158,320 research outputs found

    Intelligent Social Networks Model Based On Semantic Tag Ranking

    Get PDF
    Social Networks has become one of the most popular platforms to allow users to communicate, and share their interests without being at the same geographical location. With the great and rapid growth of Social Media sites such as Facebook, LinkedIn, Twitter…etc. causes huge amount of user-generated content. Thus, the improvement in the information quality and integrity becomes a great challenge to all social media sites, which allows users to get the desired content or be linked to the best link relation using improved search / link technique. So introducing semantics to social networks will widen up the representation of the social networks. In this paper, a new model of social networks based on semantic tag ranking is introduced. This model is based on the concept of multi-agent systems. In this proposed model the representation of social links will be extended by the semantic relationships found in the vocabularies which are known as (tags) in most of social networks.The proposed model for the social media engine is based on enhanced Latent Dirichlet Allocation(E-LDA) as a semantic indexing algorithm, combined with Tag Rank as social network ranking algorithm. The improvements on (E-LDA) phase is done by optimizing (LDA) algorithm using the optimal parameters. Then a filter is introduced to enhance the final indexing output. In ranking phase, using Tag Rank based on the indexing phase has improved the output of the ranking. Simulation results of the proposed model have shown improvements in indexing and ranking output

    Semantic Web gets into collaborative tagging

    Get PDF
    Collaborative tagging is a new content sharing and organization trend, mainly diffused over the Web, which has attracted growing attention during the last years. It refers to the process by which many users add metadata in the form of keywords to shared content. Today many different collaborative tagging systems are available on the Web, enabling users to add descriptive keywords to different types of Internet resources (web pages, photos, videos, etc.). The great number of advantages offered by the availability of collaboratively tagged resources in terms of their organization and shared information is underlined by their growing adoption, also in non-technical communities of users. In spite of this, analyzing the current structure and usage patterns of collaborative tagging systems, we can discover many important aspects which still need to be improved so as to bring tagging systems to their full potential. In particular, problems related to synonymy, polysemy, different lexical forms, different spellings and misspelling errors, but also the lack of accurancy caused by different levels of precision and distinct kinds of tag-to-resource association represent a great limit, causing inconsistencies among the terms used in the tagging process and thus reducing the efficiency of content search and the effectiveness of the tag space structuring and organization. This kind of problems is mainly caused by the lack of semantic information inclusion in the tagging process. Considering the increasing attention focused on the Semantic Web, we propose a new model of tagging system, based on semantic keywords. We let the users easily define the meaning of their tags, referencing some sort of social ontology. As social ontology we explore the adequacy of the support offered by the entries of Wikipedia andWordNet. Finally we present SemKey, a tool that allows users to tag in a semantic context, providing an evaluation of the system proposed in comparison with classical tagging tools

    Perfect tag identification protocol in RFID networks

    Full text link
    Radio Frequency IDentification (RFID) systems are becoming more and more popular in the field of ubiquitous computing, in particular for objects identification. An RFID system is composed by one or more readers and a number of tags. One of the main issues in an RFID network is the fast and reliable identification of all tags in the reader range. The reader issues some queries, and tags properly answer. Then, the reader must identify the tags from such answers. This is crucial for most applications. Since the transmission medium is shared, the typical problem to be faced is a MAC-like one, i.e. to avoid or limit the number of tags transmission collisions. We propose a protocol which, under some assumptions about transmission techniques, always achieves a 100% perfomance. It is based on a proper recursive splitting of the concurrent tags sets, until all tags have been identified. The other approaches present in literature have performances of about 42% in the average at most. The counterpart is a more sophisticated hardware to be deployed in the manufacture of low cost tags.Comment: 12 pages, 1 figur

    A Cloud-based RFID Authentication Protocol with Insecure Communication Channels

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Radio Frequency Identification (RFID) has becomea widespread technology to automatically identify objects and withthe development of cloud computing, cloud-based RFID systemsattract more research these days. Several cloud-based RFIDauthentication protocols have been proposed to address privacyand security properties in the environment where the cloudprovider is untrusted therefore the tag’s data are encrypted andanonymously stored in the cloud database. However, most of thecloud-based RFID authentication protocols assume securecommunication channels between the reader and the cloud server.To protect data transmission between the reader and the cloudserver without any help from a third party, this paper proposes acloud-based RFID authentication protocol with insecurecommunication channels (cloud-RAPIC) between the reader and the cloud server. The cloud-RAPIC protocol preserves tag privacyeven when the tag does not update its identification. The cloudRAPIC protocol has been analyzed using the UPriv model andAVISPA verification tool which have proved that the protocolpreserves tag privacy and protects data secrecy

    Information extraction from template-generated hidden web documents

    Get PDF
    The larger amount of information on the Web is stored in document databases and is not indexed by general-purpose search engines (such as Google and Yahoo). Databases dynamically generate a list of documents in response to a user query – which are referred to as Hidden Web databases. Such documents are typically presented to users as templategenerated Web pages. This paper presents a new approach that identifies Web page templates in order to extract queryrelated information from documents. We propose two forms of representation to analyse the content of a document – Text with Immediate Adjacent Tag Segments (TIATS) and Text with Neighbouring Adjacent Tag Segments (TNATS). Our techniques exploit tag structures that surround the textual contents of documents in order to detect Web page templates thereby extracting query-related information. Experimental results demonstrate that TNATS detects Web page templates most effectively and extracts information with high recall and precision

    Perseus: Randomized Point-based Value Iteration for POMDPs

    Full text link
    Partially observable Markov decision processes (POMDPs) form an attractive and principled framework for agent planning under uncertainty. Point-based approximate techniques for POMDPs compute a policy based on a finite set of points collected in advance from the agents belief space. We present a randomized point-based value iteration algorithm called Perseus. The algorithm performs approximate value backup stages, ensuring that in each backup stage the value of each point in the belief set is improved; the key observation is that a single backup may improve the value of many belief points. Contrary to other point-based methods, Perseus backs up only a (randomly selected) subset of points in the belief set, sufficient for improving the value of each belief point in the set. We show how the same idea can be extended to dealing with continuous action spaces. Experimental results show the potential of Perseus in large scale POMDP problems

    AnonPri: A Secure Anonymous Private Authentication Protocol for RFID Systems

    Get PDF
    Privacy preservation in RFID systems is a very important issue in modern day world. Privacy activists have been worried about the invasion of user privacy while using various RFID systems and services. Hence, significant efforts have been made to design RFID systems that preserve users\u27 privacy. Majority of the privacy preserving protocols for RFID systems require the reader to search all tags in the system in order to identify a single RFID tag which not efficient for large scale systems. In order to achieve high-speed authentication in large-scale RFID systems, researchers propose tree-based approaches, in which any pair of tags share a number of key components. Another technique is to perform group-based authentication that improves the tradeoff between scalability and privacy by dividing the tags into a number of groups. This novel authentication scheme ensures privacy of the tags. However, the level of privacy provided by the scheme decreases as more and more tags are compromised. To address this issue, in this paper, we propose a group based anonymous private authentication protocol (AnonPri) that provides higher level of privacy than the above mentioned group based scheme and achieves better efficiency (in terms of providing privacy) than the approaches that prompt the reader to perform an exhaustive search. Our protocol guarantees that the adversary cannot link the tag responses even if she can learn the identifier of the tags. Our evaluation results demonstrates that the level of privacy provided by AnonPri is higher than that of the group based authentication technique

    AnonPri: A Secure Anonymous Private Authentication Protocol for RFID Systems

    Get PDF
    Privacy preservation in RFID systems is a very important issue in modern day world. Privacy activists have been worried about the invasion of user privacy while using various RFID systems and services. Hence, significant efforts have been made to design RFID systems that preserve users\u27 privacy. Majority of the privacy preserving protocols for RFID systems require the reader to search all tags in the system in order to identify a single RFID tag which not efficient for large scale systems. In order to achieve high-speed authentication in large-scale RFID systems, researchers propose tree-based approaches, in which any pair of tags share a number of key components. Another technique is to perform group-based authentication that improves the tradeoff between scalability and privacy by dividing the tags into a number of groups. This novel authentication scheme ensures privacy of the tags. However, the level of privacy provided by the scheme decreases as more and more tags are compromised. To address this issue, in this paper, we propose a group based anonymous private authentication protocol (AnonPri) that provides higher level of privacy than the above mentioned group based scheme and achieves better efficiency (in terms of providing privacy) than the approaches that prompt the reader to perform an exhaustive search. Our protocol guarantees that the adversary cannot link the tag responses even if she can learn the identifier of the tags. Our evaluation results demonstrates that the level of privacy provided by AnonPri is higher than that of the group based authentication technique
    • …
    corecore