is not used, Figure
8.3 gives a hint that NoCS:sdc2∗ is a bit faster than NoCS:sdc2. Overall, NoCS:sdc2∗
takes 319.8 hours (144 runs to time limit) and NoCS:sdc2 needs 330 hours (145 runs to
time limit) for the Basic instances.

But, if cut strengthening is used, sdc2 and sdc2∗ show the opposite behavior. The
overall running time of sdc2 is 32.6 hours and for sdc2∗ it is 38.5 hours. The speedup is
1.04 (median) and 1.2 (average) with standard deviation 1.12. Moreover, the number of
b&b nodes is 1 828 (sdc2) and 1 890 (sdc2∗).
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avg. runtime median runtime std. dev. runtime speedup
K NoCS sdc2 NoCS sdc2 NoCS sdc2 avg. median
5 1 166.70 5.92 6.25 0.24 2 544.77 24.78 197.08 26.04
10 1 041.37 9.57 10.41 0.50 2 441.23 38.53 108.82 20.82
20 1 365.14 5.67 15.54 0.89 2 722.65 11.61 240.77 17.46
50 1 520.95 24.27 24.77 1.58 2 876.95 91.21 62.67 15.68
75 1 411.54 49.10 40.78 2.37 2 743.05 254.13 28.75 17.21
100 1 630.20 190.99 55.45 2.80 2 941.22 959.44 8.54 19.80
150 1 637.04 361.50 69.64 4.03 2 905.88 1498.91 4.53 17.28
200 1 691.92 280.93 144.95 5.53 2 887.55 1162.74 6.02 26.21
250 1 737.87 366.42 147.89 6.90 2 887.54 1460.78 4.74 21.43

Table 8.4: Comparison of sdc2 with the approach without strengthened L-shaped cuts (NoCS) for
the Basic instances.

This behavior can be explained by considering and comparing the L-shaped optimality
cuts of both formulations. In sdc2 the coefficient for an edge e is cke − β̃

k
e . Without

strengthened cuts β̃e is often 0 and in this case, the coefficient is cke . For sdc2∗ this is
different; here, the coefficient is −β̃ke and hence, often 0. Although both L-shaped cuts are
equally strong (cf. Lemma 7.23) the L-shaped cut of sdc2∗ is sparser and numerically more
stable.

If the cut strengtheningmethod is used this behavior is reversed. For sdc2 the coefficient
decreases in the interval [0, cke ] with 0 being the best possible value. And for sdc2∗ the
interval is [−cke, 0] with best possible value −cke . Hence, the cut strengthening method
favors the stability and sparsity of sdc2-cuts over sdc2∗-cuts.

The experiments support this explanation. For sdc2 the average number of zeros and
non-zeros in the L-shaped optimality cuts is 31.84 and 100.9, respectively, and for sdc2∗
the average number of zeros and non-zeros is 39.56 and 93.22, respectively. Moreover, the
different L-shaped cuts lead to an average number of master iterations of 24.68 for sdc2
and 25.18 for sdc2∗.

Direct approach vs. decomposition. The experiments evaluating the performance of
sdc1 already indicated that the decompositions outperform the direct approaches, in par-
ticular when the number of scenarios increases. Here, we take a closer look and compare
sdc2 and DA:sdc2∗. Figure 8.2 and Table 8.3 show running times for the K100 instances.
Both models are able to solve all instances, DA:sdc2∗ takes at most 288 sec. and sdc2 takes
at most 29 sec. The overall running time is 26.2 min. (sdc2) and 191.92 min. (DA:sdc2∗);
the number of b&b nodes is very similar. At around 20–50 scenarios, the decomposition
becomes on average faster than the direct approach. The speedup is 2.35 (median), 3.65
(average), 23.67 (maximum), with standard deviation 4.0.

Instances from Lin01–03 are even simpler: there are no extreme outliers, sdc2 takes at
most 7.23 sec. and DA:sdc2∗ takes at most 50.93 sec. for solving one instance. Moreover,
the overall running time is 282.71 sec. (sdc2) and 1 228.92 sec. (DA:sdc2∗). The speedup is
2.16 (median), 2.69 (average), 7.03 (maximum), with standard deviation 2.13. The turning
point, where the decomposition gets on average faster, is again between 20 and 50 scenarios
(on median 10–20 scenarios).

The wrp3-A instances are more difficult to solve, both for the direct approach and the
decomposition. Figure 8.4 shows a boxplot with the running time, and Table 8.5 gives
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Figure 8.4: Running times of DA:sdc2∗ and sdc2 on wrp3-A instances with 5–250 scenarios.

details on the running time.
DA:sdc2∗ is not able to solve 2 instances and sdc2 solves all instances (but invokes a

time limit at 8 runs). Thereby, the overall running time is 31.84 hours for sdc2 and 35.79 for
DA:sdc2∗. At around 100–150 scenarios the decomposition is able to outperform the direct
approach. The overall speedup is 0.4 (median), 4.85 (average), 42.11 (maximum), with
standard deviation 10.97; the speedup for each number of scenarios can be found in Table
8.5. The number of b&b nodes is larger than for the K100 and Lin01–03 instances. For
sdc2 the median number of b&b nodes is 3.0 and 6.0 on average with standard deviation
9.13. For DA:sdc2∗ these values are 1.0 (median), 5.73 (average), and 11.04 (standard
deviation).

The reason for the “weaker” performance of sdc2 compared to DA:sdc2∗ is twofold.
First, it is the larger number of b&b nodes. Second, there are significantly more numerical
problems leading to tailing off effects. For the unsuccessful runs, the number of tailing offs
(notice, that these are tailing offs of the master problem) is ≥ 10. Moreover, there are more
overall tailing offs: although the median number of tailing offs is 0 the average number is
1.9, the maximum is 25, and the standard deviation is 4.7. For the Lin01–03 instances there
is no tailing off, and for the K100 instances the average is 0.002 and the maximum is 1.

However, as the number of scenarios increases the decomposition getsmore competitive.
When the number of scenarios increases to 300–1000 scenarios, or other instances are used,
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avg. runtime median runtime std. dev. runtime
K DA:sdc2∗ sdc2 sUp DA:sdc2∗ sdc2 sUp DA:sdc2∗ sdc2
5 0.37 25.49 0.01 0.28 8.44 0.03 0.31 48.56

10 1.35 41.28 0.03 0.52 17.23 0.03 1.70 74.79
20 5.68 22.90 0.25 1.67 19.44 0.09 7.40 15.11
50 38.68 103.84 0.37 9.63 41.61 0.23 53.25 174.34
75 133.08 213.06 0.62 23.09 71.56 0.32 195.43 515.87
100 206.73 849.42 0.24 51.95 78.23 0.66 288.64 1 930.07
150 1 887.94 1 611.05 1.17 153.44 123.28 1.24 3 146.93 2 900.17
200 1 986.47 1 242.68 1.60 357.53 135.73 2.63 2 940.62 2 254.10
250 2 181.89 1 622.18 1.35 551.35 173.53 3.18 2 973.64 2 803.77

Table 8.5: The running time (average, median, speedup (sUp), and standard deviation) of DA:sdc2∗
and sdc2 on wrp3-A instances.

avg. runtime median runtime std. dev. runtime
K DA:sdc2∗ sdc2 sUp DA:sdc2∗ sdc2 sUp DA:sdc2∗ sdc2

300 683.26 400.19 1.71 112.25 9.89 11.35 1 654.93 1 517.97
400 942.69 453.66 2.08 279.65 12.84 21.78 1 760.53 1 648.89
500 1 078.22 494.09 2.18 349.09 16.18 21.58 1 698.42 1 654.21
750 2 113.50 527.78 4.00 868.26 24.05 36.10 2 435.89 1 651.67

1000 2 866.62 614.51 4.66 1 610.26 35.14 45.82 2 666.99 1 698.28

Table 8.6: Comparison of the running time of DA:sdc2∗ and sdc2 on the Basic instances with
300–1000 scenarios.

the difference is clearer (as shown by the following experiments).

Higher number of scenarios for Basic instances. The preceding experiments show a
good performance of the decompositions sdc2 and sdc2∗ and—although worse—a decent
performance of the direct approach DA:sdc2∗. In particular, most of the instances of the
Basic set can be solved to optimality within a time limit of 2 hours. Now, we evaluate the
performance when the number of scenarios increases to 300–1000.

Figure 8.5 and Table 8.6 show the results for sdc2 andDA:sdc2∗; Figure 8.8 on page 149
gives a closer look at sdc2. As one can see, the decomposition clearly outperforms the
direct approach and as the number of scenarios increases, the gap gets larger. Overall,
sdc2 is not able to solve 4 instances and DA:sdc2∗ cannot solve 9 instances. The overall
running time is 62.25 hours for sdc2 and 192.1 hours for DA:sdc2∗. Thereby, the speedup
is 20.21 (median), 22.41 (average), 61.57 (maximum), with standard deviation 14.55. The
number of b&b nodes is still low: both models have as median 1 b&b node, on average
1.91 (sdc2) and 1.63 (DA:sdc2∗), with at most 21 (sdc2) and 17 (DA:sdc2∗) b&b nodes,
and the standard deviation for both approaches is 2.7.

Again, the most difficult instances are wrp3-A instances. All unsolved runs for sdc2 as
well as for DA:sdc2∗ occur on these instances.

Aggregated L-shaped cuts. Our standard setup of sdc2 uses disaggregated L-shaped
cuts. To evaluate the difference to aggregated cuts, we also solve the Basic instances with
5–250 scenarios with aggregated L-shaped cuts, i.e., after each iteration only one L-shaped
cut is inserted instead of K disaggregated cuts. We denote this approach by AGL:sdc2. We
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Figure 8.5: Boxplot showing the running time of DA:sdc2∗ and sdc2 on the Basic instances with
300–1000 scenarios.

remark that the aggregated L-shaped cuts are also strengthened since the dual solution of
each scenario is strengthened (the approach with aggregated and non-strengthened cuts is
not evaluated in this thesis).

Overall,AGL:sdc2 takes 120.31 hours to solve all instances of theBasic set; sdc2 takes
32.6 hours. Thereby, AGL:sdc2 never solves 6 instances whereas sdc2 is able to solve all
instances at least once. Moreover, the number of b&b nodes and the number of tailing
off effects is higher for AGL:sdc2: the number of b&b nodes increases from 344 to 2 390
and the number of tailing offs is now 6 856 instead of 1 828. The speedup is on average
5.83 with standard deviation 12.81. Surprisingly, the median speedup is 1. Hence, there is
not such a big overall difference between AGL:sdc2 and sdc2. However, the version with
disaggregated L-shaped cuts is more stable and in general, it is faster.

Further constraints. Section 8.1.4 introduces additional constraints for the second-stage
subproblems. In general, these constraints improve the running time for solving the sub-
problems. On the other hand, the constraints influence the generated L-shaped cuts (and
the cut strengthening procedure) due to additional variables in the dual.

In general, adding only (SEC2) (denoted by Sec), only the “degree-constraints” (8.1)–
(8.4) (denoted by Deg), or all constraints (Sec+Deg) does not make a big difference.
Experiments on the Basic instances with 5–250 scenarios show that the constraints do not
have a significant effect on the running time. The median running time for sdc2 is 2.54 sec.
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avg. runtime median runtime std. dev. runtime
K dc1 dc2 dc2∗ dc1 dc2 dc2∗ dc1 dc2 dc2∗

5 0.41 0.53 0.72 0.10 0.16 0.16 0.72 0.97 1.44
10 0.54 0.78 0.84 0.22 0.28 0.33 0.80 1.23 1.25
20 0.84 1.21 1.44 0.46 0.66 0.70 1.26 1.57 2.16
50 1.90 3.66 13.19 0.94 1.35 1.40 3.12 8.93 87.49
75 10.20 5.42 8.40 1.39 2.04 2.08 55.08 13.83 37.68

100 8.27 5.57 34.25 1.83 2.58 2.62 34.05 8.12 224.37
150 13.20 8.50 39.68 2.54 3.59 3.78 51.33 13.28 221.29
200 7.87 11.26 11.92 3.42 4.71 5.22 12.15 14.65 15.08
250 22.74 13.67 47.56 4.56 6.87 7.27 128.48 15.84 178.16
300 10.46 20.31 20.49 5.34 7.78 8.55 13.68 56.14 44.99
400 16.64 22.96 23.31 7.75 12.00 11.50 35.61 33.53 27.40
500 18.60 30.19 57.49 9.50 14.62 14.29 26.51 52.64 206.43
750 33.69 45.53 150.61 14.79 21.29 23.57 60.95 65.62 769.76
1000 42.37 52.69 93.43 20.25 28.08 32.23 69.70 61.46 239.00

Table 8.7: Comparison of the running times of the rSSTP models dc1, dc2, and dc2∗ on the Basic
instances with 5–1000 scenarios.

and on average it is 143.8 sec. For Sec the running time is 3.56 sec. (median) and 126.4
sec. (avg.), for Deg it is 3.14 sec. and 136.1 sec., and for SecDeg it is 3.86 sec. and 124.5
sec. On the other hand, the number of master iterations increases on average from 16.27
(sdc2) to more than 24 (with additional constraints). Hence, it seems that the additional
constraints decrease the running time for solving the subproblems but the L-shaped cuts are
influenced negatively such that more master iterations are required.

8.3.3 Directed formulations for the rSSTP

Comparison of formulations. We start by comparing the decompositions dc1, dc2, and
dc2∗ on the Basic instances with 5–1000 scenarios. These approaches are very fast and
require for all instances only 4.69 hours (dc1), 5.56 hours (dc2), and 12.58 hours (dc2∗).
Thereby, every approach is able to solve all instances in the time limit of 2 hours, the longest
run for dc1 takes 1 222.41 sec., for dc2 118.27 sec., and for dc2∗ 2 108.53 sec.

Figure 8.6 and Table 8.7 give the running times of the three decompositions. In general,
dc1 is the fastest approach followed by dc2 and the slowest model is dc2∗. Since average
running times are influenced stronger by outliers this can be seen best by comparing the
median running time. The overall speedup from dc2 to dc1 is 1.63 (median) and 1.88
(average) with maximum 33.52 and standard deviation 2.14.

However, we report some more clear outlier points for dc1 than for dc2, in particular
for 75, 100, 150, and 250 scenarios (can be seen best in Figure 8.7). This explains the
larger standard deviation and the worse average running time for these scenario sizes. As
for the semi-directed models the number of b&b nodes is low: the median number is 1 and
the average number at most 1.27 for all models. Overall, dc1 generates 1 514 b&b nodes
and dc2 1 418. Model dc1 seems to be a bit more vulnerable to numerical issues, as can
be seen by the number of tailing offs, i.e., dc1 produces 67 tailing off effects and dc2 35.

The speedup from dc2 to dc2∗ is 1.1 (median) and 1.4 (average) with maximum 24.35
and standard deviation 2.14. dc2∗ has more outliers, the overall number of tailing offs is
higher (95), and the overall number of b&b nodes is 1 440 which is similar to dc2 and
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Figure 8.6: Running times of rSSTPmodels dc1, dc2, and dc2∗ on theBasic instances with 5–1000
scenarios. The plot is restricted to 80 sec. such that some outlier points are cut off.

dc1. We observe that dc2 is in general faster than dc2∗; but, when cut strengthening is not
applied we report that dc2∗ is slightly better than dc2—similar to the semi-directed models.

Cut strengthening. To evaluate the influence of the cut strengtheningmethodwe compare
dc2 and NoCS:dc2 (dc2 without cut strengthening) on the Basic instances with 5–250
scenarios; we remark that dc2∗ and NoCS:dc2∗ show a similar behavior.

The overall running times for solving these instances are 315.89 hours (NoCS:dc2) and
1.27 hours (dc2). The average and median running times and the speedup grouped by the
number of scenarios can be found in Table 8.8. Clearly, the strengthened cuts significantly
reduce the required running time. Over all instances, the median speedup is 16.92 and the
average is 548.10. This enhancement is even more extreme as for the semi-directed models.

The number of b&b nodes increases, too, when the strengthened cuts are not used. The
median number of b&b nodes is not influenced (still 1.0), but the average number increases
from 1.15 to 19.94 with standard deviation 1.14 and 66.3, respectively.

Although dc2 solves all instances within the time limit,NoCS:dc2 is not able to solve 25
instances with some additional runs reaching the time limit. Moreover, there are unsolved
instances for each number of scenarios. One reason is the higher vulnerability for numerical
problems: the overall number of tailing off effects increases from 35 to 7 756.
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avg. runtime median runtime speedup
K dc2 NoCS:dc2 dc2 NoCS:dc2 avg. median
5 0.53 1 124.05 0.16 5.40 2 120.85 33.75
10 0.78 1 050.40 0.28 6.71 1 346.67 23.96
20 1.21 1 223.30 0.66 9.79 1 010.99 14.83
50 3.66 1 274.00 1.35 16.99 348.09 12.59
75 5.42 1 560.76 2.04 20.41 287.96 10.00
100 5.57 1 559.08 2.58 21.29 279.91 8.25
150 8.50 1 416.35 3.59 42.23 166.63 11.76
200 11.26 1 717.60 4.71 59.16 152.54 12.56
250 13.67 1 710.17 6.87 85.80 125.10 12.49

Table 8.8: Average and median running time of dc2 and NoCS:dc2 and the average and median
speedup on the Basic instances with 5–250 scenarios.

avg. runtime median runtime sUp avgerage sUp median
K DA:dc1 DA:dc2∗ DA:dc1 DA:dc2∗ dc1 dc2 dc1 dc2
5 0.54 0.83 0.26 0.42 1.32 1.57 2.60 2.63
10 2.69 2.77 0.76 1.36 4.98 3.55 3.45 4.86
20 6.05 11.23 2.37 4.97 7.20 9.28 5.15 7.53
50 29.80 74.92 12.70 27.77 15.68 20.47 13.51 20.57
75 70.02 241.13 29.26 77.89 6.86 44.49 21.05 38.18

100 143.93 491.63 49.57 148.31 17.40 88.26 27.09 57.48
150 401.03 1 176.71 116.99 418.35 30.38 138.44 46.06 116.53
200 610.17 1 627.29 244.69 1 152.53 77.53 144.52 71.55 244.70
250 838.20 1 973.90 401.01 2 010.17 36.86 144.40 87.94 292.60

Table 8.9: Average and median running times of DA:dc1 and DA:dc2∗ on the Basic instances and
the average and median speedup (sUp) forDA:dc1 compared to dc1 andDA:dc2∗ compared to dc2,
respectively.

Direct approach vs. decomposition. Similar to the semi-directed models the decom-
position outperforms the direct approach. For the directed models the difference is even
more impressive. Figure 8.7 shows a boxplot with the running times of DA:dc1, DA:dc2∗,
and dc1 on the Basic instances with 5–250 scenarios. Since the decompositions are very
fast we use a smaller time limit of 1 hour (3 600 sec.) for the direct approaches in these
experiments. Detailed running times for the direct approaches are given by Table 8.9 and for
the decomposition by Table 8.7. As it turns out the decompositions already outperform the
direct approaches for a very low number of scenarios. dc1 is faster (average and median)
for all numbers of scenarios and dc2 and dc2∗ already beat the direct approaches for 5–10
scenarios.

dc1 solves all Basic instances in 98.93 min., dc2 requires 75.91 min., dc2∗ runs
236.96 min. = 3.94 hours, DA:dc1 takes 52.56 hours, and DA:dc2∗ requires 140.01 hours.
Thereby, the direct approaches cannot solve all instances: DA:dc1 fails on 7 instances and
DA:dc2∗ on 22 instances (out of 162 instances). The median number of b&b nodes is 1 for
all approaches and the average is at most 1.27.

Table 8.9 gives the speedup from the direct approaches to the decompositions (average
over instanceswith the same number of scenarios); clearly, the speedup is huge and increases
with the number of scenarios. We report that the maximum speedup for one single instance
is 149.10 (dc1) and 463.70 (dc2).
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Figure 8.7: Running times of the directedmodelsDA:dc1,DA:dc2∗, and dc1 on theBasic instances
with 5–250 scenarios. The time limit is 1 hour.

We also let the direct approaches solve the instances with more than 300 scenarios.
But with an increasing number of scenarios the number of unsolved instances increases
drastically. For DA:dc1 the number of unsolved instances is 2, 4, 5, and 9 (each out of 18
instances) for 300, 400, 500, and 750 scenarios, respectively, and DA:dc2∗ cannot solve 9,
11, 13, and 16 instances.

8.3.4 Comparison of SSTP and rSSTP

Since rSSTP instances can be interpreted as SSTP instances, and all instances in our testset
are rSSTP instances, we are able to compare the semi-directed and the directed models.
In the following, we compare the performance and the constructed solutions—the solution
values and the topologies. For these experiments, we use the models sdc2 and dc1.

Running time. Overall, the running time for the directed model dc1 for solving theBasic
instances with 5–1000 scenarios is 4.69 hours while the semi-directed model sdc2 takes
94.61 hours. dc1 solves all instances in at most 1 222.41 sec. and sdc2 does not solve
4 instances within the time limit of 2 hours and 12 additional runs reach the time limit.
The overall speedup is 1.92 (median) and 5.9 (average) with maximum 177.9 and standard
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Figure 8.8: Running times of the directed model dc1 and the semi-directed model sdc2 on the
Basic instances with 5–1000 scenarios. The plot is restricted to 125 sec.

deviation 16.17. The boxplot in Figure 8.8 directly compares the running times; to show
the important parts the boxplot is restricted to 125 sec.

Tree in first stage. In this experiment, we evaluate how much costlier solutions are when
the first stage needs to be a tree. Figure 8.9 shows one example instance from the Basic
instances where the optimum SSTP solution is not a tree.

However, this instance is more of an exception. On the Basic instances with 5–1000
scenarios there are almost no differences in the optimum solution value. Out of the 252
instances we evaluate 244 instances (instances where sdc2 is successful in all 5 runs).
Thereof, 220 instances (90.16%) have the same solution value and 24 have not (9.84%).
The instances with same solution value also have the same number of first-stage edges and
the same first-stage and second-stage cost.

Out of the 24 instances with different solutions the difference is at most 0.06% (of
course, the rSSTP solution value is larger). Thereof, the number of first-stage edges differs
at most by 2 (on average 1.28) and the most extreme difference is for an instance with 24
edges installed for the rSSTP and 26 for the SSTP. There are only 3 instances where the
SSTP first-stage solution contains more edges than the rSSTP solution. Finally, we remark
that out of the 24 instances, 23 instances are wrp3-A instances and one is a K100 instance.
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(a) (b)

(c) (d)

Figure 8.9: Optimum solutions to instance K100.7.red-33-5�10-30�5s.sstp with 5 scenarios.
Thick edges are solution edges; first-stage edges are solid and second-stage edges are dotted. The red
diamond is the root node, green vertices are terminals in the scenario, and circles are non-terminals.
(a) and (b) show the optimum solutions to the rSSTP for scenarios 1 and 4. (c) and (d) show the
optimum solutions to the SSTP for scenarios 1 and 4. The first-stage solutions differ in one edge: the
rSSTP solution uses edge {7, 12} which is not contained in the optimum SSTP first-stage solution.
For both problems scenario 4 ((b) and (d)) contains irrelevant parts which are not necessary for
connecting the terminals.
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8.3.5 Further instances

In the preceding experiments we focus on the Basic instance set, mostly with 5–250
scenarios. Here, we consider the other instances and solve them with the semi-directed
model sdc2 and the directed model dc1. Depending on the size of the underlying graph
and the complexity of the related deterministic instance we use a restricted set of scenario
sizes.

More tables containing detailed results for each instance can be found in Section 8.3.7.

Copenhagen. In general, the instances with 5–250 scenarios are not difficult. dc1 solves
each instance in at most 985 sec. and sdc2 solves almost all instances; only the largest rc
instance remains unsolved for 100, 150, 200, and 250 scenarios. The median running time
is 11.18 sec. (sdc2) and 1.26 sec. (dc1), and the average running time is 605.0 sec. (sdc2)
and 37.72 sec. (dc1).

Lin04–06. The Lin01–03 instances are the easiest instances in ourBasic set. The Lin04–
06 instances contain roughly three times as many vertices and edges but these instances are
also not difficult: sdc2 and dc1 solve all instances with 5–250 scenarios within at most
12.56 min. and 1.87 min., respectively. dc1 solves each instance in the b&b root node and
sdc2 generates at most 11 nodes (1.96 on average). Moreover, these instances do not lead
to numerical problems, i.e., there is not a single tailing off effect.

P100. These instances behave similar to the K100 instances from the PCSTP group. For
5–250 scenarios, sdc2 and dc1 are able to solve all instances to optimality. The maximum
required running time is 139.3 sec. (sdc2) and 31.71 sec. (dc1). These instances invoke
only one tailing off effect and also very few b&b nodes: each b&b tree contains at most 3
nodes.

pucn. The pucn instances are very difficult: sdc2 is not able to solve any instance (with
5, 10, and 20 scenarios) within the time limit of 2 hours. On the other hand, dc1 solves all
instances with 5–20 scenarios with a median running time of 20.74 sec. and on average in
566.9 sec. The running time increases drastically with an increasing number of scenarios:
for 5 scenarios dc1 takes on average 5.19 sec. and for 20 scenarios it already requires
1 556.85 sec. on average.

Vienna. Since these instances are relatively large we consider instances with 5–100
scenarios here. For these sizes both sdc2 and dc1 solve all instances to optimality within at
most 30.53 min. (sdc2) and 3.28 min. (dc1). The number of generated b&b nodes is also
moderate: sdc2 generates at most 21 nodes (3.67 on average) and dc1 generates at most 13
nodes (1.83 on average).

wrp3-B. Since the wrp3-A group contains the most difficult instances in the Basic set
we consider instances from the wrp3-B group with 5–100 scenarios. Again, sdc2 has
difficulties with this type of instance and cannot solve two instances within two hours. The
median running time is 6.21 min. and on average it is 27.68 min. The number of required
b&b nodes is on average 11.27 which is higher than for most of the other instances. On the
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other hand, dc1 solves all instances in at most 3.45 min. and generates at most 9 b&b nodes
(on average 1.5).

8.3.6 Further experiments and discussion

Comparison to [27]. Here, we compare our two-stage b&c algorithmwith the preliminary
version presented by Bomze, Chimani, Jünger, Ljubić, Mutzel, and Zey [27]. The most
influencing changes are the cut strengthening procedure, the addition of no-good cuts, and
the pool separation. For these experiments we use the generated Lin instances from [27]
and compare the results directly.

In [27], the two-stage b&c was not able to solve all instances to optimality. Now, sdc2
solves all instances in at most 46.15 min. and on average in 378.1 sec.; the overall average
running time of [27] was 1 482.0 sec. (although on a different machine). As always, dc1 is
faster than sdc2 and takes at most 189.41 sec. and on average 13.62 sec.

More detailed results can be found in Section 8.3.7, Table 8.18.

Comparison to [95]. Hokama, San Felice, Bracht, and Usberti [95] described a heuristic
called BRKGA (short for biased random-key genetic algorithm) for the SSTP which is
based on the minimum spanning tree heuristic and a genetic algorithm (the main ideas are
described in Section 4.3). In this work, detailed results were given for the Lin instances
from [27]. Here, we compare this heuristic to our exact method sdc2.

The solution value computed by BRKGA is very good. Over all 24 instances, the
average gap of the heuristic solution value to the optimum solution is 0.45% (maximum
3.57%). On the other hand, the running time is very diverse and more unpredictable. For
example, instance Lin01_53_80 takes 2.2 sec. for 20 scenarios but for 10 scenarios BRKGA
takes 1027.4 sec.; for comparison, sdc2 takes 0.66 sec. and 0.23 sec., respectively. When
comparing the running times directly it has to be kept in mind that the used computer is
different ([95] use an Intel XEON CPU E3-1230 V2 with 3.30GHz and 32 GB RAM).
Grouped by the number of scenarios the average running times are as follows: for K = 5:
80.74 sec. (sdc2) and 111.73 sec. (BRKGA), K = 10: 123.32 sec. and 884.38 sec., K = 20:
671.40 sec. and 1 050.52 sec., and K = 50: 636.94 sec. and 1 724.40 sec. Detailed statistics
are given by Table 8.19 in Section 8.3.7.

Heuristics: BuyNone and BuyAll. Here, we compare the two heuristics BuyNone
and BuyAll to the two-stage branch&cut approach with model sdc2.

BuyNone fixes the first-stage variables to 0 and connects all scenario terminal sets
optimally by second-stage edges. The optimum solution to BuyNone can be obtained by
solving each scenario independently as deterministic STP. We implemented this heuristic
twice: for the decomposition and for the direct approach.

Contrarily, BuyAll connects each terminal set already in the first stage. Hence, this
problem is a deterministic STP with the terminal set being the union of all scenario terminal
sets and with edge costs from the first stage.

Of course, the running time is much less for the heuristics than for the decomposition
since only one or K deterministic STPs need to be solved, respectively. Solving all instances
from the Basic set with 5–250 scenarios takes BuyAll 29.97 sec. (again 5 independent
runs per instance), the decomposition implementation of BuyNone requires 17.53 min.,



8.3. Experiments 153

the direct approach of BuyNone takes 23.11 hours (and does not solve 2 instances within
the time limit of 2 hours), and, as mentioned before, sdc2 runs in 32.6 hours.

The solution quality for BuyNone is pretty good whereas BuyAll gives much worse
solutions. Overall, the percentage difference to the optimum solution forBuyNone is 1.74%
(median), 1.89% (average), 7.1% (maximum), and the standard deviation is 1.4. Actually,
for 15 instances (out of 162) the optimum solution is equal to the BuyNone solution. For
BuyAll the median percentage difference is 99.5%, on average it is 107.9%, the maximum
is 250.7%, and the standard deviation is 51.68.

Hence,BuyAll is very fast since only a single STP needs to be solved, but this approach
gives a bad solution quality. BuyNone is fast and gives good solutions within 7.1% of the
optimum.

Elapsed times. In this part the percentage running times of the different parts of the
two-stage b&c algorithm are evaluated on the Basic instances with 5–250 scenarios. We
always report the median percentage first and the average is following in round brackets.

First, we consider sdc2 with the default settings. Comparing the master and the
subproblem the evaluation showed that 97.29% (92.96%) of the running time is spent in
the second stage. In particular, most of this time L-shaped cuts are separated and less than
0.001% of the time is required for solving the second stage to integer optimality. Moreover,
solving the master LP takes only about 2.4% (6.38%) of the time. The remaining running
times for loading the instance, initialization, and the primal heuristic are marginal.

In the second stage most of the time is spent in the LP solver with 69.74% (68.89%),
the separation of directed cuts with 17.54% (17.58%), and the pool separation with 5.49%
(10.11%). More noticeable parts are the initialization with 1.35% (1.75%) and the method
for strengthening the L-shaped cuts with 1.39% (1.53%). Of the time for separating directed
cuts, most of the time goes to the max flow/min cut algorithm which takes about 80%.

Summarizing and related to the overall running time, the most time consuming parts
are as follows: solving the second stage LP 63.81% (60.95%), separation of directed cuts in
the second stage 15.91% (15.79%), pool separation 4.93% (8.28%), solving the master LP
2.4% (6.38%), initialization of the scenarios 1.2% (1.56%), and L-shaped cut strengthening
1.15% (1.33%). We remark, that sdc2∗ shows a very similar distribution.

If sdc2 is used with option Sep1 (separate cuts from the pool only in the first iteration,
compare Section 8.3.1), the times spent in the pool separation is reduced to 0.91% (1.09%)
while the time spent for separating directed cuts increases to 20.87% (21.05%). The
remaining parts behave similar.

For the rSSTP and the directedmodels the running times are distributed slightly different
since the master problem is expanded by directed cuts. This also affects the second
stage which is in general easier to solve. The most time consuming parts for dc1 are as
follows: solving LPs of the subproblems 49.19% (47.35%), separation of directed cuts in
the subproblems 25.62% (25.69%), initializations of the subproblems 4.3% (4.3%), pool
separation 3.04% (3.82%), strengthening of L-shaped cuts 2.9% (3.17%), solving themaster
LP 2.81% (5.63%), and separation of directed cuts in the master <0.01% (3.99%).

The most noticeable difference to the timing statistics of sdc2 is the ratio of the two
most time consuming parts, i.e., solving the LPs in the second stage and the separation of
the directed cuts in the second stage. The sum of the running times of these two parts is
similar but the ratio is different.

The percentage running times of the directed models dc2 and dc2∗ behave similar to
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sdc2. Here, for dc2, the subproblems LPs take 67.11% (65.08%) and the separation of
directed cuts in the subproblems 15.72% (15.94%) of the time.

This indicates that adding the capacity constraints increases the running time for solving
the second stage LPs slightly; but on the other hand, computing the max flow/min cut seems
to be faster for (s)dc2.

Integer optimality cuts and number of b&b nodes. The experiments show that the
number of b&b nodes of all models (except sdc1) is quite low on the generated instances.
Moreover, a previously not mentioned aspect is the number of inserted integer optimality
cuts in the two-stage b&c algorithmwhich is also very low: in all runs on theBasic instances
with 5–1000 scenarios dc1 and sdc2 each insert only a total of 55 integer optimality cuts
and no-good cuts.

The reason for the low number of b&b nodes and integer optimality cuts is the strength
of the directed cut formulation (STPdc) for the Steiner tree problem and the used STP
instances for generating the stochastic instances. Consider the integer optimality cuts:
these cuts are inserted when the first-stage solution is integer, the second stage is solved to
integer optimality, and the bounds on the θ variables are not correct. But if the second stage
is solved as relaxed problem and the solution is integer anyway the L-shaped optimality cuts
already imply the correct bound. Since the used STP instances are quite simple for (STPdc),
there is mostly no integrality gap and the relaxed problem often has an integer optimum
solution. Moreover, (STPdc) does not need many b&b nodes for solving these instances.
These aspects translate directly to the stochastic approaches and all models; only model
sdc1 is weaker and moreover, as discussed in the experiments on the cut strengthening
method, not using this method for (s)dc2(∗) highly increases the number of b&b nodes, too.

Discussion on further experiments. In the following we describe some experiments
which are interesting for future work; some of the experiments can be found in the computa-
tional study for the stochastic survivable network design problem (SSNDP) in Section 10.2.

• Disaggregated integer optimality cuts, as described in Section 7.2.4, are not con-
sidered here. We skip the evaluation since the models do not need many integer
optimality cuts on our generated instances; we refer to the SSNDP experiments.

• Pareto optimal L-shaped optimality cuts by the method of Magnanti andWong [131],
as described in Section 7.2.1, may influence the number of master iterations. We do
not make experiments for the SSTP but we make experiments for the SSNDP.

• Method Laminarize heuristically improves the L-shaped cuts, cf. Section 7.2.1. How-
ever, preliminary experiments show no positive impact on the running time.

Open problem 8.4. Does heuristic Laminarize improve the performance of the two-
stage b&c algorithm?

• Section 7.2.3 introduces cut-based constraints (Cc) which are the only constraints that
can be added to the first-stage master problem. We do not evaluate these constraints
experimentally.

Open problem 8.5. Do cut-based constraints improve the performance of the two-
stage b&c algorithm?
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• Lemma 6.3 and Theorem 6.9 state that the first-stage variables of models (SSTPsdc2∗)
and (rSSTPdc2∗) can be relaxed without losing integrality. We do not evaluate the
impact on the running time since (a) this only influences the direct approaches, and
(b) the models do not require many b&b nodes on the instances anyway.

• We do not investigate the impact (benefit, bounds, running time) of the primal
heuristic. The reason is again the low number of b&b nodes.

• We do not implement the improvement of the lower bound L as described in Section
7.2.5; maybe this procedure has a positive effect on the algorithm, in particular on
instances causing many b&b nodes.

• We introduce new integer optimality cuts in Section 7.2.2. But since the number
of introduced integer optimality cuts is so low on the generated instances we do not
evaluate these cuts further. However, we make experiments for the SSNDP.

• In the default setup we always add no-good cuts. Due to the low number of b&b
nodes we do not investigate the effects when these cuts are not added. Again, we
make experiments for the SSNDP.

• Reducing numerical problems is an important aspect. Moreover, the number of
iterations until a tailing off effect is triggered is important. Our standard setup for
this threshold is 50 iterations. This value implies a tradeoff; a lower number leads
to a higher number of b&b nodes and an increased bound may result in unnecessary
optimizations of all scenarios and additional unnecessary L-shaped cuts.

• We do not run the algorithm on all instances from our instance set. In particular,
we do not solve the large instances from the Lin07–10 and wrp3-C sets. It would
be interesting to further investigate (and possibly improve) the performance on the
larger instances.

• We do not implement the flow-based models since it is known from many network
design problems that cut-based models in general perform better.

• It would be interesting to evaluate the performance of the SSTP models on instances
with no global terminal, i.e, without a special root node.

• Chapter 10 contains the computational study on the SSNDP. Here, we evaluate
further interesting aspects concerning the two-stage stochastic survivable network
design problems: the value of the stochastic solution, in-sample and out-of-sample
stability, an expension of the two-stage b&c algorithm by scenario generation, the
performance on denser graphs, and the impact of a costlier second stage.

8.3.7 Detailed results

This section contains further detailed statistics on the generated stochastic instances and
more detailed results from our computational study.

Table 8.10 gives detailed statistics of the generated (r)SSTP instances. We use t∗ :=
avgk∈K |Tk | and the average (avg) is taken over all stochastic instances (implied by number
of scenarios) of one base instance.
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class inst. |V | |E | |T | |E |
|V |

|T |
|V |

avg t∗ avg t∗

|T |
avg t∗

|V |

Copenhagen ind1 18 31 10 1.72 0.56 4.33 0.43 0.24
ind2 31 57 10 1.84 0.32 5.02 0.50 0.16
ind3 16 23 10 1.44 0.63 4.47 0.45 0.28
ind4 74 146 25 1.97 0.34 11.31 0.45 0.15
ind5 114 228 33 2.00 0.29 15.50 0.47 0.14
rc01 21 35 10 1.67 0.48 4.70 0.47 0.22
rc02 87 176 30 2.02 0.34 13.57 0.45 0.16
rc03 109 202 50 1.85 0.46 20.17 0.40 0.19
rc04 121 197 70 1.63 0.58 26.29 0.38 0.22
rc05 247 486 100 1.97 0.40 40.92 0.41 0.17

PCSTP K100 45 191 12 4.24 0.27 6.37 0.53 0.14
K100.1 42 185 9 4.40 0.21 5.44 0.60 0.13
K100.2 24 83 8 3.46 0.33 4.08 0.51 0.17
K100.3 26 123 8 4.73 0.31 4.38 0.55 0.17
K100.4 29 113 8 3.90 0.28 4.51 0.56 0.16
K100.5 31 120 13 3.87 0.42 6.11 0.47 0.20
K100.6 22 64 9 2.91 0.41 4.25 0.47 0.19
K100.7 25 93 8 3.72 0.32 4.13 0.52 0.17
K100.8 43 144 11 3.35 0.26 5.86 0.53 0.14
K100.9 22 70 10 3.18 0.45 4.55 0.45 0.21
K100.10 27 78 12 2.89 0.44 5.22 0.44 0.19
P100 66 163 20 2.47 0.30 9.53 0.48 0.14
P100.1 84 196 28 2.33 0.33 12.74 0.45 0.15
P100.2 75 187 19 2.49 0.25 9.82 0.52 0.13
P100.3 91 237 21 2.60 0.23 10.92 0.52 0.12
P100.4 69 186 24 2.70 0.35 10.95 0.46 0.16

Lin Lin01 53 80 4 1.51 0.08 4.49 1.12 0.08
Lin02 55 82 6 1.49 0.11 5.38 0.90 0.10
Lin03 57 84 8 1.47 0.14 6.21 0.78 0.11
Lin04 157 266 6 1.69 0.04 10.13 1.69 0.06
Lin05 160 269 9 1.68 0.06 11.34 1.26 0.07
Lin06 165 274 14 1.66 0.08 12.80 0.91 0.08
Lin07 307 526 6 1.71 0.02 18.12 3.02 0.06
Lin08 311 530 10 1.70 0.03 18.49 1.85 0.06
Lin09 313 532 12 1.70 0.04 19.57 1.63 0.06
Lin10 321 540 20 1.68 0.06 22.13 1.11 0.07

pucn cc3-4n 64 288 8 4.50 0.13 6.27 0.78 0.10
cc3-5n 125 750 13 6.00 0.10 10.32 0.79 0.08
cc6-2n 64 192 12 3.00 0.19 7.42 0.62 0.12

Vienna I052a 160 237 23 1.48 0.14 15.29 0.66 0.10
I056a 290 439 34 1.51 0.12 24.29 0.71 0.08

wrp3 wrp3-11 128 227 11 1.77 0.09 9.92 0.90 0.08
wrp3-12 84 149 12 1.77 0.14 7.94 0.66 0.09
wrp3-14 128 247 14 1.93 0.11 10.98 0.78 0.09
wrp3-15 138 257 15 1.86 0.11 11.79 0.79 0.09
wrp3-16 204 374 16 1.83 0.08 15.17 0.95 0.07
wrp3-17 177 354 17 2.00 0.10 14.47 0.85 0.08
wrp3-19 189 353 19 1.87 0.10 15.17 0.80 0.08
wrp3-23 132 230 23 1.74 0.17 13.69 0.60 0.10
wrp3-13 311 613 13 1.97 0.04 20.01 1.54 0.06
wrp3-20 245 454 20 1.85 0.08 18.26 0.91 0.07
wrp3-21 237 444 21 1.87 0.09 19.07 0.91 0.08
wrp3-22 233 431 22 1.85 0.09 18.72 0.85 0.08
wrp3-24 262 487 24 1.86 0.09 20.77 0.87 0.08
wrp3-25 246 468 25 1.90 0.10 19.89 0.80 0.08

Table 8.10: Details on SSTP instances.
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The following tables (which can be found on our homepage [178]) contain detailed
results of the experiments for the semi-directed model sdc2 and the directed model dc1.
For each instance (inst.) we report the optimum solution or the best found solution (opt),
the average running time in seconds (t[s]), the average number of b&b nodes (b&b), and the
status (st). The status is a value from the set {0, 0.2, 0.4, 0.6, 0.8, 1} which gives the success
rate, i.e., the percentage of successful runs on the instance (out of 5 runs); hence, 1 means
that the algorithm is always successful and 0 means that the algorithm always reaches the
time limit.

Lin instances with 5–250 scenarios

sdc2 dc1
inst. |V | |E | K st opt t[s] b&b st opt t[s] b&b

Lin01 53 80 5 1 637.22 0.10 1 1 637.22 0.05 1
Lin01 53 80 10 1 628.21 0.19 1 1 628.21 0.09 1
Lin01 53 80 20 1 664.61 0.40 3 1 664.61 0.21 1
Lin01 53 80 50 1 637.66 0.82 1 1 637.66 0.60 1
Lin01 53 80 75 1 666.10 1.44 1 1 666.10 1.02 1
Lin01 53 80 100 1 683.41 1.99 1 1 683.41 1.22 1
Lin01 53 80 150 1 677.29 3.55 3 1 677.29 2.00 1
Lin01 53 80 200 1 690.01 3.62 1 1 690.01 2.29 1
Lin01 53 80 250 1 696.96 4.61 1 1 696.96 3.01 1
Lin02 55 82 5 1 988.80 0.26 1 1 988.80 0.08 1
Lin02 55 82 10 1 745.44 0.11 1 1 745.44 0.10 1
Lin02 55 82 20 1 702.52 0.25 1 1 702.52 0.20 1
Lin02 55 82 50 1 696.30 0.70 1 1 696.30 0.51 1
Lin02 55 82 75 1 679.12 1.09 1 1 679.12 0.80 1
Lin02 55 82 100 1 664.72 1.38 1 1 664.72 0.98 1
Lin02 55 82 150 1 673.40 2.30 1 1 673.40 1.52 1
Lin02 55 82 200 1 675.13 3.19 1 1 675.13 2.00 1
Lin02 55 82 250 1 678.51 4.12 1 1 678.51 2.82 1
Lin03 57 84 5 1 1095.65 0.42 1 1 1095.65 0.16 1
Lin03 57 84 10 1 1028.29 0.66 1 1 1028.29 0.25 1
Lin03 57 84 20 1 997.52 1.38 1 1 997.52 0.53 1
Lin03 57 84 50 1 927.09 1.90 1 1 927.09 1.04 1
Lin03 57 84 75 1 876.77 2.48 1 1 876.77 1.37 1
Lin03 57 84 100 1 862.47 3.06 1 1 862.47 1.96 1
Lin03 57 84 150 1 860.77 4.23 1 1 860.77 2.55 1
Lin03 57 84 200 1 842.79 5.41 1 1 842.79 3.32 1
Lin03 57 84 250 1 842.09 6.89 1 1 842.09 4.41 1
Lin04 157 266 5 1 1722.94 6.36 1 1 1722.94 1.69 1
Lin04 157 266 10 1 1891.36 25.19 1 1 1891.36 3.87 1
Lin04 157 266 20 1 1783.85 33.87 1 1 1783.85 6.10 1
Lin04 157 266 50 1 1907.47 159.08 1 1 1907.47 20.62 1
Lin04 157 266 75 1 1939.45 248.39 1 1 1939.45 30.04 1
Lin04 157 266 100 1 1899.06 254.71 3 1 1899.06 36.85 1
Lin04 157 266 150 1 1920.20 420.96 1 1 1920.20 53.54 1
Lin04 157 266 200 1 1900.51 492.54 1 1 1900.51 71.82 1
Lin04 157 266 250 1 1891.97 630.09 1 1 1891.97 85.38 1
Lin05 160 269 5 1 2197.57 72.63 3 1 2197.57 4.56 1
Lin05 160 269 10 1 2138.60 84.91 5 1 2138.75 7.10 1
Lin05 160 269 20 1 2125.00 133.77 1 1 2125.00 12.86 1
Lin05 160 269 50 1 2067.80 174.17 3 1 2067.80 23.84 3
Lin05 160 269 75 1 2071.93 217.19 1 1 2071.93 31.09 1
Lin05 160 269 100 1 2058.40 266.97 1 1 2058.40 39.74 1
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sdc2 dc1
inst. |V | |E | K st opt t[s] b&b st opt t[s] b&b

Lin05 160 269 150 1 2038.04 342.38 1 1 2038.04 57.74 1
Lin05 160 269 200 1 1993.54 409.33 1 1 1993.54 75.00 1
Lin05 160 269 250 1 2016.18 540.71 1 1 2016.18 92.06 1
Lin06 165 274 5 1 1791.28 25.62 1 1 1791.28 2.01 1
Lin06 165 274 10 1 1927.75 47.84 1 1 1927.75 4.77 1
Lin06 165 274 20 1 1865.48 58.31 1 1 1865.48 8.48 1
Lin06 165 274 50 1 1971.19 183.89 11 1 1971.19 25.51 1
Lin06 165 274 75 1 1976.71 221.83 1 1 1976.71 35.54 1
Lin06 165 274 100 1 1999.09 317.40 1 1 1999.09 45.83 1
Lin06 165 274 150 1 2002.55 462.72 3 1 2002.55 66.83 1
Lin06 165 274 200 1 2004.06 562.49 3 1 2004.06 88.26 1
Lin06 165 274 250 1 2021.32 720.60 3 1 2021.32 108.12 1

Table 8.11: Details on Lin01–Lin06 instances

wrp3-A instances with 5–250 scenarios and wrp3-B instances with 5–100 scenarios

sdc2 dc1
inst. |V | |E | K st opt t[s] b&b st opt t[s] b&b

wrp3-11 128 227 5 1 4092.08 11.42 3 1 4092.10 2.10 4.2
wrp3-11 128 227 10 1 4236.37 34.59 9 1 4236.47 2.53 1
wrp3-11 128 227 20 1 4701.09 37.14 3 1 4701.16 4.15 1
wrp3-11 128 227 50 1 4794.32 55.60 5 1 4794.41 11.58 1.4
wrp3-11 128 227 75 1 4827.22 101.95 9 1 4827.22 12.61 1
wrp3-11 128 227 100 1 4990.24 89.99 3 1 4990.29 14.60 1
wrp3-11 128 227 150 1 5091.63 170.99 7 1 5091.70 29.24 1
wrp3-11 128 227 200 1 5054.05 172.65 3 1 5054.05 35.90 1
wrp3-11 128 227 250 1 5051.40 207.10 3 1 5051.42 44.18 1
wrp3-12 84 149 5 1 4120.29 1.08 1 1 4120.29 0.13 1
wrp3-12 84 149 10 1 5097.18 5.30 1.4 1 5097.18 0.24 1
wrp3-12 84 149 20 1 5692.56 4.75 3 1 5692.56 0.45 1
wrp3-12 84 149 50 1 5381.84 11.92 3 1 5381.84 1.31 1
wrp3-12 84 149 75 1 5465.06 13.93 3 1 5465.06 1.90 1
wrp3-12 84 149 100 1 5488.14 18.28 3 1 5488.14 2.66 1
wrp3-12 84 149 150 1 5450.69 24.75 1 1 5450.69 4.70 1
wrp3-12 84 149 200 1 5643.96 36.62 3 1 5643.96 5.11 1
wrp3-12 84 149 250 1 5567.71 44.74 3 1 5567.71 7.37 1
wrp3-14 128 247 5 1 5972.91 5.54 1 1 5973.47 1.17 1
wrp3-14 128 247 10 1 5955.82 8.00 1 1 5956.12 1.28 1
wrp3-14 128 247 20 1 6057.21 15.71 1 1 6057.73 2.30 1
wrp3-14 128 247 50 1 6259.91 30.29 1 1 6260.34 3.66 1
wrp3-14 128 247 75 1 6202.35 44.29 1 1 6202.64 5.03 1
wrp3-14 128 247 100 1 6211.23 61.88 1 1 6211.63 7.92 1
wrp3-14 128 247 150 1 6191.97 79.76 1 1 6192.26 11.69 1
wrp3-14 128 247 200 1 6205.75 103.37 1 1 6206.04 16.74 1
wrp3-14 128 247 250 1 6129.14 140.54 1 1 6129.39 24.58 1
wrp3-15 138 257 5 1 7621.03 83.92 16.2 1 7621.03 2.32 1.8
wrp3-15 138 257 10 1 7386.36 117.21 15 1 7386.36 2.60 2.6
wrp3-15 138 257 20 1 6122.37 34.02 2.2 1 6122.37 3.18 1.8
wrp3-15 138 257 50 1 6467.10 317.56 7.4 1 6467.10 5.77 2.2
wrp3-15 138 257 75 1 6515.93 692.09 9.4 1 6515.93 146.54 10.2
wrp3-15 138 257 100 0.8 6546.29 3227.53 23 1 6546.29 100.65 9
wrp3-15 138 257 150 0.2 6622.71 6168.72 30.6 1 6622.71 157.81 13.8
wrp3-15 138 257 200 1 6682.51 4658.07 18.6 1 6682.51 37.30 3
wrp3-15 138 257 250 0.4 6693.66 6096.34 19.8 1 6693.66 271.17 4.6
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sdc2 dc1
inst. |V | |E | K st opt t[s] b&b st opt t[s] b&b

wrp3-16 204 374 5 1 6407.82 679.07 2.2 1 6408.55 13.85 1.8
wrp3-16 204 374 10 1 6404.39 2993.07 13 1 6404.78 29.12 1.4
wrp3-16 204 374 20 0 6709.97 7200.00 15.4 1 6705.98 66.07 1.4
wrp3-16 204 374 50 1 6909.23 5725.49 11.4 1 6909.23 101.86 1
wrp3-16 204 374 75 0.8 7085.08 6456.27 14.6 1 7085.19 132.75 1
wrp3-16 204 374 100 0 7113.85 7200.00 11.4 1 7113.79 192.09 1
wrp3-17 177 354 5 1 7106.72 325.13 47 1 7107.03 5.28 1.4
wrp3-17 177 354 10 1 6908.86 190.16 5.8 1 6909.24 7.21 1.8
wrp3-17 177 354 20 1 6956.2 95.86 1 1 6956.35 6.81 1
wrp3-17 177 354 50 1 7166.13 322.68 2.2 1 7166.24 14.67 1.4
wrp3-17 177 354 75 1 7205.86 291.07 6.2 1 7206.50 22.63 1.4
wrp3-17 177 354 100 1 7232.26 240.91 1 1 7232.95 27.13 1
wrp3-19 189 353 5 1 6303.67 56.69 3 1 6304.59 4.01 1
wrp3-19 189 353 10 1 6995.39 137.09 3 1 6996.22 10.60 1.4
wrp3-19 189 353 20 1 7881.34 322.92 7 1 7881.85 19.11 1.4
wrp3-19 189 353 50 1 7905.21 502.56 6.6 1 7905.65 39.86 1
wrp3-19 189 353 75 1 7986.87 1392.51 19 1 7987.09 79.10 3
wrp3-19 189 353 100 1 8199.96 1059.29 3 1 8200.11 83.62 1
wrp3-23 132 230 5 1 10954.6 70.93 5 1 10954.60 2.76 3.4
wrp3-23 132 230 10 1 9465.78 100.69 3.4 1 9465.86 3.77 1
wrp3-23 132 230 20 1 9108.81 283.40 9.8 1 9109.05 9.15 3.8
wrp3-23 132 230 50 1 9245.02 399.34 13.4 1 9245.18 12.19 1.4
wrp3-23 132 230 75 1 9831.33 1863.46 33.8 1 9831.33 17.66 1
wrp3-23 132 230 100 1 9534.51 1957.49 32.2 1 9534.51 23.81 1

Table 8.12: Details on wrp3-A and wrp3-B instances

pucn instances with 5–20 scenarios

sdc2 dc1
inst. |V | |E | K st opt t[s] b&b st opt t[s] b&b

cc3-4n 64 288 5 0 15.2652 7200 298.6 1 15.2652 1.20 1
cc3-4n 64 288 10 0 15.6408 7200 95.8 1 15.6408 3.55 7
cc3-4n 64 288 20 0 15.6458 7200 22.6 1 15.562 453.36 39.8
cc3-5n 125 750 5 0 20.5002 7200 3.8 1 18.4092 11.15 1
cc3-5n 125 750 10 0 22.8032 7200 1 1 21.7196 392.19 12.2
cc3-5n 125 750 20 0 24.4458 7200 1 1 23.7856 4066.24 19.4
cc6-2n 64 192 5 0 20.526 7200 50.2 1 19.0874 3.22 1
cc6-2n 64 192 10 0 20.9902 7200 26.2 1 19.4244 20.12 13
cc6-2n 64 192 20 0 21.487 7200 12.6 1 19.7262 150.95 19

Table 8.13: Details on pucn instances

Copenhagen instances with 5–250 scenarios

sdc2 dc1
inst. |V | |E | K st opt t[s] b&b st opt t[s] b&b
ind1 18 31 5 1 333.257 0.01 1 1 333.257 0.01 1
ind1 18 31 10 1 321.261 0.04 1 1 321.261 0.03 1
ind1 18 31 20 1 272.636 0.05 1 1 272.636 0.03 1
ind1 18 31 50 1 340.047 0.17 1 1 340.047 0.13 1
ind1 18 31 75 1 312.575 0.22 1 1 312.575 0.19 1
ind1 18 31 100 1 309.425 0.33 1 1 309.425 0.22 1
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sdc2 dc1
inst. |V | |E | K st opt t[s] b&b st opt t[s] b&b
ind1 18 31 150 1 291.673 0.52 1 1 291.673 0.34 1
ind1 18 31 200 1 289.228 0.66 1 1 289.228 0.44 1
ind1 18 31 250 1 290.904 0.81 1 1 290.904 0.60 1
ind2 31 57 5 1 5824.01 0.06 1 1 5824.01 0.02 1
ind2 31 57 10 1 6064.49 0.14 1 1 6064.49 0.05 1
ind2 31 57 20 1 5099.93 0.14 1 1 5099.93 0.08 1
ind2 31 57 50 1 6245.66 0.38 1 1 6245.66 0.23 1
ind2 31 57 75 1 5935.01 0.60 1 1 5935.01 0.34 1
ind2 31 57 100 1 5769.38 0.79 1 1 5769.38 0.39 1
ind2 31 57 150 1 5734.94 0.82 1 1 5734.94 0.57 1
ind2 31 57 200 1 5853.90 1.14 1 1 5853.90 0.69 1
ind2 31 57 250 1 5979.01 1.54 1 1 5979.01 0.99 1
ind3 16 23 5 1 461.367 0.01 1 1 461.367 0.01 1
ind3 16 23 10 1 441.80 0.04 1 1 441.80 0.01 1
ind3 16 23 20 1 371.231 0.05 1 1 371.231 0.02 1
ind3 16 23 50 1 378.486 0.12 1 1 378.486 0.06 1
ind3 16 23 75 1 380.197 0.21 1 1 380.197 0.09 1
ind3 16 23 100 1 381.665 0.25 1 1 381.665 0.12 1
ind3 16 23 150 1 375.471 0.37 1 1 375.471 0.18 1
ind3 16 23 200 1 359.931 0.48 1 1 359.931 0.23 1
ind3 16 23 250 1 363.069 0.60 1 1 363.069 0.30 1
ind4 74 146 5 1 589.509 4.25 3 1 592.74 0.58 1
ind4 74 146 10 1 671.807 5.03 1 1 671.807 0.75 1
ind4 74 146 20 1 708.439 12.81 1 1 708.439 1.82 1
ind4 74 146 50 1 677.684 16.46 1 1 677.684 3.54 1
ind4 74 146 75 1 681.868 24.69 1 1 681.868 5.23 1
ind4 74 146 100 1 667.225 40.30 4.2 1 667.225 7.12 1
ind4 74 146 150 1 673.259 64.67 5 1 673.259 11.28 1
ind4 74 146 200 1 666.797 87.56 5 1 666.797 14.43 1
ind4 74 146 250 1 663.889 103.93 5 1 663.889 18.04 1
ind5 114 228 5 1 901.039 9.33 1 1 901.134 0.97 1
ind5 114 228 10 1 836.947 9.24 1 1 836.947 1.39 1
ind5 114 228 20 1 857.567 20.99 1 1 857.567 2.89 1
ind5 114 228 50 1 876.561 41.53 1 1 876.561 7.31 1
ind5 114 228 75 1 888.897 63.26 1 1 888.897 10.46 1
ind5 114 228 100 1 902.168 80.98 1 1 902.168 14.08 1
ind5 114 228 150 1 913.327 112.13 1 1 913.327 20.2 1
ind5 114 228 200 1 908.848 147.87 1 1 908.848 28.28 1
ind5 114 228 250 1 912.536 179.88 1 1 912.536 35.89 1
rc01 21 35 5 1 19086.80 0.02 1 1 19086.80 0.01 1
rc01 21 35 10 1 19581.10 0.03 1 1 19581.10 0.02 1
rc01 21 35 20 1 18837.60 0.09 1 1 18837.60 0.03 1
rc01 21 35 50 1 19197.60 0.24 1 1 19197.60 0.09 1
rc01 21 35 75 1 18286.00 0.24 1 1 18286.00 0.12 1
rc01 21 35 100 1 18275.70 0.37 1 1 18275.70 0.17 1
rc01 21 35 150 1 17944.00 0.48 1 1 17944.00 0.25 1
rc01 21 35 200 1 17923.40 0.62 1 1 17923.40 0.30 1
rc01 21 35 250 1 17886.00 0.82 1 1 17886.00 0.37 1
rc02 87 176 5 1 30486.00 5.50 1 1 30486.00 0.78 1
rc02 87 176 10 1 26552.70 5.29 1 1 26552.70 0.77 1
rc02 87 176 20 1 30328.90 13.07 1 1 30328.90 1.96 1
rc02 87 176 50 1 31660.60 39.44 1 1 31660.60 5.51 1
rc02 87 176 75 1 31783.80 56.52 1 1 31783.80 6.99 1
rc02 87 176 100 1 31075.60 59.39 1 1 31075.60 9.45 1
rc02 87 176 150 1 31180.60 100.85 1 1 31180.60 14.61 1
rc02 87 176 200 1 30882.80 129.96 1 1 30882.80 20.19 1
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sdc2 dc1
inst. |V | |E | K st opt t[s] b&b st opt t[s] b&b
rc02 87 176 250 1 30817.20 157.74 1 1 30817.20 24.65 1
rc03 109 202 5 1 42385.10 6.44 1.4 1 42385.10 1.11 1
rc03 109 202 10 1 42152.10 20.26 3.8 1 42301.60 3.3 1.4
rc03 109 202 20 1 41764.70 30.83 3 1 41764.70 3.09 1
rc03 109 202 50 1 41215.60 74.60 10.2 1 41215.60 7.25 1
rc03 109 202 75 1 41268.10 83.29 3 1 41268.10 10.60 1
rc03 109 202 100 1 40951.60 150.06 3 1 40951.60 14.08 1
rc03 109 202 150 1 41245.50 117.16 1 1 41245.50 21.01 1
rc03 109 202 200 1 41069.10 128.80 1 1 41069.10 26.01 1
rc03 109 202 250 1 41083.90 148.15 1 1 41083.90 31.61 1
rc04 121 197 5 1 45957.20 6.18 4.6 1 45957.20 0.48 1
rc04 121 197 10 1 44933.30 10.87 1 1 44934.40 0.78 1
rc04 121 197 20 1 46006.80 16.13 1 1 46006.80 1.22 1
rc04 121 197 50 1 45796.80 45.18 3 1 45796.80 2.63 1
rc04 121 197 75 1 45962.00 64.39 3 1 45962.00 3.64 1
rc04 121 197 100 1 46228.20 167.26 4.6 1 46228.20 4.22 1
rc04 121 197 150 1 46093.70 732.29 11.4 1 46093.70 6.44 1
rc04 121 197 200 1 46119.10 584.70 9 1 46119.10 9.13 1
rc04 121 197 250 1 46323.20 354.38 4.2 1 46323.20 12.68 1
rc05 247 486 5 1 57554.40 2932.21 33.4 1 57554.40 49.57 3.4
rc05 247 486 10 1 57366.30 3632.36 19.4 1 57368.00 58.80 2.2
rc05 247 486 20 1 57911.70 3317.22 7 1 57911.70 80.03 1.4
rc05 247 486 50 1 58649.90 4762.29 4.2 1 58797.10 196.45 3
rc05 247 486 75 0.8 58390.20 6662.51 5 1 58460.00 274.81 1.8
rc05 247 486 100 0 58249.20 7200 2.2 1 58335.30 469.19 2.6
rc05 247 486 150 0 58764.30 7200 1 1 58451.30 513.26 1.8
rc05 247 486 200 0 59855.10 7200 1 1 58602.50 611.06 1.4
rc05 247 486 250 0 61237.70 7200 1 1 58864.30 704.74 1

Table 8.14: Details on Copenhagen instances

PCSTP instances (K100 and P100) with 5–250 scenarios

sdc2 dc1
inst. |V | |E | K st opt t[s] b&b st opt t[s] b&b

K100 45 191 5 1 177493.00 1.67 3 1 177493.00 0.45 1
K100 45 191 10 1 172609.00 2.45 1 1 172609.00 0.77 1
K100 45 191 20 1 155546.00 2.38 1 1 155546.00 0.94 1
K100 45 191 50 1 155391.00 5.21 1 1 155391.00 2.24 1
K100 45 191 75 1 152402.00 7.10 1 1 152402.00 3.23 1
K100 45 191 100 1 152059.00 9.01 1 1 152059.00 4.35 1
K100 45 191 150 1 152968.00 14.33 1 1 152968.00 5.88 1
K100 45 191 200 1 153676.00 19.97 1 1 153676.00 8.08 1
K100 45 191 250 1 156196.00 27.14 1 1 156196.00 10.51 1

K100.1 42 185 5 1 156602.00 0.18 1 1 156602.00 0.10 1
K100.1 42 185 10 1 179395.00 0.73 1 1 179395.00 0.33 1
K100.1 42 185 20 1 150544.00 0.87 1 1 150544.00 0.49 1
K100.1 42 185 50 1 144432.00 2.35 1 1 144432.00 1.41 1
K100.1 42 185 75 1 144184.00 3.93 3 1 144184.00 2.13 1
K100.1 42 185 100 1 147976.00 4.55 1 1 147976.00 2.67 1
K100.1 42 185 150 1 149961.00 7.81 3 1 149961.00 4.42 1
K100.1 42 185 200 1 150957.00 11.01 3 1 150957.00 6.10 1
K100.1 42 185 250 1 152899.00 11.07 1 1 152899.00 7.03 1
K100.2 24 83 5 1 116034.00 0.16 1 1 116034.00 0.08 1
K100.2 24 83 10 1 125139.00 0.53 3 1 125139.00 0.18 1
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sdc2 dc1
inst. |V | |E | K st opt t[s] b&b st opt t[s] b&b

K100.2 24 83 20 1 120491.00 0.37 1 1 120491.00 0.21 1
K100.2 24 83 50 1 114203.00 0.81 1 1 114203.00 0.59 1
K100.2 24 83 75 1 114721.00 1.36 1 1 114721.00 0.92 1
K100.2 24 83 100 1 113183.00 1.85 1 1 113183.00 1.21 1
K100.2 24 83 150 1 114057.00 2.46 1 1 114057.00 1.79 1
K100.2 24 83 200 1 111991.00 3.38 1 1 111991.00 2.64 1
K100.2 24 83 250 1 111190.00 4.19 1 1 111190.00 5.74 1.4
K100.3 26 123 5 1 113056.00 0.22 1 1 113056.00 0.13 1
K100.3 26 123 10 1 116570.00 0.36 1 1 116570.00 0.22 1
K100.3 26 123 20 1 119037.00 1.02 3 1 119037.00 0.49 1
K100.3 26 123 50 1 114973.00 1.40 1 1 114973.00 0.89 1
K100.3 26 123 75 1 118298.00 2.25 1 1 118298.00 1.44 1
K100.3 26 123 100 1 113969.00 2.45 1 1 113969.00 1.83 1
K100.3 26 123 150 1 109087.00 3.65 1 1 109087.00 2.44 1
K100.3 26 123 200 1 109999.00 5.51 1 1 109999.00 3.53 1
K100.3 26 123 250 1 109973.00 6.93 1 1 109973.00 4.49 1
K100.4 29 113 5 1 109270.00 0.18 1 1 109270.00 0.09 1
K100.4 29 113 10 1 98672.90 0.28 1 1 98672.90 0.14 1
K100.4 29 113 20 1 95027.30 0.39 1 1 95027.30 0.23 1
K100.4 29 113 50 1 89067.30 0.87 1 1 89067.30 0.48 1
K100.4 29 113 75 1 88552.80 1.18 1 1 88552.80 0.66 1
K100.4 29 113 100 1 91394.70 1.75 1 1 91394.70 0.93 1
K100.4 29 113 150 1 90219.80 2.48 1 1 90219.80 1.42 1
K100.4 29 113 200 1 91033.30 3.82 1 1 91033.30 2.07 1
K100.4 29 113 250 1 91684.30 4.66 1 1 91684.30 2.61 1
K100.5 31 120 5 1 207291.00 0.61 1 1 207291.00 0.19 1
K100.5 31 120 10 1 178010.00 0.71 1 1 178010.00 0.27 1
K100.5 31 120 20 1 159272.00 1.43 3 1 159272.00 0.53 1
K100.5 31 120 50 1 152412.00 2.24 1 1 152412.00 1.16 1
K100.5 31 120 75 1 155357.00 3.06 1 1 155357.00 1.51 1
K100.5 31 120 100 1 154027.00 4.03 1 1 154027.00 1.95 1
K100.5 31 120 150 1 153676.00 6.33 1 1 153676.00 3.30 1
K100.5 31 120 200 1 152382.00 8.91 1 1 152382.00 3.94 1
K100.5 31 120 250 1 152998.00 11.00 1 1 152998.00 5.50 1
K100.6 22 64 5 1 163939.00 0.11 1 1 163939.00 0.06 1
K100.6 22 64 10 1 145688.00 0.15 1 1 145688.00 0.09 1
K100.6 22 64 20 1 137463.00 0.22 1 1 137463.00 0.18 1
K100.6 22 64 50 1 145298.00 0.68 1 1 145298.00 0.48 1
K100.6 22 64 75 1 140969.00 0.99 1 1 140969.00 0.72 1
K100.6 22 64 100 1 142446.00 1.33 1 1 142446.00 0.85 1
K100.6 22 64 150 1 144294.00 1.96 1 1 144294.00 1.27 1
K100.6 22 64 200 1 143855.00 2.58 1 1 143855.00 1.83 1
K100.6 22 64 250 1 141002.00 3.00 1 1 141002.00 2.04 1
K100.7 25 93 5 1 153754.00 0.23 3 1 153836.00 0.06 1
K100.7 25 93 10 1 159474.00 0.27 1 1 159474.00 0.14 1
K100.7 25 93 20 1 152902.00 0.48 1 1 152902.00 0.27 1
K100.7 25 93 50 1 138843.00 0.88 1 1 138843.00 0.53 1
K100.7 25 93 75 1 136692.00 1.09 1 1 136692.00 0.73 1
K100.7 25 93 100 1 137551.00 1.60 1 1 137551.00 1.01 1
K100.7 25 93 150 1 138191.00 2.47 1 1 138191.00 1.52 1
K100.7 25 93 200 1 137639.00 3.42 1 1 137639.00 2.27 1
K100.7 25 93 250 1 140635.00 4.56 1 1 140635.00 2.83 1
K100.8 43 144 5 1 142996.00 0.24 1 1 142996.00 0.09 1
K100.8 43 144 10 1 162983.00 0.48 1 1 162983.00 0.25 1
K100.8 43 144 20 1 173768.00 0.92 1 1 173768.00 0.48 1
K100.8 43 144 50 1 166426.00 2.35 1 1 166426.00 1.17 1
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sdc2 dc1
inst. |V | |E | K st opt t[s] b&b st opt t[s] b&b

K100.8 43 144 75 1 166197.00 3.57 1 1 166197.00 1.78 1
K100.8 43 144 100 1 166375.00 4.45 1 1 166375.00 2.34 1
K100.8 43 144 150 1 170124.00 7.28 1 1 170124.00 3.57 1
K100.8 43 144 200 1 173631.00 9.73 1 1 173631.00 5.02 1
K100.8 43 144 250 1 174016.00 11.71 1 1 174016.00 6.28 1
K100.9 22 70 5 1 122937.00 0.15 3 1 122937.00 0.05 1
K100.9 22 70 10 1 119444.00 0.13 1 1 119444.00 0.07 1
K100.9 22 70 20 1 106355.00 0.09 1 1 106355.00 0.08 1
K100.9 22 70 50 1 109768.00 0.36 1 1 109768.00 0.27 1
K100.9 22 70 75 1 107906.00 0.51 1 1 107906.00 0.39 1
K100.9 22 70 100 1 107147.00 0.69 1 1 107147.00 0.52 1
K100.9 22 70 150 1 109671.00 1.06 1 1 109671.00 0.78 1
K100.9 22 70 200 1 110904.00 1.41 1 1 110904.00 1.10 1
K100.9 22 70 250 1 112679.00 1.96 1 1 112679.00 1.38 1
K100.10 27 78 5 1 165573.00 0.15 1 1 165573.00 0.06 1
K100.10 27 78 10 1 150002.00 0.13 1 1 150002.00 0.09 1
K100.10 27 78 20 1 150408.00 0.32 1 1 150408.00 0.17 1
K100.10 27 78 50 1 168981.00 0.83 1 1 168981.00 0.53 1
K100.10 27 78 75 1 181791.00 1.47 1 1 181791.00 0.80 1
K100.10 27 78 100 1 181178.00 1.98 1 1 181178.00 1.14 1
K100.10 27 78 150 1 183114.00 2.91 1 1 183114.00 1.73 1
K100.10 27 78 200 1 185982.00 4.00 1 1 185982.00 2.48 1
K100.10 27 78 250 1 185437.00 5.09 1 1 185437.00 3.31 1

Table 8.15: Details on K100 instances (PCSTP group)

sdc2 dc1
inst. |V | |E | K st opt t[s] b&b st opt t[s] b&b
P100 66 163 5 1 314963 1.43 1 1 314963 0.21 1
P100 66 163 10 1 349544 2.27 1 1 349544 0.36 1
P100 66 163 20 1 360151 4.20 3 1 360151 0.67 1
P100 66 163 50 1 375177 7.65 1 1 375177 1.41 1
P100 66 163 75 1 389491 9.90 1 1 389491 2.01 1
P100 66 163 100 1 386804 15.58 1 1 386804 3.09 1
P100 66 163 150 1 389343 21.56 1 1 389343 4.69 1
P100 66 163 200 1 389738 26.93 1 1 389738 7.07 1
P100 66 163 250 1 390390 34.19 1 1 390390 8.21 1

P100.1 84 196 5 1 582398 4.97 1 1 582398 0.44 1
P100.1 84 196 10 1 572280 7.94 3 1 572280 0.84 1
P100.1 84 196 20 1 557082 9.29 1 1 557082 1.47 1
P100.1 84 196 50 1 557269 14.92 1 1 557269 3.13 1
P100.1 84 196 75 1 545779 18.83 1 1 545779 4.63 1
P100.1 84 196 100 1 540791 23.12 1 1 540791 5.72 1
P100.1 84 196 150 1 533899 35.93 1 1 533899 8.82 1
P100.1 84 196 200 1 534023 44.94 1 1 534023 12.77 1
P100.1 84 196 250 1 539810 53.70 1 1 539810 15.72 1
P100.2 75 187 5 1 412061 3.72 1 1 413341 0.38 1
P100.2 75 187 10 1 419222 4.95 1 1 421373 0.65 1
P100.2 75 187 20 1 390133 6.60 1 1 390133 1.09 1
P100.2 75 187 50 1 401020 18.17 1 1 401020 3.17 1
P100.2 75 187 75 1 410826 25.83 1 1 410826 4.91 1
P100.2 75 187 100 1 416608 33.36 1 1 416608 5.95 1
P100.2 75 187 150 1 419230 57.33 1 1 419230 9.63 1
P100.2 75 187 200 1 417742 70.98 1 1 417742 12.83 1
P100.2 75 187 250 1 420325 87.25 1 1 420325 16.61 1
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sdc2 dc1
inst. |V | |E | K st opt t[s] b&b st opt t[s] b&b

P100.3 91 237 5 1 568266 7.81 1 1 568266 0.63 1
P100.3 91 237 10 1 487316 4.38 1 1 487316 0.91 1
P100.3 91 237 20 1 532679 13.69 1 1 532679 1.94 1
P100.3 91 237 50 1 523121 26.73 1 1 523121 4.92 1
P100.3 91 237 75 1 521291 39.16 1 1 521291 7.11 1
P100.3 91 237 100 1 516784 52.84 1 1 516784 10.27 1
P100.3 91 237 150 1 526432 74.32 1 1 526432 17.26 1
P100.3 91 237 200 1 521034 103.64 3 1 521034 24.05 3
P100.3 91 237 250 1 518514 131.30 3 1 518514 27.92 1
P100.4 69 186 5 1 515191 0.44 1 1 515191 0.09 1
P100.4 69 186 10 1 516098 0.79 1 1 516098 0.24 1
P100.4 69 186 20 1 542476 1.44 1 1 542476 0.83 1.4
P100.4 69 186 50 1 523388 3.53 1 1 523388 1.35 1
P100.4 69 186 75 1 522994 5.15 1 1 522994 1.84 1
P100.4 69 186 100 1 516570 6.90 1 1 516570 2.48 1
P100.4 69 186 150 1 496636 9.16 1 1 496636 3.92 1
P100.4 69 186 200 1 496437 12.52 1 1 496437 5.02 1
P100.4 69 186 250 1 488401 15.62 1 1 488401 6.49 1

Table 8.16: Details on P100 instances (PCSTP group)

Vienna instances with 5–100 scenarios

sdc2 dc1
inst. |V | |E | K st opt t[s] b&b st opt t[s] b&b

I052a 160 237 5 1 114146 9.53 3 1 114146 0.77 1.8
I052a 160 237 10 1 126952 27.32 3.4 1 126952 1.86 1
I052a 160 237 20 1 123713 31.75 3.4 1 123713 2.89 3
I052a 160 237 50 1 124967 72.17 3 1 124967 6.47 1
I052a 160 237 75 1 124812 82.84 1 1 124812 9.96 1
I052a 160 237 100 1 125279 182.77 3 1 125279 13.45 1
I056a 290 439 5 1 358435 210.00 1.8 1 358435 14.32 1.8
I056a 290 439 10 1 376070 414.86 9.8 1 376070 33.72 4.6
I056a 290 439 20 1 366687 440.32 3 1 366687 40.85 2.2
I056a 290 439 50 1 359336 695.30 3.8 1 359336 80.22 1.8
I056a 290 439 75 1 365620 1288.95 3.8 1 365620 126.78 1.4
I056a 290 439 100 1 366434 1451.17 1.4 1 366434 163.32 1.4

Table 8.17: Details on Vienna instances

Lin instances from [27]

Here, we compare our two-stage b&c algorithm with the preliminary version by Bomze,
Chimani, Jünger, Ljubić, Mutzel, and Zey [27]. For this purpose we use the same instances
from [27]. Notice that these instances are based on the same deterministic STP instances
(Lin01–06 group) but the stochastic instances are different since the set of scenarios was
generated differently. Contrarily to our instance set the scenarios of the stochastic instances
from [27] were generated independently. This means that two stochastic instances, which
are based on the same deterministic instance, have independently generated scenario sets
and, e.g., the scenario set of a 5-scenario instance is not a subset of the related 10-scenario
instance (as in our instance set).

The following table shows the main results when comparing sdc2, dc1, and sdc2
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from [27]. For each instance (inst.) we report the optimum solution (opt), the average
running time in seconds (t[s]), and the average number of b&b nodes (b&b). Notice that
for sdc2 from [27] the values were not averages since [27] did perform only one run per
instance. Moreover, we do not report the optimum solution to dc1 since it is equal to sdc2
and we further do not report the status for sdc2 and dc1 since all runs are successful. On
the other hand, sdc2 from [27] was not able to solve all instances: lin05_160_269 with 20
scenarios was unsolved (the gap reported by [27] was 4.7% and the actual gap is 4.6%).
Moreover, our new experiments reveal that the solution to instance lin06_165_274 with
50 scenarios was not correct due to the missing no-good cuts. The correct value (also
confirmed by solving this instance with the direct approach) of the optimum solution is
2 187.55 instead of 2 186.8. All other solution values are identical.

There are some further important remarks. First, the reported numbers by [27] were
given by one digit after the radix point; since we have the original data we report two digits
here. Second, we use the notation of [27] and encode the number of vertices and edges of
an instance into the instance name (separated by underscores). Third, the runs of [27] were
performed on a weaker computer (Core-i7 2.67GHz, 12 GB RAM), with an older version
of CPLEX (10.1), and the reported running times are the ones from [27].

sdc2 dc1 sdc2 [27]
instance K opt t[s] b&b t[s] b&b opt t[s] b&b

Lin01_53_80 5 797.03 0.28 1 0.06 1 797.03 2.20 1
Lin01_53_80 10 633.17 0.23 3 0.10 1 633.17 2.50 3
Lin01_53_80 20 753.93 0.66 3 0.23 1 753.93 6.90 3
Lin01_53_80 50 768.91 1.61 3 0.47 1 768.91 10.40 3
Lin02_55_82 5 476.20 0.08 1 0.03 1 476.20 1.10 1
Lin02_55_82 10 739.07 0.31 1 0.12 1 739.07 3.00 1
Lin02_55_82 20 752.18 0.32 1 0.18 1 752.18 4.30 1
Lin02_55_82 50 732.56 1.02 1 0.53 1 732.56 10.70 1
Lin03_57_84 5 652.99 0.22 1 0.06 1 652.99 1.90 1
Lin03_57_84 10 834.73 1.63 7 0.21 1 834.73 8.70 7
Lin03_57_84 20 854.86 0.95 1 0.31 1 854.86 7.30 1
Lin03_57_84 50 895.69 4.18 3 0.73 1 895.69 21.30 3

Lin04_157_266 5 1922.10 141.92 3 3.86 1 1922.10 959.20 47
Lin04_157_266 10 1959.10 125.63 6.6 4.54 1 1959.10 989.20 7
Lin04_157_266 20 1954.90 410.28 11 11.07 1 1954.90 3016.70 13
Lin04_157_266 50 2097.71 1494.99 16.6 31.78 1 2097.71 5330.20 11
Lin05_160_269 5 2215.52 300.64 7 4.11 1 2215.52 2681.20 35
Lin05_160_269 10 2210.19 535.70 43 5.65 1 2210.19 4096.00 35
Lin05_160_269 20 2305.38 2791.05 25.8 21.01 1 2412.23 7200.00 17
Lin05_160_269 50 2297.04 989.62 1 30.27 1 2297.04 3627.40 1
Lin06_165_274 5 1975.76 41.28 27 1.87 1 1975.76 760.90 19
Lin06_165_274 10 1918.65 76.42 3 4.78 1 1918.65 808.40 3
Lin06_165_274 20 2457.56 825.13 11 15.41 1 2457.56 3222.90 11
Lin06_165_274 50 2187.55 1330.24 28.6 189.41 21.4 2186.80 2795.50 11

Table 8.18: Details on Lin instances from [27] and comparison to [27]

Comparison to BRGKA heuristic by [95]

Finally, we compare sdc2 to the biased random-key genetic algorithm (BRGKA) by
Hokama, San Felice, Bracht, and Usberti [95] on the Lin instances from [27].

We report the solution value computed by the heuristic BRKGA (sol), the running time



166 Chapter 8. Computational study

in seconds (t[s]), the gap (in %) to the optimum solution, the quotient of the BRKGA
running time to the sdc2 running time (quot), and the inverse quotient (1/quot). For the
latter two values only the entry ≥ 1 is given and the entry in the other column is empty.
Notice that BRKGA was performed on a different computer (Intel XEON CPU E3-1230
V2 with 3.30GHz and 32 GB RAM).

sdc2 BRKGA [95] comparison
instance K opt t[s] sol t[s] gap quot 1/quot

Lin01_53_80 5 797.03 0.28 797.00 193.70 0.00 691.79
Lin01_53_80 10 633.17 0.23 636.00 1027.40 0.45 4466.96
Lin01_53_80 20 753.93 0.66 754.40 2.20 0.06 3.33
Lin01_53_80 50 768.91 1.61 769.00 1456.30 0.01 904.53
Lin02_55_82 5 476.20 0.08 476.20 0.30 0.00 3.75
Lin02_55_82 10 739.07 0.31 739.10 2529.00 0.00 8158.06
Lin02_55_82 20 752.18 0.32 752.20 4.60 0.00 14.38
Lin02_55_82 50 732.56 1.02 732.80 803.00 0.03 787.25
Lin03_57_84 5 652.99 0.22 655.20 0.30 0.34 1.36
Lin03_57_84 10 834.73 1.63 840.60 38.40 0.70 23.56
Lin03_57_84 20 854.86 0.95 855.50 583.40 0.07 614.11
Lin03_57_84 50 895.69 4.18 896.00 502.00 0.03 120.10

Lin04_157_266 5 1922.10 141.92 1923.00 44.00 0.05 3.23
Lin04_157_266 10 1959.10 125.63 1972.40 1161.60 0.68 9.25
Lin04_157_266 20 1954.90 410.28 1981.20 3125.30 1.35 7.62
Lin04_157_266 50 2097.71 1494.99 2172.50 2816.80 3.57 1.88
Lin05_160_269 5 2215.52 300.64 2224.90 20.20 0.42 14.88
Lin05_160_269 10 2210.19 535.70 2224.30 160.50 0.64 3.34
Lin05_160_269 20 2305.38 2791.05 2307.00 1884.70 0.07 1.48
Lin05_160_269 50 2297.04 989.62 2301.60 1645.40 0.20 1.66
Lin06_165_274 5 1975.76 41.28 1986.90 411.90 0.56 9.98
Lin06_165_274 10 1918.65 76.42 1935.10 389.40 0.86 5.10
Lin06_165_274 20 2457.56 825.13 2463.90 702.90 0.26 1.17
Lin06_165_274 50 2187.55 1330.24 2196.00 3122.90 0.39 2.35

Table 8.19: Details on comparison to BRKGA heuristic
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Chapter 9

Introduction, IP formulations, and
decomposition

Section 9.1 gives the definition of the two-stage stochastic survivable network design prob-
lem and an overview of the relatedwork. Afterwards, in Section 9.2, we recall the undirected
cut-based model and discuss some polyhedral properties for this model. Moreover, we use
orientation properties from the deterministic problem, introduce stronger semi-directed
cut-based formulations, and compare the strength of the models. In Section 9.3 we de-
scribe the decomposition, the generated L-shaped optimality cuts as well as the method for
strengthening the optimality cuts, and new and stronger integer optimality cuts.

9.1 Introduction

Problem definition. The stochastic survivable network design problem (SSNDP) is a
straight-forward extension of the deterministic SNDP (cf. Section 3.1) to a two-stage
stochastic optimization problem and, on the other hand, an expansion of the stochastic
Steiner tree problem to higher connectivity requirements. As for the SSTP, we assume
that the actual connectivity requirements as well as the future edge costs are subject to
uncertainty and only known in the second stage. These values together form a random
vector for which we assume that it has finite support. It can therefore be modeled by using
a finite set of scenarios K = {1, . . . ,K}, K ≥ 1. Similar to the SNDP we assume that the
connectivity requirement matrix ρk of each scenario k ∈ K is unitary.

Problem 9.1 (Stochastic survivable network design problem (SSNDP)):
Given: undirected graph G = (V, E), first-stage edge cost c0

e ∈ R
≥0, ∀e ∈ E , and a set of

K ≥ 1 scenarios. Each scenario k ∈ K is defined by its probability pk ∈ (0; 1],
second-stage edge cost cke ∈ R

≥0, ∀e ∈ E , and a symmetric and unitary connectivity
requirement matrix ρk ∈ N |V |× |V |. Moreover, it holds

∑
k∈K pk = 1.

Solution: K +1 edge sets E0, . . . , EK ⊆ E such that G[E0∪Ek] contains ρkuv edge-disjoint
paths between vertices u, v ∈ V, u , v, ∀k ∈ K

Objective: minimize the expected cost
∑

e∈E0 c0
e +

∑
k∈K pk

∑
e∈Ek cke

Since the SSTP is a special case of the SSNDP, it can be observed that the optimal
first-stage solution E0 of the SSNDP is not necessarily connected.

169
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Complexity and related work. There exists a large body of work on different variants
of the deterministic survivable network design problem. We refer to Kandyba-Chimani
[105] and Kerivin and Mahjoub [108] for a comprehensive literature overview on the
SNDP. Many polyhedral studies were done in the 90s, see, e.g., Grötschel, Monma, and
Stoer [80] and [105, 108]. A decade later the question of deriving stronger mixed integer
programming formulations by orienting the k-connected subgraphs has been considered
by e.g. Balakrishnan, Magnanti, and Mirchandani [9], Magnanti and Raghavan [130], and
Raghavan [146]. Among the approximation algorithms for the SNDP, we point to the work
of Jain [99] whose approximation factor of two remains the best one up to date.

Regarding the stochastic variants there are significantly less results published so far and
to the best of our knowledge all publications consider special cases of the SSNDP. One of the
investigated cases is the stochastic Steiner tree problem (connectivity requirement 0 or 1);
for the related work on the SSTP see Section 4.3. For the SSNDP involving connectivity
requirements ≥ 2, up to our knowledge, there only exists an O(1) approximation algorithm
by Gupta, Krishnaswamy, and Ravi [88] for the following special case of the {0, κ}-SSNDP:
For each pair of distinct nodes i and j, a single scenario, whose probability is pi j , is given
in which nodes i and j need to be κ-edge-connected. But in general, however, it follows by
Ravi and Sinha [150] that the SSNDP is as hard to approximate as label cover—which is
Ω(log2−ε n) hard. In fact, the hardness-proof already works for the stochastic shortest path
problem.

Besides the design of survivable networks a lot of research has been done concerning
the design of reliable networks; recent articles can be found in the special issue by Rak and
Sterbenz [149]. Design of reliable networks under network uncertainty using the approach
of chance-constrained programming (see, e.g., Prékopa [143]) has been considered in Song
and Luedtke [164] and Song and Zhang [165]. In chance-constrained programming, there
is usually one decision horizon, i.e., no recourse, and a feasible solution has to satisfy the
constraints with a given probability. [164, 165] considered s-t-paths and the Steiner tree
problem under possible network failure scenarios. In contrast to the SSNDP studied in
this thesis, these problems assume that the set of customers remains the same across all
scenarios but a whole subnetwork can be subject to failure. Each failure scenario happens
with a certain probability and the goal is to find a reliable network that ensures given
connectivity requirements with a certain probability. The authors introduced several (M)IP
formulations, facet-defining inequalities, and provided computational studies.

9.2 IP formulations

In Section 9.2.1 we first present the undirected cut-based formulation for the SSNDP. In
Section 9.2.2 we show how to derive stronger formulations using the orientation properties
presented in Section 3.4.2 by assigning a unique direction to each edge of a feasible second-
stage solution.

9.2.1 Undirected formulation

Let the binary variable x0
e indicate whether edge e ∈ E belongs to the first-stage solution

and binary second-stage variable xke indicate whether e belongs to the solution edges of
scenario k, for all scenarios k ∈ K. Moreover, we expand the connectivity function f from
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the deterministic SNDP to f k , for each scenario k ∈ K and S ⊂ V :

f k(S) := max
{
ρkuv

�� u < S, v ∈ S
}

Then, the undirected cut formulation for the SSNDP reads as follows:

(SSNDPuc) min
∑
e∈E

c0
ex0

e +
∑
k∈K

pk
∑
e∈E

cke xke

s.t. (x0 + xk)(δ(S)) ≥ f k(S) ∀k ∈ K, ∀∅ , S ⊂ V (9.1)

x0
e + xke ≤ 1 ∀k ∈ K, ∀e ∈ E (9.2)

x0...K ∈ {0, 1} |E | ·(K+1) (9.3)

This model is a direct extension of the model from Section 3.2. Constraints (9.1) ensure
edge-connectivity between each pair of nodes in each scenario while first- and second-stage
edges can be used. The additional constraints (9.2) forbid the installation of the same edge
in the first stage and in any scenario.

Observation 9.2. Formulation (SSNDPuc)models the stochastic survivable network design
problem correctly.

Polyhedral properties. Let Sk be the convex hull of all integer points that define feasible
SNDP solutions w.r.t. connectivity requirements ρk, ∀k ∈ K, i.e.,

Sk = conv
{
xk ∈ {0, 1} |E |

��� xk(δ(S)) ≥ f k(S), ∀∅ , S ⊂ V
}

Similarly, let S be the convex hull of all integer points that define feasible SSNDP
solutions, i.e.,

S = conv
{
x0...K ∈ {0, 1} |E | ·(K+1)

��� x0...K satisfies (9.1) and (9.2)
}

In the following, we study some properties of the polytope S.

Lemma 9.3. If the polytope Sk is full-dimensional for each k ∈ K, then the polytope S is
full-dimensional as well.

Proof. Let m := |E |. We need to show that dim(S) = m(K + 1). To this end, we construct
a matrix M that contains m(K + 1) linearly independent feasible solutions to the SSNDP. In
the last step we extend it by one additional solution with the whole collection of solutions
being affinely independent.

The matrix M contains (K +1) · (K +1) blocks of size m×m and each row of the matrix
represents one feasible solution in S. Each block column corresponds to a binary variable
of the vector x0...K , the first m rows represent feasible independent solutions involving the
x0 variables, and the next Km solutions are linearly independent with respect to the xk

variables, for all k ∈ K.
For each edge e ∈ E let the solution se contain all edges except e. Then, we observe that

for each scenario k ∈ K the collection of the m solutions E = ∪e∈E se represents a set of m
linearly independent points of the polytope Sk . Let A0 denote the m × m matrix obtained
by row-wise concatenation of the characteristic vectors of these solutions, i.e., A0 = 1 − Im
with the m × m identity matrix Im. The matrix M is constructed as follows.
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A0 Im Im Im Im
0 A0 1 1 1
0 1 A0 1 1
0 1 1 A0 1
0 1 1 1 A0


(a)


A` 1 − A` 1 − A` 0 1 − A`

0 A0 1 A` 1
0 1 A0 A` 1
0 1 1 A` 1
0 1 1 A` A0


(b)

Figure 9.1: Structures of the constructed matrices with K = 4. (a) Lemma 9.3 and (b) Theorem 9.4;
for the latter we have ` = 3.

1. Initialize the first m × m block with A0. Fill out the remaining K blocks at position
[0, k], k ∈ K, with Im.

2. For k ∈ K: set up the block at the position [k, 0] to 0, and the block at the position
[k, k] to A0. The remaining blocks at positions [`, k] are set to 1, for all ` ∈ K, ` , k.

It is not difficult to see that the obtained matrix (cf. Figure 9.1) has full rank m(K + 1).
In the last step, we add the vector that is obtained by concatenating the 0 vector solution
for x0 and 1 for the remaining coordinates x1 to xK . Subtracting all solutions contained
in the matrix from the latter solution gives a new matrix—with full rank, too. Hence, all
solutions are affinely independent. �

Theorem 9.4. If for all k ∈ K, the polytopes Sk are full-dimensional and the inequality
πx` ≥ π0, with coefficients πe ∈ N, ∀e ∈ E , and π0 ≥ 1, defines a facet of the polytope S`
for some ` ∈ K, then the inequality πx0 + πx` ≥ π0 is facet defining for the polytope S.

Proof. We denote the affine independent solutions of the polytope S` that satisfy πx` = π0
by T`1 , . . . ,T

`
m. Since π0 ≥ 1, these points are also linearly independent (the origin does not

belong to the set of feasible points). Let A` be the matrix obtained by the row-wise insertion
of these solutions, and let 1− A` be the complementary matrix of A` . Construction is done
by a row-wise insertion of blocks, similarly to above.

1. Initialize the first m ×m block with A` (meaning, set first-stage solutions to be equal
to the solutions ofS`). Fill out the remaining blocks at the position [0, k]with 1− A` ,
for all k ∈ K, k , `. The block at the position [0, `] is set to 0.

2. For k ∈ K, k , `: set up the block at the position [k, 0] to 0, at the position [k, `] to
A` and the block at the position [k, k] to A0 (defined above). The remaining blocks
at [k, i] are set to 1, for all i ∈ K, i , k, `.

3. Set up the block at the position [`, 0] to 0, and the block at [`, `] to A` . The remaining
blocks at [`, i] are set to 1, for all i ∈ K, i , `.

It is not difficult to see that the obtained matrix (cf. Figure 9.1) has full rank, i.e.,
m(K + 1), and each row satisfies πx0 + πx` = π0 which concludes the proof. �

Hence, under some special conditions (given in Stoer [166]), the undirected cuts (9.1)
are facet-defining. Moreover, many facet-defining inequalities known for the deterministic
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case, e.g., partition inequalities (again under some conditions given by [166]), can therefore
be easily translated into facets of (SSNDPuc).

In the following sectionwe introduce stronger semi-directedmodels for which no similar
results are known. This leads to the following open problem.

Open problem 9.1. Is it possible to derive properties of the polytopes of the semi-directed
models for the SSNDP from the deterministic models, similar to the undirected model?

9.2.2 Semi-directed formulations

In the following, we will introduce two semi-directed models that are stronger than the
undirected model (SSNDPuc). As for the SSTP, the main difficulty with the SSNDP arises
from the fact that the first-stage solutionmay be disconnected. Hence, the first-stage decision
variables remain associated with undirected edges. Once the solution gets completed in the
second stage, one can provide a valid orientation, i.e., one can orient the edges of E0 ∪ Ek

independently for each scenario. For each scenario k ∈ K we set the root rk to be one of the
vertices with the highest connectivity requirement and search for individual orientations of
the combined solution E0 ∪ Ek .

By borrowing the notation from Balakrishnan, Magnanti, and Mirchandani [9], let

Sk
1 :=

{
S ⊂ V

�� f k(S) = 1, rk < S
}

Sk
≥2 :=

{
S ⊂ V

�� f k(S) ≥ 2
}

be the set of regular cutsets and critical cutsets, respectively.
Given the installation of undirected edges from the first stage, the following model

constructs oriented second-stage solutions. As before, we use variables x0...K to model
the solution edges. In addition, we introduce a continuous variable zki j associated to a
directed arc (i, j) ∈ A and a scenario k ∈ K to “orient” the second-stage solutions. The first
semi-directed model is called (SSNDPsdc1):

(SSNDPsdc1) min
∑
e∈E

c0
ex0

e +
∑
k∈K

pk
∑
e∈E

cke xke

s.t. (x0 + xk)(δ(S)) ≥ f k(S) ∀k ∈ K, ∀S ∈ Sk
≥2 (9.4)

(x0 + zk)(δ−(S)) ≥ 1 ∀k ∈ K, ∀S ∈ Sk
1 (9.5)

xke ≥ zki j + zkji ∀k ∈ K, ∀e = {i, j} ∈ E (9.6)

x0
e + xke ≤ 1 ∀k ∈ K, ∀e ∈ E (9.7)

z1...K ≥ 0 (9.8)

x0...K ∈ {0, 1} |E | ·(K+1) (9.9)

Constraints (9.4) ensure that in each scenario k there are at least ρkuv edge-disjoint paths
between u and v, with u ∈ S, v < S, consisting of first- and second-stage edges. Due to con-
straints (9.5) there is at least one semi-directed path from a root node r to a vertex uwhenever
ρkru = 1. If an edge is purchased in the second stage, then constraints (9.5) associated to
bridges will force the orientation of those bridges away from the root node rk . Furthermore,
since variables zki j are fractional, by using the same arguments as in Lemma 3.11 the model
is valid for any ρkuv ∈ N. Hence, we have the following lemma.
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Lemma 9.5. Formulation (SSNDPsdc1) models the stochastic survivable network design
problem correctly.

Proof. Consider an optimal solution to an SSNDP instance with its characteristic binary
vector being described by x̃0...K . Using this x̃0...K as solution to (SSNDPsdc1), all undirected
cuts (9.4) are obviously satisfied. Moreover, due to Theorem 3.10 and 3.11 it is possible
to find an orientation in each scenario such that constraints (9.5) are satisfied. Following
this orientation the values for the directed variables zk can be set accordingly. Non-
negativity and all other constraints follow directly. Hence, there exists a feasible solution
to (SSNDPsdc1) with the same objective value.

On the other hand, each optimum solution to (SSNDPsdc1) obviously satisfies all con-
nectivity requirements and induces a solution to the SSNDP with the same cost. �

Remark 9.6. Note that constraints (9.4) can also be expressed as:

x0(δ(W)) + zk(δ−(W)) + zk(δ+(W)) ≥ f k(W)

Maybe these constraints better explain the original intention of this model. However,
one easily observes that this is just an equivalent way of rewriting (9.4), without any
influence on the lower bounds of the given model.

Let the polytopes of the undirected and semi-directed formulations be denoted by:

PSSNDP
uc =

{
x0...K ∈ [0, 1] |E | ·(K+1)

��� x0...K satisfies (9.1) and (9.2)
}

PSSNDP
sdc1 =

{
(x0...K, z1...K ) ∈ [0, 1] |E | ·(K+1) × [0, 1] |A | ·K

���
(x0...K, z1...K ) satisfies (9.4)–(9.7)

}
We consider the linear projection onto the space of undirected edge variables x0...K :

Projx0. . .K

(
PSSNDP
sdc1

)
=

{
x0...K ��∃z1...K : (x0...K, z1...K ) ∈ PSSNDP

sdc1
}

Lemma 9.7. PSSNDP
uc ) Projx0. . .K

(
PSSNDP
sdc1

)
, i.e., the semi-directed cut-based formulation

(SSNDPsdc1) is stronger than the undirected cut-based formulation (SSNDPuc).

Proof. It is easy to see that any solution x̃0...K ∈ Projx0. . .K

(
PSSNDP
sdc1

)
is a valid solution to

(SSNDPuc) with the same objective value. The strict inequality follows from the example
given by Figure 6.4 for the SSTP and models (SSTPsdc1) and (SSTPuc). �

Stronger semi-directed formulation. The following model represents an alternative
model to (SSNDPsdc1) and follows the ideas of model (SSTPsdc2) for the SSTP. Thereby,
binary edge variables yk , ∀k ∈ K, are used to model the second-stage solution; notice
that contrarily to the SSTP these variables are undirected edge variables. These variables
additionally include the edges that are already bought in the first stage, i.e., we have yke = 1
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if e ∈ E0 ∪ Ek , and yke = 0, otherwise. Moreover, continuous variables zki j are used to
orient the edges from E0 ∪ Ek , ∀k ∈ K, ∀(i, j) ∈ A. The model is called (SSNDPsdc2):

(SSNDPsdc2) min
∑
e∈E

c0
ex0

e +
∑
k∈K

pk
∑
e∈E

cke (y
k
e − x0

e)

s.t. zk(δ−(S)) ≥ f k(S)/2 ∀k ∈ K, ∀S ∈ Sk
≥2 (9.10)

zk(δ−(S)) ≥ 1 ∀k ∈ K, ∀S ∈ Sk
1 (9.11)

zki j + zkji ≥ x0
e ∀k ∈ K, ∀e = {i, j} ∈ E (9.12)

yke ≥ zki j + zkji ∀k ∈ K, ∀e = {i, j} ∈ E (9.13)

z1...K ≥ 0 (9.14)

x0 ∈ {0, 1} |E | (9.15)

y1...K ∈ {0, 1} |E | ·K (9.16)

The directed cuts (9.10) and (9.11) model the orientation of the solution and ensure the
required connectivities independently for each scenario. Notice that due to the symmetry, if
S ∈ Sk

≥2, it follows thatV \S ∈ Sk
≥2, too. Hence, for each S ∈ Sk

≥2 the ingoing and outgoing
cut, i.e., zk(δ−(S)) ≥ f k(S)/2 and zk(δ+(S)) ≥ f k(S)/2, is contained in (SSNDPsdc2).

Constraints (9.12) and (9.13) ensure that variables zki j can be used only along the edges
that are either purchased in the first stage or added in the second stage. In particular,
(9.12) forces the orientation of selected first-stage edges in each scenario. Therefore, these
constraints strengthen the model as they impose restrictions on the first-stage solutions:
only first-stage solutions allowing for feasible orientations are valid. Moreover, it holds
yke ≥ x0

e which explains the corrective term in the objective function. Since the variables
z1...K are fractional, the model is valid.

Lemma 9.8. Formulation (SSNDPsdc2) models the stochastic survivable network design
problem correctly.

Proof. Let x̃0...K describe an optimal solution to an SSNDP instance. Now, consider
(x̄0 := x̃0, (ȳk := x̃0 + x̃k)k=1,...,K ). It is easy to find an orientation for the directed arc
variables zk using only edges {e ∈ E | x̃0

e + x̃ke = 1} = {e ∈ E | ȳke = 1} for each scenario
k and hence create a valid solution to (SSNDPsdc2) with the same objective value.

Conversely, an optimal solution (x̄0, ȳ1...K, z̄1...K ) to (SSNDPsdc2) satisfies all edge
connectivity requirements in each scenario due to the correctness of the directed formulation
(SNDPdc). Thereby, capacity constraints (9.12) and (9.13) imply that (x̃0 := x̄0, (x̃k :=
x̄0 − ȳk)k=1,...,K ) is a feasible solution to the SSNDP with the same cost. �

Similar to the stochastic Steiner tree model (SSTPsdc2) the first-stage variables can be
relaxed without losing overall integrality, compare Lemma 6.3. We denote the model with
relaxed first-stage variables by (SSNDPrel:x0

sdc2 ).

Lemma 9.9. The optimum solution to (SSNDPrel:x0

sdc2 ) is integer.

Proof. Assume there exists an optimum solution (x̃0, ỹ1...K, z̃1...K ) to (SSNDPrel:x
0

sdc2 ) such
that a variable x̃0

e corresponding to edge e = {i, j} ∈ E is fractional. The term in the
objective function corresponding to edge e is (c0

e − c∗e)x̃
0
e +

∑
k∈K pkcke ỹ

k
e .
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If c0
e < c∗e set x̃0

e := 1 and, if necessary, increase zki j or zkji (or both) for all scenarios
k ∈ K such that z̃ki j + z̃kji = 1. If c0

e > c∗e set x̃0
e := 0. Since ỹke = 1, ∀k ∈ K, all constraints

are still satisfied and the new solution is feasible. Moreover, the objective value improves
in both cases which is a contradiction.

In case c0
e = c∗e variable x0

e has coefficient 0 in the objective function and can be fixed
to x̃0

e := 0. �

Let the polytope of the second semi-directed model and the projection onto the undi-
rected variable space be denoted by:

PSSNDP
sdc2 =

{
(x0, y1...K, z1...K ) ∈ [0, 1] |E | × [0, 1] |E | ·K × [0, 1] |A | ·K

���
(x0, y1...K, z1...K ) satisfies (9.10)–(9.13)

}
Projx0. . .K

(
PSSNDP
sdc2

)
=

{
x0...K

���∃(y1...K, z1...K ) : (x0, y1...K, z1...K ) ∈ PSSNDP
sdc2 ,

xke = yke − x0
e, ∀k ∈ K, ∀e ∈ E

}
Theorem 9.10. Projx0. . .K

(
PSSNDP
sdc1

)
) Projx0. . .K

(
PSSNDP
sdc2

)
, i.e., the semi-directed cut-

based formulation (SSNDPsdc2) is stronger than the semi-directed cut-based formulation
(SSNDPsdc1).

Proof. Let (x̂0, ŷ1...K, ẑ1...K ) ∈ PSSNDP
sdc2 . For each k ∈ K and (i, j) ∈ A set λki j := 0 if

ẑki j + ẑkji = 0 and λki j := ẑki j/(ẑ
k
i j + ẑkji), otherwise. Hence, λki j + λ

k
ji = 1, ∀{i, j} ∈ E and

k ∈ K with ẑki j + ẑkji > 0. Moreover, set x̄0 := x̂0, x̄k := ŷk − x̂0, and for all arcs (i, j) ∈ A
with e = {i, j} set z̄ki j := ẑki j − λ

k
i j x̂

0
e , for all k ∈ K.

Interpreting (x̄0...K, z̄1...K ) as solution to (SSNDPsdc1) obviously gives the same objec-
tive value. This solution is also feasible due to the following arguments.

The connectivity constraints (9.4) are satisfied since for each S ∈ Sk
≥2, k ∈ K, we have:

(x̄0 + x̄k)(δ(S)) = x̂0(δ(S)) + ŷk(δ(S)) − x̂0(δ(S))
(9.13)
≥

∑
e={i, j }∈δ(S)

(ẑki j + ẑkji) = ẑk(δ−(S)) + ẑk(δ+(S))
(9.10)
≥ f k(S)

The Steiner cuts (9.5) are also fulfilled since for each S ∈ Sk
1 , k ∈ K, we have:

x̄0(δ(S)) + z̄k(δ−(S)) = x̂0(δ(S)) +
∑

(i, j)∈δ−(S),
e={i, j }

(ẑki j − λ
k
i j x̂

0
e)

≥ ẑk(δ−(S))
(9.11)
≥ 1

Constraints (9.6) are satisfied since z̄ki j + z̄kji = ẑki j + ẑkji − x̂0
e ≤ ŷke − x̂0

e = x̄ke , and the
same holds for constraints (9.7) since x̄0

e + x̄ke = x̂0
e + ŷke − x̂0

e ≤ 1. Moreover, zk variables
are non-negative: z̄ki j = ẑki j − (ẑ

k
i j/(ẑ

k
i j + ẑkji))x̂

0
e ≥ ẑki j − (ẑ

k
i j/(ẑ

k
i j + ẑkji))(ẑ

k
i j + ẑkji) = 0.

Last but not least, it trivially holds x̄0 ∈ [0, 1] |E | and x̄k ∈ [0, 1] |E |, ∀k ∈ K, since
x̄ke = ŷke − x̂0

e and ŷke ≥ x̂0
e . Hence, (x̄0...K, z̄1...K ) is a feasible solution to (SSNDPsdc1) with

the same objective value.
For an instance with strict inequality consider the example from Theorem 6.13 which

shows that (SSTPsdc1) ) (SSTPsdc2). �
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Discussion. We close the part on the semi-directed models for the SSNDP by discussing
some related (open) problems.

The first open problem concerns the strength of the semi-directed models, which are not
stronger than the undirected model if the set of Steiner cuts is empty. In fact, this question
already concerns the deterministic SNDP:

Open problem 9.2. Is it possible to model the SNDP such that this model is stronger than
(NDPuc) even when the set of Steiner cuts is empty?

Second, we briefly consider a problem closely related to the SSNDP, namely the stochas-
tic node-connectivity SNDP. Thereby, a feasible solution has to contain ρkuv node-disjoint
paths between two vertices u, v ∈ V, u , v, ∀k ∈ K. We remark that—by using orienta-
tion properties from Chimani, Kandyba, Ljubić, and Mutzel [38]—the node-connectivity
version with vertex types {0, 1, 2} can be formulated analogously to (SSNDPsdc2) which
directly leads to a stronger semi-directed model.

Moreover, the described decomposition (Section 9.3) and the L-shaped optimality cuts
with their strengthening can be derived from this model in a similar way, to be used within
the two-stage b&c algorithm.

Last but not least, we like to mention that several interesting problems are still open for
the deterministic SNDP.

Open problem 9.3. Does there exist a stronger model for the node-connectivity SNDP for
higher connectivity-requirements > 2?

Open problem 9.4. Does there exist a stronger model for the survivable network design
problem with both edge- and node-connectivity requirements?

However, if such models will be formulated in the future, by using the same techniques
presented in this thesis, any improvements in the deterministic context should be transferable
to the related stochastic problems, formulations, and algorithms.

9.3 Decomposition

For the ease of presentation, we will demonstrate how to solve the SSNDP using the two-
stage b&c applied to the strongest model, namely (SSNDPsdc2). The decomposition, the
LPs, and the optimality cuts are similar to the SSTP case and model (SSTPsdc2), compare
Section 7.1. We follow the preceding descriptions and use the same notations as before.
In particular, model (SSNDPsdc2) can be decomposed by introducing K + 1 new variables
θ, θ1, . . . , θK which represent and replace the K scenario costs as lower bounds. The
structure of the relaxed master problem is identical to the one of model (SSTPsdc2) and
reads as follows.

(RMPsdc2) min
∑
e∈E

c0
ex0

e + θ

s.t. θ ≥
∑
k∈K

pkθk (9.17)

Optimality cuts (9.18)

x0 ∈ [0, 1] |E | (9.19)

θ, θ1, . . . , θK ≥ 0 (9.20)
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Again, constraint (9.17) relates the overall second-stage cost represented by θ and the K
second-stage costs θ1, . . . , θK for the scenarios. Constraints (9.18) are separated L-shaped
optimality cuts and integer optimality cuts, which are described in the following.

For each fixed—and possibly fractional—first-stage solution x̃0, the second-stage prob-
lem decomposes into K independent subproblems, each being a restricted deterministic
SNDP. They are special cases of the deterministic SNDP due to the capacity constraints
(9.12) and (9.22), respectively. To simplify the notation, we define Sk := Sk

1 ∪ S
k
≥2 and

merge the constraints (9.10) and (9.11) into (9.21) by using functions Φk : 2V → N, for all
k ∈ K, which give the correct right-hand side of the directed cuts:

Φ
k(S) :=

{
1
2 f k(S), S ∈ Sk

≥2
1, S ∈ Sk

1

For a given first-stage solution x̃0, and for each k ∈ K, the relaxed subproblem—already
transformed into standard form—is given as follows:

(RSPsdc2) min
∑
e∈E

cke y
k
e −

∑
e∈E

cke x̃0
e

s.t. zk(δ−(S)) ≥ Φk(S) ∀S ∈ Sk (9.21)

zki j + zkji ≥ x̃0
e ∀e = {i, j} ∈ E (9.22)

yke − zki j − zkji ≥ 0 ∀e = {i, j} ∈ E (9.23)

−yke ≥ −1 ∀e ∈ E (9.24)

zk ≥ 0 (9.25)

yk ≥ 0 (9.26)

Notice that, contrarily to the stochastic STP, cf. Section 7.1, the constraints on the upper
bound (9.24) are necessary for the SSNDP. By using dual variables αk

S
, βke , γke , and τke

associated to constraints (9.21), (9.22), (9.23), and (9.24), we obtain the following dual
problem, for each scenario k ∈ K and fixed first-stage solution x̃0 ∈ [0, 1] |E |:

(D:RSPsdc2) max
∑
S∈Sk

Φ
k(S)αk

S +
∑
e∈E

(x̃0
eβ

k
e − τ

k
e ) −

∑
e∈E

cke x̃0
e

γke − τ
k
e ≤ cke ∀e ∈ E (9.27)∑

S∈Sk :
(i, j)∈δ−(S)

αk
S + β

k
e − γ

k
e ≤ 0 ∀(i, j) ∈ A, e = {i, j} (9.28)

αk, βk, γk, τk ≥ 0 (9.29)

Let (α̃k, β̃k, γ̃k, τ̃k) describe an optimum solution to (D:RSPsdc2). A (disaggregated)
L-shaped optimality cut is then defined as follows:

θk +
∑
e∈E

(cke − β̃
k
e )x

0
e ≥

∑
S∈Sk

Φ
k(S)α̃k

S −
∑
e∈E

τ̃ke (9.30)

Deriving stronger L-shaped cuts. The idea of the method for strengthening the L-
shaped optimality cuts for the SSTP and rSSTP, cf. Section 7.2.1, is also applicable here.
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Again, if an edge e ∈ E is not used in the current first-stage solution, i.e., x̃0
e = 0, then

the corresponding dual variable βke does not appear in the objective function of the dual
(D:RSPsdc2). Furthermore, the variable γke does not appear in the objective function either,
and therefore, LP-optimal solutions frequently have a positive slack in constraints (9.28).
Therefore, the values of the dual variables βke can be increased as follows:

Let (α̃k, β̃k, γ̃k, τ̃k) be an optimal solution to (D:RSPsdc2) as before. For all edges
e = {i, j} ∈ E set

β̂ke :=


γ̃ke − max

a∈{(i, j),(j,i)}

{ ∑
S∈Sk :a∈δ−(S)

α̃k
S

}
if x̃0

e = 0

β̃ke otherwise.

If β̂ke > β̃ke holds for at least one edge e ∈ E the strengthened L-shaped cut is given as:

θk +
∑
e∈E

(cke − β̂
k
e )x

0
e ≥

∑
S∈Sk

Φ
k(S)α̃k

S −
∑
e∈E

τ̃ke . (9.31)

Theorem 9.11. The strengthened L-shaped cuts (9.31) are valid and stronger than the
standard L-shaped cuts (9.30).

Proof. Obviously, the new values of the dual variables constitute a feasible (and LP-
optimal) solution to the dual subproblem (D:RSPsdc2) since β̂k is set without violating any
dual constraints.

Furthermore, notice that β̂ke ≥ β̃ke , for all e ∈ E , and that the right-hand side of both
cuts is identical. Since there exists e1 ∈ E such that β̂ke1

> β̃ke1
, the coefficient of x0

e1
is

smaller for the strengthened L-shaped cut than for the standard one. �

Integer optimality cuts. We use the same notation as in Section 7.2.2. Let (x̃0, θ̃) be a
first-stage solution with x̃0 being binary, and let S̃ denote the associated 1-index set and
edge set. Moreover, let q̃ denote the value of the second-stage recourse function w.r.t. x̃0

(and S̃, respectively), i.e., q̃ :=
∑

k∈K pk q̃k with q̃k = Qk(x̃0) being the optimum solution
value of the subproblem (SP(k, x̃0)). Last but not least, let L be a valid lower bound for the
expected second-stage cost.

To explicitly cut off the solution (x̃0, θ̃) we use the general integer optimality cuts of the
integer L-shaped scheme, cf. Section 7.2.2 and Section 2.3.3:

θ +
∑
e∈S̃

(L − q̃)x0
e +

∑
e<S̃

(q̃ − L)x0
e ≥ (L − q̃)(|S̃ | − 1) + L (Ic)

Moreover, we use the numerically more stable no-good cuts, see Section 7.2.3:∑
i∈S̃

x0
i −

∑
i<S̃

x0
i ≤ |S̃ | − 1 (Ng)

Section 7.2.2 introduces new and stronger integer optimality cuts for the formulation
(SSTPsdc2). The constraints are valid for model (SSNDPsdc2) as well, since the arguments
do not depend on the Steiner tree structure of a solution:
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1. Observation 7.7 is still valid, i.e., q̃ is a lower bound for the second-stage cost of a
solution Š with Š ⊆ S̃. This implies the feasibility of the integer optimality cuts (Ic−)
which are (under two conditions) stronger than the standard integer optimality cuts
(Ic), compare Lemma 7.9.

2. For a first-stage solution Ŝ ) S̃, with E ′ = Ŝ\ S̃, and optimum solution Ŝk for scenario
k ∈ K, it holds that Ŝk ∪E ′ is a feasible solution to scenario k and first-stage solution
S̃. Hence, Lemma 7.10 follows which leads to the validity of the integer optimality
cuts (Ic+):

θ +
∑
e<S̃

min{c∗e, q̃ − L}x0
e ≥ q̃ (Ic+)

Last but not least, the described disaggregation of the integer optimality cuts in Sec-
tion 7.2.4 and the cut-based constraints, see Section 7.2.3, are valid for (SSNDPsdc2), too.

On the other hand, the heuristic Laminarize for improving the L-shaped optimality
cuts (described in Section 7.2.1) is not (directly) applicable due to the additional cuts with
right-hand side ≥ 2. This leads to the following open problem.

Open problem 9.5. Is it possible to extendmethod Laminarize for the stochastic survivable
network design problem?



Chapter 10

Computational study

This chapter presents the results of the computational study for the two-stage stochastic
survivable network design problem. We start in Section 10.1 by describing the generated
instances, the implemented algorithms, and the experimental setup. Section 10.2 describes
the experiments and presents the results, e.g., on the value of the stochastic solution, the
sample stability, the comparison of the decomposition and the direct approach, and the
benefit of the cut strengthening method.

10.1 Computational setup

Considered problem. To evaluate the performance of the two-stage b&c algorithm we
focus on the restricted version of the SSNDP where connectivity requirements in each
scenario k ∈ K are defined by nodes of type two (subsetRk

2 ⊆ V), type one (subsetRk
1 ⊆ V),

and type zero (V \ (Rk
2 ∪R

k
1 )). The main motivation for this choice is the application in the

design of telecommunication networks where nodes of type two are important infrastructure
nodes or business customers, nodes of type one are single households, and nodes of type
zero are, e.g., street intersections. For two distinct nodes u and v and each scenario k ∈ K,
the connectivity requirement is ρkuv = 2 if both u and v are in Rk

2 , ρ
k
uv = 1 if one of them is

in Rk
1 and the other in Rk

1 ∪ R
k
2 , and ρ

k
uv = 0, otherwise.

Benchmark instances. We start by generating deterministic instances by adopting and
customizing the idea of Johnson, Minkoff, and Phillips [100] (originally used for the prize-
collecting Steiner tree problem), which is frequently used as instance generator in the
network design community. After randomly distributing n ∈ {30, 50, 75} points in the unit
square, a minimum spanning tree is computed using the points as vertices and the Euclidean
distances between all vertex pairs as edge costs. To generate only feasible instances we
augment this MST by inserting edges (i.e., biconnectivity augmentation) between leaves
which are adjacent in the planar embedding, see Figure 10.1 for an example.

The resulting biconnected graph is extended by adding all edges for which the Euclidean
distance is less than or equal to 1.6α/

√
n. We have introduced α in order to control the

density of the graph. In our experiments we use α = 0.9 which leads to graphs with average
density 2.07: for n = 30, n = 50, and n = 75 the density is 1.97, 2.11, and 2.12, respectively.
For comparison, we remark that the street graphs from the 9th DIMACS challenge on the
shortest path problem have an average density of 2.48 [58].

181
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(a) (b)

Figure 10.1: (a) A generated underlying graph with 20 vertices. Edges of the minimum spanning
tree are drawn as solid lines and edges added through the biconnectivity augmentation as dotted
lines. (b) The resulting graph with 40 edges after connecting nearby vertices and adding edge
connectivity requirements. The red diamond is the root node, blue rectangles and green circles
depict potential R2 and R1 nodes, respectively. All other white circles represent nodes without any
connectivity requirements.

This method differs from the original method since the original generator by [100] does
not compute the minimum spanning tree, the graph is not augmented to biconnectivity, and
the original parameter used by [100] is 1.6, which corresponds to α = 1 in our setting.

After generating the graph, edge-connectivity requirements are set as follows. We add
each vertex with probability ρ% to the base set of R2 or R1 customers, respectively. Here,
we use ρ = 40 and we additionally select an R2 vertex randomly as special root node. An
example is given by Figure 10.1 (b).

To transform these instances into stochastic ones we use the same method as for the
stochastic STP, cf. Section 8.2, by randomly and independently generating K̄ = 1 000
scenarios. The probabilities are set by distributing 10 000 points over all K̄ scenarios. We
start by assigning 1 point to each scenario (1 point corresponds to a probability of 0.01%).
Then, we distribute the remaining 10 000 − K̄ points by selecting one of the K̄ scenarios
uniformly at random and increasing its number of points by 1. This procedure continues
until all 10 000 points are distributed. Hence, at the end, each scenario has a probability
≥ 0.0001 and all probabilities sum up to 1.

Edge costs c0 in the first stage are the Euclidean distances and in the second stage
for each edge e and scenario k ∈ K independently and randomly drawn from the interval
[1.1c0

e, 1.3c0
e]. Edge-connectivity requirements are generated independently for each sce-

nario k by randomly drawing a vertex from the set R1 as Rk
1 customer with probability

ρk%, and with the same probability a vertex from R2 is selected as Rk
2 customer. Here, we

use ρk = 30 for all scenarios. Moreover, the special root node is set to be an Rk
2 node in

each scenario.
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(a) (b)

Figure 10.2: An example SSNDP instance with 20 nodes, 40 edges, and 5 scenarios generated from
the base instance given in Figure 10.1. Blue rectangles imply connectivity requirement 2 (together
with the root node which is the red diamond) and green circles imply connectivity 1. (a) and (b)
show the optimal solution for the first and second scenario, respectively, with bold edges being
selected first- and dotted edges being selected second-stage edges.

For each deterministic instance we generate K̄ = 1 000 scenarios and take the first
K ∈ K∗ to obtain an SSNDP instance with K scenarios. Again, we use 14 values for K:
K∗ = {5, 10, 20, 50, 75, 100, 150, 200, 250, 300, 400, 500, 750, 1 000}. Probabilities for the
scenarios of the instances with K < K̄ are scaled appropriately. Overall, we generate 20
graphs for each n ∈ {30, 50, 75} and K ∈ K∗ leading to 840 instances; these instances can
be downloaded from our SSNDP homepage [177]. Due to the high computational effort we
do not use all instances in every experiment; the used set will be stated for each experiment
independently. Figure 10.2 illustrates an example SSNDP instance based on the instance
from Figure 10.1.

Computational settings. We implemented the single-stage b&c and the two-stage b&c for
the strongest of the three presented models, namely (SSNDPsdc2), considering the following
settings:

• DA: the direct approach, i.e., one single b&c algorithm applied to (SSNDPsdc2).

• 2bc: the two-stage b&c algorithm with the separation and strengthening of L-shaped
optimality cuts, integer optimality cuts, and no-good cuts.

• NoCS:2bc: the same as 2bc, but without strengthening the L-shaped optimality cuts.

• MW:NoCS:2bc: the same as NoCS:2bc, but with Pareto optimal L-shaped cuts
added at each iteration by using the method by Magnanti and Wong [131] (i.e., after
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solving the subproblem an additional LP is solved to obtain stronger dual multipliers
corresponding to a Pareto optimal L-shaped cut).

• NoNG:2bc: by default 2bc introduces no-good cuts (Ng). NoNG:2bc is the same as
2bc but without using no-good cuts.

The computational setup is identical to the experiments on the stochastic STP. We use
ABACUS 3.0 as a generic branch&cut framework with IBM ILOG CPLEX (version 12.2)
as LP solver via the interface COIN-Osi. All experiments are performed on an Intel Xeon
2.5 GHz machine with six cores and 64 GB RAM under Ubuntu 12.04. Each run is
performed on a single core and the time limit is set to 2 hours (i.e., 7 200 sec.). We perform
5 independent runs for each approach.

Please notice the remarks on the presentation of the results as described at the beginning
of Section 8.3 for the experiments on the stochastic Steiner tree problem.

10.2 Experiments

Value of stochastic solution. Since this work presents the first experimental study con-
cerning the SSNDP we start by analyzing the value of the stochastic solution (VSS) in order
to assess the actual need for formulating the considered deterministic problem as a stochas-
tic problem (for a detailed definition of the VSS and related values we refer the reader to,
e.g., Birge and Louveaux [20], Maggioni and Wallace [129]).

To calculate the VSS we first need to find the optimum solution to a deterministic
problem in which all random variables are replaced by their expected values (also known
as the expected value problem, EV). Let x̄0 denote an optimal first-stage solution to this
problem. We then evaluate this first-stage solution by considering the EEV (expected result
of the EV solution): this is the optimal solution value to the original stochastic problem
in which the first-stage variables are fixed to x̄0. Finally, the VSS is obtained as VSS =
EEV − opt, where opt denotes the optimal SSNDP solution. Hence, the VSS measures the
quality of the stochastic solution compared to the solution of the problem using the expected
values—which is obviously much easier to compute. The larger the gap between the VSS
and the EEV, the more risky and costly it is to replace the uncertain input parameters with
their expected values.

For the graphs with 50 vertices, Table 10.1 shows the VSS results, grouped by the
number of scenarios K , with K ∈ {5, 10, 20, 50}. We report the relative cost increase of
the EEV solution compared to opt and the number of edges installed in the first stage (for
opt and EEV, respectively). Not surprisingly, the solution costs increase drastically when
the EEV is used: on average, EEV solutions are between 20% and 27% costlier than the
optimal SSNDP solutions. The average gap between opt and EEV also increases with an
increasing number of scenarios. Looking at the structure of optimal EEV solutions we
observe that they typically consist of significantly more edges installed in the first stage:
on average, between 76%–90% of the overall solution cost is induced by the first-stage
solution, whereas for opt the corresponding values range between 35%–50%. Finally, for
both opt and EEV we notice that with increasing number of scenarios the number of edges
installed in the first stage decreases.

Sample stability. Most stochastic programs cannot be solved (directly) because of, e.g.,
a continuous distribution of the random variables vector ξ or due to a huge number of
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sol. value nr. edges 1st stage % 1st stage costs
K value increase (%) opt EV sol. opt EV sol.

5

avg. 20.25 15.95 40.70 50.13 89.08
min. 7.50 6.00 36.00 26.26 73.54
max. 35.71 29.00 44.00 77.61 98.69

std. dev. 7.29 5.01 2.18 12.09 6.80

10

avg. 24.06 14.50 43.65 42.67 87.96
min. 8.75 7.00 38.00 18.12 71.66
max. 39.04 29.00 46.00 72.02 99.04

std. dev. 7.73 6.09 2.21 15.82 6.68

20

avg. 24.96 12.40 43.15 38.04 79.79
min. 15.39 3.00 39.00 9.98 67.37
max. 38.16 28.00 48.00 72.69 91.73

std. dev. 6.16 6.60 2.37 17.00 7.30

50

avg. 26.95 11.63 42.44 35.44 76.60
min. 19.39 2.00 39.00 10.97 67.29
max. 34.88 29.00 47.00 73.50 87.90

std. dev. 5.16 6.88 2.31 17.70 5.80

Table 10.1: Results concerning the VSS for instances with 50 vertices and K ∈ {5, 10, 20, 50}
scenarios, cf. text.

possible scenarios K . To create a deterministic equivalent of a reasonable size one typically
samples a set of scenarios which then can be solved to optimality. It is therefore important to
evaluate the underlying scenario generation procedure and to estimate the required number
of scenarios needed to achieve good and stable solutions. Two related quality measures are
in-sample stability and out-of-sample stability whose definitions we briefly recall here (cf.
Kaut and Wallace [107], King and Wallace [109] for in-depth discussions).

Consider a two-stage stochastic program in a simplified notation: minx0∈X f (x0, ξ)

where x0 are the first-stage variables, X is the feasible set, f is the objective function, and
ξ the random variables vector (here, we use a simplified notation for a stochastic (mixed-
integer) linear programwith fixed recourse, i.e.,minx0∈X f (x0, ξ) isminx0∈X cT x0+Q(x0, ξ),
where Q(x0, ξ) = min{q(ξ)T y | W y = h(ξ) − T(ξ)x0, y ∈ Y } with second-stage variables
y and feasible set Y , cf. e.g., Birge and Louveaux [20]). Moreover, let minx0∈X f (x0, s)
denote the stochastic program restricted to a (sampled) scenario set s. Now, let s̄, ŝ denote
two scenario sets of the same size and let x̄0, x̂0 denote optimal solutions tominx0∈X f (x0, s̄)
and minx0∈X f (x0, ŝ), respectively. A scenario generation method is called in-sample stable
if the optimal solution values of two independently sampled scenario sets are similar, i.e., if
f (x̄0, s̄) ≈ f (x̂0, ŝ). If f (x̄0, ξ) ≈ f (x̂0, ξ) holds, the method is called out-of-sample stable.

For this analysis we consider instances with 50 vertices that can be solved to optimality
for 1 000 scenarios (by 2bc). We then compute the in- and out-of-sample stability values by
sampling K out of these 1 000 scenarios; we let the sample size K vary between 5 and 500.
For each fixed value of K we create 20 instances by sampling K scenarios out of the 1 000.
Figure 10.3 shows the results for one representative instance from this set with |V | = 50
and |E | = 100; the results for the other instances look very similar. Given a fixed value of
K the blue crosses and red circles show the distribution of 20 solution values concerning
the in-sample and out-of-sample stability, respectively. The solid horizontal line shows
the value of the optimal solution i.e., the solution obtained by taking all 1 000 scenarios
into account. As one can see, already for K ≥ 20 scenarios out-of-sample stability can be
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Figure 10.3: In- and out-of-sample stability for an instance with 50 vertices and 100 edges.
The horizontal axis gives the sample size and the vertical axis the objective value of in-sample
(blue crosses) and out-of-sample stability (red circles), respectively. Each data point represents
one sample. The solid horizontal line is the true optimum solution value opt = 5 351.23. The
dashed horizontal lines indicate the interval [0.99opt, 1.01opt] and the dotted lines the interval
[0.975opt, 1.025opt].

reached. Here, optimal first-stage solutions, evaluated on the whole set of 1 000 scenarios,
fall within a 2.5% confidence interval. For K ≥ 30 they already fall within a 1% confidence
interval. Moreover, we report that the out-of-sample stability values equal the optimum for
K ≥ 200. Similarly, in-sample stability can be reached for K ≥ 50: here, optimal solution
values for K-scenario solutions lie within a 5% confidence interval. The 2% confidence
interval is more difficult to reach and for this instance K ≥ 350 scenarios are necessary.

Direct approach vs. decomposition. Figure 10.4 shows a boxplot of the running time for
the direct approach DA and the decomposition 2bc on the instances with 30 vertices. We
report that all instances with n = 30 can be solved to optimality by 2bc (no run reaches the
time limit), but there are 115 runs (23 instances) that cannot be solved by DA within the
time limit of 2 hours (out of 1 400 runs for 280 instances). Moreover, we observe that for up
to 10–20 scenarios DA is mostly faster, but for instances with 20–50 or more scenarios the
decomposition clearly outperforms DA; detailed running times can be found in Table 10.2.
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Figure 10.4: Running times of the direct approach DA and the decomposition 2bc on instances
with 30 vertices and 5–1000 scenarios. Notice that the vertical axis has logarithmic scale.

Overall, DA takes 383.92 hours on all instances with n = 30 and 2bc takes only 4.86 hours.
The median speedup is 7.04, on average it is 38.39, and the standard deviation is 80.02. The
number of b&b nodes is more than 5 times higher for DA which generates overall 15 100
nodes—2bc generates only 2 690 b&b nodes. However, for most instances this number is
low: the median number of b&b nodes is 1 for both approaches, on average DA generates
10.79 nodes and 2bc 1.92 nodes.

For a lower number of scenarios DA is superior due to the set-up overhead needed for
the decomposition. With an increasing number of scenarios the two-stage b&c pays off and
significantly outperforms the DA approach.

A similar behavior can also be observed on the sets of larger instances: the boxplots in
Figure 10.5 and 10.6 show the distribution of the running times for the instances with 50
and 75 vertices, respectively.

First, consider the instances with n = 50. Due to the increasing difficulty we consider
only instances with 5–250 scenarios (180 instances). Here, 2bc reaches the time limit in 38
runs and 7 instances are unsolved; DA cannot solve 53 instances (267 runs to time limit).
Overall, DA takes 662.1 hours for the runs and 2bc takes 102.86 hours. The speedup from
DA to 2bc is 8.27 (median) and 36.83 (average) with standard deviation 50.58. The number
of b&b nodes is higher for the direct approach where the median number is 27 and on
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avg. runtime median runtime std. dev. runtime avg. nr. b&b nodes
K DA 2bc DA 2bc DA 2bc DA 2bc
5 0.12 0.45 0.09 0.36 0.08 0.28 2.70 2.70

10 0.35 0.67 0.25 0.56 0.22 0.40 3.30 2.70
20 1.49 1.36 0.64 0.85 2.84 1.91 4.90 3.80
50 5.04 2.16 4.36 2.00 3.32 0.88 2.40 1.40
75 14.72 3.42 10.89 3.42 14.01 1.04 4.50 2.10
100 33.17 4.70 22.81 4.59 54.60 1.67 6.90 2.10
150 182.10 6.77 49.72 6.55 537.61 2.41 22.00 1.60
200 238.94 8.65 77.73 8.32 489.66 2.68 15.70 1.50
250 640.70 10.80 174.84 10.01 1614.81 3.24 24.54 1.30
300 990.83 12.87 355.89 12.05 2090.20 3.85 26.22 1.60
400 1244.98 17.29 372.14 17.17 2038.46 4.93 14.58 1.20
500 1805.79 22.23 997.68 20.61 2036.42 7.60 11.12 1.60
750 3591.45 35.33 2792.60 32.12 2584.96 14.90 8.08 1.70
1000 5071.70 48.25 7200.00 44.62 2409.38 18.24 4.06 1.60

Table 10.2: Comparison of DA and 2bc for the instances with 30 vertices and 5–1 000 scenarios.

avg. runtime median runtime std. dev. runtime avg. nr. b&b nodes
K DA 2bc DA 2bc DA 2bc DA 2bc
5 3.23 366.03 0.36 2.31 10.79 1 566.69 70.10 945.68

10 6.45 166.60 1.88 5.42 12.72 685.98 40.80 406.50
20 25.07 18.95 10.30 9.25 34.10 37.53 31.40 26.50
50 1 635.89 388.74 169.90 21.46 2 555.17 1 570.77 818.66 55.66
75 2 023.34 427.59 628.21 24.00 2 715.91 1 570.75 458.96 59.92
100 3 504.95 417.15 3 005.85 32.86 3 027.41 1 567.30 420.64 46.62
150 4 954.56 520.50 7 200.00 50.06 3 082.17 1 607.90 215.70 46.04
200 5 563.47 593.47 7 200.00 68.48 2 605.52 1 674.68 87.92 45.46
250 6 118.87 804.16 7 200.00 87.70 2 174.36 2 143.16 46.38 50.22

Table 10.3: Comparison of DA and 2bc for the instances with 50 vertices and 5–250 scenarios.

average it is 243.4 while 2bc generates only 7.0 (median) and 187 (average) b&b nodes.
Although not visible in Figure 10.5, we report that already for 20 scenarios 2bc out-

performs DA in general, cf. Table 10.3. Furthermore, the performance of 2bc remains
relatively stable, whereas high dispersion and skewness of the running times for DA can
be observed. More precisely, 18 out of 20 instances with 50 nodes and 250 scenarios are
solved within the time limit of 2 hours using 2bc (the average running time of 2bc is 13
min.), whereas only 5 of them can be solved with theDA approach (with an average running
time of 101 min.).

However, there are some few extreme outlier points in the boxplots for the decomposition
which highly influence the average running time reported in Table 10.3; in particular for 5
and 10 scenarios the average running time of the decomposition is much higher than the
average running time of the direct approach. Moreover, for all scenario numbers—except
for 10 and 20—there exist instances where 2bc is failing. The reason for the outlier points
of the decomposition are mainly numerical issues; for all of these instances the optimum
solution is known early but needs to be verified (many b&b nodes and many tailing off
effects). For the unsolved runs of 2bc the median and average number of b&b nodes is
613.0 and 1 889.0, respectively, whereas for the successful runs these values are 5.0 and
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Figure 10.5: Running times ofDA, 2bc, andNoCS:2bc (2bcwithout cut strengthening) on instances
with 50 vertices and 5–250 scenarios.

111.9, respectively. The same holds for the tailing off effects: the unsolved runs cause 66.0
(median) and 113.1 (average) tailing off effects and for the successful runs the values are 0
(median) and 2.44 (average).

The picture for the instances with n = 75 is similar although the difficulty increases a
lot, cf. Figure 10.6 and Table 10.4. Here, we consider only instances with 5–100 scenarios.
The decomposition cannot solve 9 (out of 120) instances and the direct approach fails on
45 instances. For the 100 scenario instances 2bc solves 15 out of 20 to optimality and
DA solves only 3 within the same time limit. Over all instances with n = 75 DA runs
take 524.37 hours and 2bc takes 189.42 hours. But, comparing the running times and, in
particular, the speedup, is not very interesting since there are so many runs reaching the
time limit. In particular, the median running time of the direct approach for 50, 75, and 100
scenarios is defined by the time limit.

The decomposition shows the same problems as for instances with n = 50. Due to
numerical issues there are some outlier points; for all of these instances the optimum
solution is known early but needs to be verified (many b&b nodes and tailing off effects).
When comparing the successful and unsuccessful runs the number of tailing off effects
increases from 1.0 (median) and 10.87 (average) to 36.0 (median) and 59.02 (average). The
same holds for the number of b&b nodes where the values increase from 15.0 (median) and
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Figure 10.6: Running times of DA, 2bc, and NoCS:2bc on instances with 75 vertices and 5–100
scenarios.

104.1 (average) to 353.0 (median) and 493.7 (median).
Despite the fact that sometimes the decomposition has to deal with numerical problems,

we report that the solution values are identical for all instances which can be solved both by
DA and 2bc.

Cut strengthening. Figures 10.5 and 10.6 also highlight the benefits of our strengthening
procedure. The running times of 2bc are always smaller and less dispersed when compared
to the running times of NoCS:2bc. The median and average speedup for the instances with
30 vertices is 3.12 and 3.18, respectively, the maximum is 6.71. Moreover, the speedup
increases with an increasing graph size. For instances with 50 vertices it is 3.47 and 4.16,
respectively, with maximum 10.15, and the most significant speedup of 16.31 is achieved
when solving the largest instances, i.e., graphs with 75 vertices, where the median speedup
is 3.98 and the average is 4.1.

The impact of the strengthened L-shaped optimality cuts can be seen best by comparing
the number of master iterations in the b&b root node. For 2bc the number of master
iterations on the instances with 30 vertices is 11.0 (median), the average is 12.34, and the
standard deviation is 4.9. For NoCS:2bc the median is 24.0, the average is 26.36, and the
standard deviation is 10.26. Moreover, the number of unsolved instances increases from 7
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avg. runtime median runtime std. dev. runtime avg. nr. b&b nodes
K DA 2bc DA 2bc DA 2bc DA 2bc
5 4.98 224.12 2.25 15.46 6.96 705.37 23.20 120.80
10 27.15 78.82 14.23 31.97 33.72 98.75 44.30 40.40
20 1 760.30 846.59 84.44 93.71 2 734.20 1 804.11 1 636.94 266.90
50 5 010.47 1 254.18 7 200.00 356.65 3 142.74 1 820.88 797.98 125.10
75 5 537.54 1 811.28 7 200.00 498.04 2 605.31 2 505.09 336.56 130.42
100 6 530.23 2 629.51 7 200.00 940.11 1 756.17 2 947.06 170.82 117.26

Table 10.4: Comparison of DA and 2bc on the instances with 75 vertices and 5–100 scenarios.

to 11 (for n = 50) and from 9 to 25 (n = 75); the instances with 30 vertices are easy and
each instance can be solved.

Optimality cuts and b&b nodes. Here, we analyze the number of L-shaped and integer
optimality cuts and the number of b&b nodes. Notice that since 2bc also inserts no-good
cuts the number of integer optimality cuts includes both integer optimality cuts (Ic) and
no-good cuts (Ng).

For instances with 30 vertices very few integer optimality cuts are necessary. The
median number of integer optimality cuts is 0, the average number is 0.7, the maximum 16,
and the standard deviation is 1.58. Hence, these instances are easy and, as for the SSTP,
only few integer optimality cuts are required. The number of b&b nodes behaves similar.
Here, the median number of b&b nodes is 1.0, the average is 1.9, the maximum 41, and the
standard deviation is 2.95.

Not surprisingly, the number of L-shaped cuts increases with an increasing number of
scenarios: for 5 scenarios the median is 114.50 and the average is 120.95, and for 1 000
scenarios the median is 9 395 and the average is 9 162.30.

The instances with 50 vertices are more difficult. Here, the median number of integer
optimality cuts is 2.0, on average it is 98.22, and the standard deviation is 796.01; detailed
values are given by Table 10.5. In general, the number of integer optimality cuts is low and
moreover, it is not predictable and there are instances where many integer optimality cuts
are required. Over all instances and all runs 88 398 integer optimality cuts are inserted.
But there are two instances that together generate 68 930 integer optimality cuts (77.98%
of all cuts). These two instances highly influence the average value: without these runs the
average is 22.09 and the standard deviation is 458.0.

In general, the number of L-shaped cuts increases with the number of scenarios and the
number of b&b nodes and integer optimality cuts remains quite low. However, as mentioned
before and as one can see in Figure 10.5, there are outlier points that highly influence the
average values and the standard deviation.

For instances with 75 vertices the median number of integer optimality cuts is 8.0, the
average is 60.16, and the standard deviation is 140.18. The values are smaller for n = 50
since only instances with 5–100 scenarios are solved (instead of 5–250 scenarios) and there
are more unsolved instances. Again, the number of b&b nodes is similar: the median is
21.0, on average there are 133.3 nodes, and the standard deviation is 313.0.

Last but not least, we report the number of L-shaped optimality cuts. For 5 scenarios
the median number of separated cuts is 602.5 and on average there are 4 571.90 cuts. For
100 scenarios the median is 11 826.5 and the average is 30 658.34.
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nr. int. opt. cuts nr. L-shaped cuts nr. b&b nodes
K avg. med. std. dev. avg. med. std. dev. avg. med. std. dev.
5 520.86 0 2 199.73 7 012.41 242.50 28 426.94 945.68 3 3 986.69
10 193.10 0 806.02 4 553.05 430.00 17 001.77 406.50 5 1 678.75
20 9.60 2 28.45 1 112.45 731.50 1 566.20 26.50 10 75.24
50 24.66 4 71.52 8 955.32 1 188.50 32 562.01 55.66 11 161.90
75 30.96 4 91.95 12 421.19 1 621.00 42 500.32 59.92 7 157.72
100 29.12 4 95.64 10 416.56 2 054.00 33 658.16 46.62 5 138.05
150 26.20 4 67.96 12 486.56 2 849.50 33 197.29 46.04 6 121.47
200 22.54 3 56.77 13 188.84 3 700.00 30 695.46 45.46 7 121.14
250 26.94 3 74.76 15 921.07 5 015.50 33 907.50 50.22 6 152.83

Table 10.5: The number of integer optimality cuts, L-shaped optimality cuts, and b&b nodes for
2bc on instances with n = 50 vertices and 5–250 scenarios.

New integer optimality cuts. Here, we evaluate the effect of adding the new integer
optimality cuts (Ic−) and (Ic+), respectively. For this experiment we consider instances with
50 vertices which are solved by 2bc within the time limit and where 2bc generates ≥ 2
integer optimality cuts; selecting the instances with these properties results in a set with 77
instances which we refer to as n50Ic.

We re-run 2bc on n50Ic and moreover, we run 2bc- and 2bc+ which is 2bc with
additionally generated cuts (Ic−) or (Ic+), respectively. First of all, 2bc solves all instances
to optimality (one run reaches the time limit), 2bc- is always successful, and 2bc+ cannot
solve two instances (i.e., 10 runs to time limit). Overall, 2bc requires 29.03 hours to solve
this instance set, 2bc- takes 28.76 hours, and 2bc+ runs 39.98 hours. The median running
time for 2bc, 2bc-, and 2bc+ is 47.43 sec., 46.66 sec., and 52.60 sec., respectively, and the
average running times are 271.40 sec., 269.00 sec., and 364.50 sec. The standard deviation
is as follows: 962.40 (2bc), 953.49 (2bc-), and 1 265.82 (2bc+).

Themain reason for theworse performance of 2bc+ is the increased numerical instability
due to the coefficients (which aremostly c∗e). First, this can be seen by comparing the number
of b&b nodes: although the median number is identical for all approaches, 2bc and 2bc-
generate on average 388.5 and 384.4 nodes, respectively, while 2bc+ requires 516.3—this
is an increase by over 32%. Second, the number of tailing off effects is more than doubled
from 3 485 (2bc) and 3 575 (2bc-) to 8 643 (2bc+).

On the other hand, in general 2bc and 2bc- perform very similar. The number of b&b
nodes decreases slightly, but the number of tailing off effects increases. The overall speedup
from 2bc to 2bc- is 1.007 (median) and 1.001 (average) with standard deviation 0.04.

Hence, (Ic−) has no significant impact on the running time. Moreover, (Ic−) seems
to increase the numerical instability—this holds even more for the theoretically stronger
cuts (Ic+). We close the discussion by mentioning that—despite the increased numerical
problems—the computed solution values are identical for all instances.

Disaggregated integer optimality cuts. Disaggregating the integer optimality cuts has
a minor positive effect on the approach 2bc. The overall running time on the instance set
n50Ic is 28.83 hours (11.7 minutes less than 2bc). In particular, the median running time
on this set is 47.08 sec. (0.35 sec. less), on average it is 269.6 sec. (1.8 sec. less), and the
standard deviation is 959.93 (2.47 less). Moreover, the number of b&b nodes is 14 9475
(90 less). The only aspect where 2bc is slightly better is the number of tailing off effects;
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the approach with disaggregated cuts generates 3 510 nodes (25 more).
Overall, using disaggregated or aggregated integer optimality cuts does not make a

significant difference.

No-good cuts. No-good cuts (Ng) are introduced in Section 7.2.3 as constraints for cutting
off the current first-stage solution. Since the coefficients of the cuts are all binary these
cuts are numerically more stable than the standard integer optimality cuts. Moreover, they
seem to be important for reducing numerical problems and ensuring the correct optimum
solution (value).

We run NoNG:2bc on the same instances as before, i.e., for n = 30 instances with
5–1000 scenarios, for n = 50 with 5–250 scenarios, and for n = 75 with 5–100 scenarios.
Overall, there are 80 instances where both NoNG:2bc and 2bc succeed but the computed
optimum solution value of NoNG:2bc is smaller than the solution value computed by 2bc;
and as already mentioned, whenever DA is successful the solution values of DA and 2bc
are identical. For n = 30 there are 28 instances with different values, 34 instances for
n = 50, and 18 instances for n = 75. For example, for the instances with 30 vertices where
the solution differs, the maximal difference is 2.59, the median is 0.04 and the average
difference is 0.59.

We did not evaluate all runs in detail, but the logfiles that we looked into show that
the inserted integer optimality cuts are (numerically) not sufficient to cut off the current
first-stage solution. Then, NoNG:2bc does not find violated integer optimality cuts and
falsely assumes that the current first-stage solution (x̃0, θ̃) is correct.

Pareto optimal L-shaped cuts. Awell-known and frequently used approach for strength-
ening L-shaped cuts is the method for finding Pareto optimal cuts by Magnanti and Wong
[131]; we discuss the method in Section 7.2.1. In the following, we compare the perfor-
mance of three decomposition approaches: 2bc and NoCS:2bc as described above, and
MW:NoCS:2bc, which is NoCS:2bc with Pareto optimal L-shaped cuts added at each
iteration, i.e., after solving the subproblem an additional LP is solved to obtain stronger
dual multipliers corresponding to a Pareto optimal L-shaped cut. We compare the three
approaches by considering the running times and the number of master iterations in the
b&b root node.

Figure 10.7 reports the running times for graphs with 50 vertices—a similar behavior
can be observed for the remaining instances. The plot is restricted to 800 sec. to focus on the
important parts; however, some outlier points are cut off. As one can see, 2bc with our cut
strengthening method is still the fastest approach. However, the method by Magnanti and
Wong significantly improves the running time of the approach without cut strengthening
(MW:NoCS:2bc versus NoCS:2bc). Overall, NoCS:2bc is not able to solve 11 instances
andMW:NoCS:2bc cannot solve 8 instances. Moreover, NoCS:2bc takes 151.83 hours for
all runs and MW:NoCS:2bc requires 123.47 hours. The speedup is around 2: the median
is 1.99 and on average it is 2.06 with maximum 5.32 and standard deviation 0.65.

Comparing the number of master iterations in the root node, we report that NoCS:2bc
requires the largest number of iterations, and that the reduction factor obtained by our cut
strengthening is 2.35 (median) and 2.4 (average) with standard deviation 0.37. The approach
MW:NoCS:2bc requires even less master iterations than 2bc; here, the reduction is 1.27
(median) and 1.3 (average) with standard deviation 0.54. However, there is a computational
overhead associated with MW:NoCS:2bc, induced by solving additional LPs for finding
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Figure 10.7: Comparison of the running times for the approachwith cut strengthening (2bc), without
cut strengthening (NoCS:2bc), and by additionally generating Pareto optimal cuts by the method of
Magnanti and Wong (MW:NoCS:2bc) on the instances with 50 vertices and 5–250 scenarios. The
plot is restricted to 800 sec. such that some outlier points are cut off.

Pareto optimal cuts. This results in the higher overall running time of MW:NoCS:2bc
which is worse when compared to the running time of 2bc.

Finally, we also tried to hybridize the method by Magnanti and Wong with 2bc, but
it turned out that this approach does not improve the running time. Surprisingly and
interestingly, when using the method byMagnanti andWong our cut strengthening does not
have an influence on the performance such that MW:NoCS:2bc and this hybrid approach
behave similarly.

Higher number of scenarios for graphs with n = 50. From the experiments with 30
vertices we see that our algorithm scales well with an increasing number of scenarios
(average andmedian running time for 1 000 scenarios is less than 1min.). Here, we consider
the larger instances with 50 vertices and 300–1000 scenarios. Again, 2bc performs well:
out of 100 instances the algorithm solves 90 always to optimality and is not able to solve
10 instances within the time limit of 2 hours. The overall median running time is 204.10
sec., on average 2bc takes 982.50 sec., with standard deviation 2 102.69. Detailed results
about the running times, the number of b&b nodes, and the number of integer optimality
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runtime nr. b&b nodes nr. int. opt. cuts
K avg. med. std. dev. avg. med. std. dev. avg. med. std. dev.
300 822.25 108.59 2 137.89 48.04 5 145.88 26.28 3 75.33
400 860.00 136.56 2 126.05 30.52 7 79.05 17.38 4 41.40
500 957.70 175.72 2 108.05 29.04 3 75.10 16.78 4 38.16
750 1 038.70 351.58 2 078.80 20.36 6 43.32 11.38 4 20.25
1000 1 233.61 424.26 2 078.61 16.30 5 29.90 9.94 4 13.95

Table 10.6: Running time, number of b&b nodes, and number of integer optimality cuts (including
no-good cuts) for 2bc on instances with 50 vertices and 300–1000 scenarios.

cuts grouped by the number of scenarios is given by Table 10.6.

Scenario generation. We tried to improve the two-stage b&c algorithm by using the
idea of scenario generation (also known as scenario sampling or sample approximation),
mentioned in Section 4.3, and column generation, see, e.g., Desrosiers and Lübbecke [59].
The idea is to start with a smaller subset of scenarios and solve this restricted instance to
optimality. Afterwards, the remaining scenarios are added to the problem and the original
instance is solved.

The resulting 2bc-SG algorithm proceeds as follows. We sort the scenarios by de-
creasing probability and take the first K ′ scenarios such that the sum of the probabilities
exceeds a given threshold G, with 0 < G < 1. Let the set of scenarios be denoted by K ′,
i.e.,

∑
k∈K′ pk ≥ G. Then, for each scenario k ∈ K ′ the scenario probability pk is scaled

appropriately to qk such that
∑

k∈K′ qk = 1. The resulting SSNDP instance is solved to
optimality with the 2bc algorithm. Notice that the main difference is the reduced number of
scenarios and the modified objective coefficient of each θk variable, k ∈ K ′, in the master
problem.

Afterwards, the remaining scenarios are re-added and the probabilities are set to the
original values. By using the generated set of L-shaped cuts and the generated directed cuts
in the subproblems the original instance is solved as usual.

We implemented and tested two values for G: 2bc-SG-50 (G = 50) and 2bc-SG-80
(G = 80). Unfortunately, on the instances with 50 vertices and 5–250 scenarios the scenario
generation method does not have a positive effect on the running time. Over all instances
2bc takes 102.86 hours, and 2bc-SG-50 and 2bc-SG-80 require 113.8 hours and 107.47
hours, respectively. Similarly, the average running time increases from 411.5 sec. to 455.2
sec. and 429.9 sec., respectively, and the same holds for the number of b&b nodes and the
number of master iterations.

Graph density. To show the robustness of our decomposition method we evaluate its
performance when the graph density |E |/|V | is increased. For this set of experiments we
consider the instances with 50 vertices and 50 scenarios and insert new edges to obtain
instances with a higher density. Edge costs of the new edges are generated in the same way
as before and edge connectivity requirements remain unchanged. Overall, for each of the
20 instances with |V | = 50 and K = 50 we generate graphs with density 3, 4, 5, 6, 8, 10, 12,
and 14, respectively; for 50 vertices a density of 14 implies that the graph contains more
than half of all possible edges.

Figure 10.8 shows the running time of 2bc and DA grouped by the graph density;
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Figure 10.8: Running times of DA and 2bc when the density of the graphs increases. The used
instances have 50 vertices and 50 scenarios.

Table 10.7 provides more details. As one can see the running time of 2bc increases only
moderately; the median running time for density 3 is 28.09 sec. and for density 14 it is
197.86 sec. Since there are also only a few outlier points we conclude that the performance
of 2bc is robust and remains stable even when the graph density increases. On the contrary,
the direct approach DA performs much worse on denser graphs: the median running time
increases from 200.86 sec. to 3 670.13 sec. (density 3 and 14, respectively). Moreover, DA
cannot solve 25% of the densest instances within the time limit of two hours.

Second stage as penalty. We also evaluate the impact of the relative second-stage costs
w.r.t. the first-stage costs. For this purpose, we take all instances with 50 vertices and simply
multiply all second-stage costs with a penalty factor σ from the set {0.8, 2, 4, 8, 12}, i.e., an
edge e in scenario k gets the new costσ ·cke . Figure 10.9 presents the results for the instances
with 50 scenarios. Clearly, a more expensive second stage leads to the installation of more
edges in the first stage as shown by the right plot of Figure 10.9. Moreover, our initial setting
of second-stage costs seems to be reasonable as the optimum solutions consist of both first-
and second-stage edges. With an increasing (or decreasing) factor this changes drastically
and one stage dominates: for a factor of 0.8 or less the optimal first stage solution is always
empty and for a factor of ≥ 8 this holds for the second stage. Moreover, we conclude that
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avg. runtime median runtime std. dev. runtime avg. nr. b&b nodes
|E |
|V | DA 2bc DA 2bc DA 2bc DA 2bc
3 761.88 218.15 200.86 28.09 1 640.64 836.99 113.24 15.60
4 1 352.72 50.72 403.27 41.18 2 304.47 49.61 107.00 5.20
5 1 456.56 62.20 621.09 54.24 2 052.08 38.56 71.60 3.40
6 1 543.94 88.32 802.38 72.49 1 976.20 75.63 50.78 3.50
8 2 322.52 113.56 1 291.70 96.31 2 211.72 60.17 34.30 3.10
10 3 001.70 143.74 1 914.96 115.25 2 377.57 100.02 22.20 2.70
12 3 607.12 177.64 2 670.86 149.99 2 348.28 82.94 17.60 2.60
14 4 167.50 243.31 3 670.12 197.85 2 112.16 129.93 12.92 2.40

Table 10.7: Comparison of DA and 2bc on graphs with increasing density |E |/|V |. The number of
vertices and the number of scenarios are both fixed to 50.
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Figure 10.9: Boxplots showing the impact of a penalty factor for the second-stage cost on instances
with 50 vertices and 50 scenarios: (left) running time of 2bc and (right) percentage of first-stage
cost w.r.t. optimal solution value.

our algorithm performs well even when more edges are bought in the first stage, compare
the left plot of Figure 10.9. This is important since the decomposed model initially contains
no constraints in the master problem.

Conclusion. The computational study on the SSNDP agrees with the study on the SSTP:
in general the two-stage branch&cut algorithm performs better than the direct approach.
With a low number of scenarios the direct approach is faster but with an increasing scenario
size the decomposition scales better and clearly outperforms the single b&c algorithm.
Moreover, the experiments show that denser graphs or higher second-stage costs do not
highly influence the performance.

For the decomposition the method for strengthening the L-shaped optimality cuts is
very successful. On the other hand, the scenario generation approach or the new integer
optimality cuts do not give the desired improvements.
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Chapter 11

Conclusion and outlook

Network design problems play an important role in various fields and many applications.
In practice, exact knowledge of all data is often not given and uncertain data or proba-
bilistic information prevent the application of classical deterministic algorithms. Several
approaches have been developed to deal with the uncertainty; in this thesis we focus on the
concept of stochastic programming.

Stochastic network design problems have been considered in the literature before, but
only for developing approximation algorithms. The goals of this thesis are the development,
implementation, and engineering of efficient algorithms for two-stage stochastic network
design problems. For this purpose we concentrate on the two-stage stochastic Steiner tree
problem—the general problem and a rooted version which requires a first-stage tree—and
the two-stage stochastic survivable network design problem.

Wefirst present linear-time algorithms based on dynamic programming for the stochastic
Steiner tree problems. Afterwards, we develop the first fixed-parameter tractable algorithms.
We introduce an FPT algorithm parameterized by the overall number of terminals for the
rooted SSTP. Then, we consider treewidth-bounded graphs and expand an algorithm for
the deterministic STP to algorithms for the stochastic Steiner tree problems. The resulting
algorithms are FPT algorithms parameterized by the combination of treewidth and number
of scenarios.

The main part of this thesis is dedicated to methods from mathematical programming.
As a first step we develop several semi-directed cut- and flow-based models for the SSTP.
These models formulate the problem by using undirected edges in the first stage and—by
using orientation properties from the deterministic problem—directed arcs in the second
stage. This approach leads to stronger IP models than the known undirected models from
the literature. For the rooted version of the SSTP we additionally present fully directed
models. The strength of the polyhedra is compared in a comprehensive study.

For solving the stochastic Steiner tree problems to optimality we apply a Benders’
decomposition which results in the two-stage branch&cut algorithm. Thereby, each sub-
problem represents a scenario, which is a restricted Steiner tree problem. By studying
the primal and dual subproblem we introduce two heuristics for improving the L-shaped
optimality cuts. The first heuristic is a linear-time method which modifies the optimum
dual solution by reducing the slack of the dual constraints. The second heuristic modifies
the set of generated directed cuts in the primal subproblem, which results in a different set
of variables in the dual problem. If applicable, both methods lead to stronger L-shaped
optimality cuts.
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Another important aspect of the two-stage b&c algorithm are integer optimality cuts.
Due to the special structure of the stochastic problems we are able to develop new and
stronger integer optimality cuts. Moreover, we additionally introduce cut-based constraints
for the first-stage master problem, consider the improved integer optimality cuts, describe
the disaggregation of all constraints, and mention methods for improving the lower bound
for the second-stage cost.

To measure the performance of the two-stage b&c algorithm we evaluate a comprehen-
sive computational study on expanded instances from the deterministic STP and PCSTP; to
the best of our knowledge this is the first study reporting optimum solutions to the SSTP.
The study shows that the decomposition is in general faster, more stable, and more robust
than the direct approach (a single b&c) and that it scales better with an increasing number
of scenarios. Moreover, the linear-time cut strengthening procedure is very efficient and
highly reduces the running time and the number of master iterations. Since the generated
instances are instances for the rooted SSTP as well, we evaluate the cost increase through
an imposed first-stage tree, which is very low on our instances with at most 0.06%. On the
other hand, the directed models for the rooted SSTP are much faster and solve many more
instances than the semi-directed models for the SSTP. Last but not least, we show that the
BuyNone heuristic (connect everything in the second stage) is a good compromise between
running time and solution quality, but the BuyAll heuristic (connect everything in the first
stage) mostly computes weak solutions.

In the second part of this thesis we consider the two-stage stochastic survivable network
design problem. Motivated by the SSTP we develop semi-directed models which are
compared with, and shown to be stronger than, the straight-forward undirected models.
We decompose the strongest semi-directed model, demonstrate the applicability of the
same cut strengthening method, and argue the correctness of the new integer optimality
cuts. Similarly, a computational study shows the benefit of the decomposition and the
cut strengthening, which significantly reduces the number of master iterations and the
computational running time. The experiments further demonstrate the stable performance
of the decomposition on larger instances (w.r.t. the number of scenarios) and on denser
graphs. Moreover, we investigate further aspects like the effects of higher second-stage
costs on the percentage of selected first-stage edges, the value of the stochastic solution,
and the in-sample and out-of-sample stability.

In summary, the two-stage branch&cut algorithm is able to solve small to medium
sized stochastic instances to optimality. In general, the decomposition performs better
than the direct approach and in particular, it scales better with an increasing number of
scenarios. The experiments clearly show that the running time of the two-stage b&c
algorithm increases moderately with the number of scenarios while the direct approach is
much more vulnerable to an increasing scenario set. On the other hand, the two-stage b&c
algorithm performs weaker on instances where the corresponding deterministic instances
are difficult; an extreme example is the artificial pucn instance set for the (S)STP. The same
behavior can be observed for the SSNDP: instances with 30 or 50 vertices can be solved
for a high number of scenarios but for 75 vertices the algorithm clearly fails more often. A
tremendous improvement to the two-stage b&c algorithm is the cut strengthening method
which highly reduces the required running time.

The third considered problem of this thesis is the deterministic Steiner forest problem,
which is related to all considered problems. On the one hand, the SFP is a generalization
of the deterministic STP. On the other hand, we show that the SFP is a special case of the
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stochastic Steiner tree problem: when each terminal set is interpreted as a scenario with very
high edge costs, the SSTP connects all terminal sets in the first stage and directly solves the
SFP. Hence, the results on the SSTP are transferable and we obtain the first FPT algorithm
on treewidth-bounded graphs and new and stronger semi-directed IP models for the SFP.
We additionally show how these models can be strengthened further to extended directed
cut- and flow-based models and we present a polyhedral comparison of these models.

Following this conclusion, see page 205, we give a list of open problems mentioned
throughout this thesis. Here, we like to discuss some further open problems and ideas for
future research.

• Applicability to further network design problems. Many stochastic network design
problems can be modeled by using capacity constraints in the second stage which
enforce the selection of a second-stage edge whenever the related first-stage edge
is chosen. In case the deterministic problem allows for a stronger directed model
the second stage can be oriented as well which in turn leads to a stronger semi-
directed model. We show the applicability for the stochastic Steiner tree problem
and the stochastic survivable network design problem (we also mention the node-
connectivity version), but the ideas are transferable to many two-stage stochastic
network design problems.

• Pareto optimal L-shaped cuts. Wewere not able to find a (new)method (combinatorial
or LP-based) for generating a Pareto optimal L-shaped cut. For the semi-directed
models we know that the cut strengthening method does not give Pareto optimal cuts;
for the directed models this is an open question. Since the two-stage b&c algorithm
highly depends on the strength of the L-shaped optimality cuts the improvement of
these cuts is an interesting research topic.

• Preprocessing. For the deterministic STP there exist successful preprocessing rules
which reduce the instance size very effectively, see [55, 139]. For the SSTP we did
not investigate preprocessing rules, but this is an interesting topic for future research.

• Primal heuristics. Our implementations contain only rudimentary primal heuristics
which mainly consist of rounding the first stage and solving the second stage to
optimality. This approach works well if the scenarios can be solved easily and if the
primal heuristic is not called too often. For future research it might be interesting
to develop more sophisticated primal heuristics, for example, primal heuristics that
solve the second stage heuristically.

• Numerical problems. Solving a stochastic problem—in particular, this is known for
Benders’ decomposition—often causes numerical problems. Reducing the tailing off
effects and numerical issues is a difficult task. In our implementation we found a
setup that works well in general. But the experiments reveal some instances where
numerical problems are dominating. This needs to be investigated further in the
future.

• Approximation algorithms. The semi-directed and directed models are the strongest
models known for the SSTP, rSSTP, and SFP. Perhaps it is possible to develop
approximation algorithms with better approximation ratios by using these models.
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• Multistage stochastic problems, i.e., `-stage stochastic network design problems. In
this thesis we consider stochastic problems with two decision stages. We are not
aware of any publications considering the `-stage stochastic Steiner tree or survivable
network design problem, with ` > 2.

• Stronger formulation for the first stage. The semi-directed models (SSTPsdc2) and
(SSNDPsdc2) still use undirected edge variables in the first stage. Due to the discussion
on the Steiner forest problem, where we present extended directed formulations for
possibly disconnected solutions, i.e., models (SFPα:dc) and (SFPα:df), maybe it is
possible to use similar ideas for strengthening the first-stage description.
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