5 research outputs found

    Dublin City University at the TREC 2006 terabyte track

    Get PDF
    For the 2006 Terabyte track in TREC, Dublin City Universityā€™s participation was focussed on the ad hoc search task. As per the pervious two years [7, 4], our experiments on the Terabyte track have concentrated on the evaluation of a sorted inverted index, the aim of which is to sort the postings within each posting list in such a way, that allows only a limited number of postings to be processed from each list, while at the same time minimising the loss of effectiveness in terms of query precision. This is done using the FĆ­srĆ©al search system, developed at Dublin City University [4, 8]

    Learning to rank

    Get PDF
    Abstract. New general purpose ranking functions are discovered using genetic programming. The TREC WSJ collection was chosen as a training set. A baseline comparison function was chosen as the best of inner product, probability, cosine, and Okapi BM25. An elitist genetic algorithm with a population size 100 was run 13 times for 100 generations and the best performing algorithms chosen from these. The best learned functions, when evaluated against the best baseline function (BM25), demonstrate some significant performance differences, with improvements in mean average precision as high as 32% observed on one TREC collection not used in training. In no test is BM25 shown to significantly outperform the best learned function

    Index ordering by query-independent measures

    Get PDF
    There is an ever-increasing amount of data that is being produced from various data sources ā€” this data must then be organised effectively if we hope to search though it. Traditional information retrieval approaches search through all available data in a particular collection in order to find the most suitable results, however, for particularly large collections this may be extremely time consuming. Our purposed solution to this problem is to only search a limited amount of the collection at query-time, in order to speed this retrieval process up. Although, in doing this we aim to limit the loss in retrieval efficacy (in terms of accuracy of results). The way we aim to do this is to firstly identify the most ā€œimportantā€ documents within the collection, and then sort the documents within the collection in order of their "importanceā€ in the collection. In this way we can choose to limit the amount of information to search through, by eliminating the documents of lesser importance, which should not only make the search more efficient, but should also limit any loss in retrieval accuracy. In this thesis we investigate various different query-independent methods that may indicate the importance of a document in a collection. The more accurate the measure is at determining an important document, the more effectively we can eliminate documents from the retrieval process - improving the query-throughput of the system, as well as providing a high level of accuracy in the returned results. The effectiveness of these approaches are evaluated using the datasets provided by the terabyte track at the Text REtreival Conference (TREC)

    Search engine optimisation using past queries

    Get PDF
    World Wide Web search engines process millions of queries per day from users all over the world. Efficient query evaluation is achieved through the use of an inverted index, where, for each word in the collection the index maintains a list of the documents in which the word occurs. Query processing may also require access to document specific statistics, such as document length; access to word statistics, such as the number of unique documents in which a word occurs; and collection specific statistics, such as the number of documents in the collection. The index maintains individual data structures for each these sources of information, and repeatedly accesses each to process a query. A by-product of a web search engine is a list of all queries entered into the engine: a query log. Analyses of query logs have shown repetition of query terms in the requests made to the search system. In this work we explore techniques that take advantage of the repetition of user queries to improve the accuracy or efficiency of text search. We introduce an index organisation scheme that favours those documents that are most frequently requested by users and show that, in combination with early termination heuristics, query processing time can be dramatically reduced without reducing the accuracy of the search results. We examine the stability of such an ordering and show that an index based on as little as 100,000 training queries can support at least 20 million requests. We show the correlation between frequently accessed documents and relevance, and attempt to exploit the demonstrated relationship to improve search effectiveness. Finally, we deconstruct the search process to show that query time redundancy can be exploited at various levels of the search process. We develop a model that illustrates the improvements that can be achieved in query processing time by caching different components of a search system. This model is then validated by simulation using a document collection and query log. Results on our test data show that a well-designed cache can reduce disk activity by more than 30%, with a cache that is one tenth the size of the collection
    corecore