9 research outputs found

    Optimal Randomized Group Testing Algorithm to Determine the Number of Defectives

    Get PDF
    We study the problem of determining the exact number of defective items in an adaptive group testing by using a minimum number of tests. We improve the existing algorithm and prove a lower bound that shows that the number of tests in our algorithm is optimal up to small additive terms

    Improved Adaptive Group Testing Algorithms with Applications to Multiple Access Channels and Dead Sensor Diagnosis

    Full text link
    We study group-testing algorithms for resolving broadcast conflicts on a multiple access channel (MAC) and for identifying the dead sensors in a mobile ad hoc wireless network. In group-testing algorithms, we are asked to identify all the defective items in a set of items when we can test arbitrary subsets of items. In the standard group-testing problem, the result of a test is binary--the tested subset either contains defective items or not. In the more generalized versions we study in this paper, the result of each test is non-binary. For example, it may indicate whether the number of defective items contained in the tested subset is zero, one, or at least two. We give adaptive algorithms that are provably more efficient than previous group testing algorithms. We also show how our algorithms can be applied to solve conflict resolution on a MAC and dead sensor diagnosis. Dead sensor diagnosis poses an interesting challenge compared to MAC resolution, because dead sensors are not locally detectable, nor are they themselves active participants.Comment: Expanded version of a paper appearing in ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), and preliminary version of paper appearing in Journal of Combinatorial Optimizatio

    Engineering Competitive and Query-Optimal Minimal-Adaptive Randomized Group Testing Strategies

    Get PDF
    Suppose that given is a collection of nn elements where dd of them are \emph{defective}. We can query an arbitrarily chosen subset of elements which returns Yes if the subset contains at least one defective and No if the subset is free of defectives. The problem of group testing is to identify the defectives with a minimum number of such queries. By the information-theoretic lower bound at least log2(nd)dlog2(nd)dlog2n\log_2 \binom {n}{d} \approx d\log_2 (\frac{n}{d}) \approx d\log_2 n queries are needed. Using adaptive group testing, i.e., asking one query at a time, the lower bound can be easily achieved. However, strategies are preferred that work in a fixed small number of stages, where queries in a stage are asked in parallel. A group testing strategy is called \emph{competitive} if it works for completely unknown dd and requires only O(dlog2n)O(d\log_2 n) queries. Usually competitive group testing is based on sequential queries. We have shown that actually competitive group testing with expected O(dlog2n)O(d\log_2 n) queries is possible in only 22 or 33 stages. Then we have focused on minimizing the hidden constant factor in the query number and proposed a systematic approach for this purpose. Another main result is related to the design of query-optimal and minimal-adaptive strategies. We have shown that a 22-stage randomized strategy with prescribed success probability can asymptotically achieve the information-theoretic lower bound for dnd \ll n and growing much slower than nn. Similarly, we can approach the entropy lower bound in 44 stages when d=o(n)d=o(n)

    New Constructions for Competitive and Minimal-Adaptive Group Testing

    Get PDF
    Group testing (GT) was originally proposed during the World War II in an attempt to minimize the \emph{cost} and \emph{waiting time} in performing identical blood tests of the soldiers for a low-prevalence disease. Formally, the GT problem asks to find dnd\ll n \emph{defective} elements out of nn elements by querying subsets (pools) for the presence of defectives. By the information-theoretic lower bound, essentially dlog2nd\log_2 n queries are needed in the worst-case. An \emph{adaptive} strategy proceeds sequentially by performing one query at a time, and it can achieve the lower bound. In various applications, nothing is known about dd beforehand and a strategy for this scenario is called \emph{competitive}. Such strategies are usually adaptive and achieve query optimality within a constant factor called the \emph{competitive ratio}. In many applications, queries are time-consuming. Therefore, \emph{minimal-adaptive} strategies which run in a small number ss of stages of parallel queries are favorable. This work is mainly devoted to the design of minimal-adaptive strategies combined with other demands of both theoretical and practical interest. First we target unknown dd and show that actually competitive GT is possible in as few as 22 stages only. The main ingredient is our randomized estimate of a previously unknown dd using nonadaptive queries. In addition, we have developed a systematic approach to obtain optimal competitive ratios for our strategies. When dd is a known upper bound, we propose randomized GT strategies which asymptotically achieve query optimality in just 22, 33 or 44 stages depending upon the growth of dd versus nn. Inspired by application settings, such as at American Red Cross, where in most cases GT is applied to small instances, \textit{e.g.}, n=16n=16. We extended our study of query-optimal GT strategies to solve a given problem instance with fixed values nn, dd and ss. We also considered the situation when elements to test cannot be divided physically (electronic devices), thus the pools must be disjoint. For GT with \emph{disjoint} simultaneous pools, we show that Θ(sd(n/d)1/s)\Theta (sd(n/d)^{1/s}) tests are sufficient, and also necessary for certain ranges of the parameters

    Improved results for competitive group testing

    No full text

    Improved results for competitive group testing

    No full text
    We consider algorithms for group testing problems when nothing is known in advance about the number of defectives. Du and Hwang suggested to measure the quality of such algorithms by its so-called (first) competitive ratio (see the introduction). Later, Du and Park suggested a second kind of competitive ratio. For each kind of competitiveness, we improve the best known bounds: In the first case, from 1.65 to 1.5+#eta#, and in the second from 16 to 4. (orig.)Available from TIB Hannover: RN 4052(97858) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman
    corecore