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Abstract

Engineering Competitive and
Query-Optimal Minimal-Adaptive

Randomized Group Testing Strategies

Muhammad Azam Sheikh
Department of Computer Science and Engineering

Chalmers University Of Technology

Abstract

Suppose that given is a collection of n elements where d of them are de-
fective. We can query an arbitrarily chosen subset of elements which returns
Yes if the subset contains at least one defective and No if the subset is free of
defectives. The problem of group testing is to identify the defectives with a
minimum number of such queries. By the information-theoretic lower bound
at least log2

(
n
d

)
≈ d log2(

n
d
) ≈ d log2 n queries are needed. Using adaptive

group testing, i.e., asking one query at a time, the lower bound can be eas-
ily achieved. However, strategies are preferred that work in a fixed small
number of stages, where queries in a stage are asked in parallel. A group
testing strategy is called competitive if it works for completely unknown d
and requires only O(d log2 n) queries. Usually competitive group testing is
based on sequential queries. We have shown that actually competitive group
testing with expected O(d log2 n) queries is possible in only 2 or 3 stages.
Then we have focused on minimizing the hidden constant factor in the query
number and proposed a systematic approach for this purpose.

Another main result is related to the design of query-optimal and minimal-
adaptive strategies. We have shown that a 2-stage randomized strategy with
prescribed success probability can asymptotically achieve the information-
theoretic lower bound for d � n and growing much slower than n. Similarly,
we can approach the entropy lower bound in 4 stages when d = o(n).
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Chapter 1
Introduction

We will start with some informal talk over a little bit of background and
origin of the problem addressed in this research. Then, in the next section we
start with a broader definition of the problem and discuss its basic models. In
section 3, we discuss different methods and their results to solve the problem.

Moving towards the end of this chapter, we first describe the scope of this
thesis and summarize the main research contributions.
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4 INTRODUCTION

1.1 Background

Digging into the literature we find that the group testing (GT) problem,
which has widely gained popularity in diverse disciplines, does not have a
history spanned over centuries. It dates back to World War II, around 1943,
when it was originally proposed. Mostly it is credited to Robert Dorfman
due to his seminal report [8]. However, there are evidences that his col-
leagues, particularly David Rosenblatt, also contributed somehow at least
in the initial brainstorming discussions where the idea was first presented.
Group testing methods, their applications and other related history can be
found in [11] by Du and Hwang.

The motivation behind development of the first group testing strategy
was to reduce the number of blood tests required for syphilis screening of
draftees for the U.S. Army [8]. Chemical analysis of a blood sample was
used to reveal presence(positive outcome) or absence(negative outcome) of
syphilis germs. There were millions of draftees with a possibility of only
a few thousand of them actually suffering from the disease. Instead of the
wasteful exhaustive approach of carrying out separate blood tests for all the
individuals, an economical alternate method was suggested. The method was
not successfully applied due to limitations of the testing procedure available
at that time [11]. Nevertheless, we continue with this scenario to informally
introduce the main theme behind origin of the GT problem.

The idea is based on the simple observation that blood samples drawn
from a number of individuals can be analyzed simultaneously with just one
test. In order to achieve that, we can pool the blood samples together to
form a group blood sample and perform the chemical analysis test. Now, a
negative test outcome would mean that entire group is healthy, i.e., nobody
in the group is suffering from the syphilis. On the contrary, a positive test
outcome would not reveal any potential information. From this we can only
conclude that at least one of the group members is diseased. Depending on
the group size, either we can go for individual testing or further dividing the
group into subgroups. Each alternative has its own pros and cons. Negative
outcome suggests larger group size but at the same time it increases the
chances of positive outcome, thus favors for smaller group size. However,
knowing that infected individuals are rare, we can hope that blood tests on
groups of carefully chosen size will more often result into a negative outcome.
Positive outcomes are minimized such that individual testing remains linear
in the number of infected individuals only. Thus, we expect to reveal status
of the entire individuals with less number of tests compared to their total
count.
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1.2 Preliminaries

Above introductory discussion is merely to serve as a quick overview about
the basic idea of GT. It assumes that we have a prior information about the
probability of each individual having the disease. Another situation could be
that we know the actual value or an upper bound on the number of victims
but not their identities. Being more realistic, in the natural setting we only
know that “some” unknown number of individuals have the disease. Similarly
there are variations depending on the construction of groups and the testing
plan, i.e., performing tests sequentially one group at a time versus multiple
groups in parallel.

Obviously before we extend our discussion to describe any group testing
algorithm, we first need to formalize different versions of the problem state-
ment. We start with some basic definitions and related jargon.

Let X be a set of size n. Usually n is very large and elements of X rep-
resent the collection of objects on which we want to perform testing. Each
element has a binary status, i.e., it is either defective or not. Defective ele-
ments are also called positive while nondefective elements are called negative.
We call the defective elements defective set or simply defectives for short.

Group: A group is any subset of X, also called a pool. A pool is said
to be a positive pool if it contains at least one defective, and otherwise a
negative pool.

Group Test: A query on a pool is called a group test and reveals whether
the pool is positive or negative. A negative outcome declares that all ele-
ments are nondefective. On the other hand, a positive outcome just confirms
presence of one or more defectives without revealing their identity informa-
tion. In the basic setting, it is assumed that the cost of a query is fixed
regardless of the group size.

Throughout we use words query or test synonymously to always refer to a
group test. We refer to a group testing algorithm as a group testing strategy,
or just a strategy. Next, we discuss statistical and combinatorial models for
the GT problem.

1.2.1 Statistical Model

The probabilistic view requires a probability distribution over the defectives
and named as probabilistic group testing (PGT) problem. The objective is to
minimize the expected number of pools required to reveal the status of the
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entire collection from the binary test outcomes under the assumed probability
model. PGT is most often studied under the binomial probability distribu-
tion, called binomial group testing, i.e., each element is independently defec-
tive with fixed probability r. Binomial distribution is called the standard
assumption for PGT [7].

The entropy lower bound for PGT is that on average for each element we

need r log(1
r
) + (1 − r) log( 1

1−r ) queries, or log(1
r
) + (1 − r) log

( 1
1−r

)

r
queries

per defective. Here and in the following, logarithms are always base 2, if not
said otherwise. For small r this simplifies to log(1

r
) + log e expected queries

per defective. The cut-off point for the statistical model, i.e., the ratio r
below which group testing becomes more efficient than the trivial individual
testing, is due to Ungar [25]. He proved that the individual testing minimizes
the expected queries compared to any PGT if r ≥ 1

2
(3−

√
5).

1.2.2 Combinatorial Model

In the combinatorial group testing (CGT) problem first studied by Li [21],
besides the set X of elements, the number of defectives d ≤ n or an upper
bound on d is also known a priori. Usually d is small compared to n, and
the task is to find the defectives by asking a minimum number of queries to
arbitrarily chosen pools.

Compared to the PGT where the defectives follow a fixed probability
model and tries to reduce the expected number of queries. CGT are strategies
which strive to minimize the query number for worst case scenario. The only
information CGT requires about the defectives is that it is a subset of X
consisting of at most d elements. It should also be noted that in case of
CGT, d does not necessarily grow at a constant rate for increasing value of
n.

CGT problem for exactly d defectives is called the (d, n) group testing
problem whereas named as generalized (d, n) group testing [17] when d rep-
resents an upper bound on the defectives. It has been proved [18] that the
generalized (d, n) problem only requires at most one additional test compared
to the minimum number of tests required when exact d is known. Let t(d, n)
be the minimum number of queries required for the combinatorial model in
the worst case. If there is no defective we only need one test consisting of all
n elements. Whereas, in worst case we may have to test all items individually
when d = n, thus naively we have 1 ≤ t(d, n) ≤ n. We omit ceiling brack-
ets in expressions for simplicity. By the entropy lower bound or so called
information-theoretic lower bound, at least log

(
n
d

)
pools are needed if d out

of n are defective.
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Using Stirling’s approximation we can write.
log
(
n
d

)
≈ n log n− d log d− (n− d) log(n− d) + 1

2
(log n− log d− log(n− d)).

Let x = d
n
, simplifying the above expression we get:

log
(
n
d

)
≈ d(log(n

d
) + f(x)) + c, where f(x) = (1 − 1

x
) log(1 − x) and the

constant term c = 1
2
(log(1

d
)− log(1− x)). The additive term f(x) increases

as the ratio x decreases and attains its maximum value of 1.44 for very small
x. The optimal cut-off point for combinatorial group testing was studied in
[16]. They proved that n − 1 queries are necessary for x ≥ 1

3
if the groups

of at most two elements are allowed. Du and Hwang [10] have presented a
more general proof for slightly larger value, i.e., x ≥ 8

21
. At this cut-off value,

we have f(x) = 1.13, which is still greater than one. Thus, the worst case
lower bound for the CGT problem is t(d, n) ≥ d log(n

d
) + 1.44d. For known

d, the upper bound t(d, n) ≤ log
(
n
d

)
+ d− 1 is proven by Hwang [17] for his

generalized binary splitting algorithm.

1.3 GT Methods and Complexity Bounds

Regardless of the model, testing methods for a GT problem can be adaptive,
nonadaptive or work in a specified number of stages. These testing methods
have been studied extensively and it is well known that optimally achievable
complexity bounds differ based on the choice of a testing method. In either
case, the complexity of a GT strategy is the largest number of pools that are
queried to separate all defectives from the rest.

In the following we are mainly concerned about complexity bounds for
the combinatorial model, though the basic definitions are equally applicable
to both of the group testing models.

1.3.1 Adaptive Strategies

A strategy is called adaptive if group tests are conducted sequentially and
every pool can be chosen based on the outcomes of all previous queries. An
upper bound for adaptive strategies is O(d log n). It follows simply from the
halving strategy, i.e., first query the whole set, if outcome is positive, divide
the elements into two pools of equal size and query one of these. If it is
positive, continue halving with this pool, otherwise with the second half. In
this way, with O(log n) adaptive queries we can identify one defective and
remove it from the set. Repeating it d times we get the upper bound. Since
each iteration starts with a group test on the whole set, the process stops
when no defectives are left. Therefore, in this adaptive strategy we do not
need any prior knowledge of d and essentially d log n queries are sufficient.
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While the lower bound for adaptive strategies is d log(n
d
), a strategy with

O(d log(n
d
)) can be easily devised even for unknown d. This is actually due

to Du and Hwang [9] who first studied the group testing problem when
nothing is known about d beforehand. Inspired from the study of online
algorithms [22], they proposed competitive group testing. Let tA(d|n) denote
the minimum number of queries required by an algorithm A if there are d
unknown defectives. Then A is called c-competitive if there exist constants
c and a such that tA(d|n) ≤ ct(d, n) + a holds for 0 ≤ d < n. Beginning
with [1] [13] [14], substantial work has been done to minimize the constant
factor c, called the competitive ratio. To our best knowledge, the currently
best competitive ratio for deterministic, adaptive strategies is 1.5 [24].

1.3.2 Nonadaptive Strategies

Nonadaptive strategies are on the other extreme, that is, all the pools should
be prepared in advance without knowing the outcome of any test, and then
queried simultaneously. Any nonadaptive strategy requires Ω( d2

log d
log n) pools

even for known d. However, O(d2 log n) pools are sufficient and currently best
factor is 4.28; see [3] and the references therein.

Among others, nonadaptive strategies have applications in molecular bi-
ology experiments where these strategies are often referred to as pooling de-
signs. A complete book has been written on this subject, an interested reader
is referred to [12] for details.

1.3.3 Multistage Strategies

In between the above two, as a third option, there are multistage strategies or
called s-stage strategies where the testing plan is divided into a fixed number
of s stages. A stage refers to one round of simultaneously querying pools.
Stages are treated adaptive while all pools within a stage are prepared prior
to the stage. Here the main advantage is that queries prepared for the next
stage can depend on the outcome of all previous stages thus trying to achieve
optimal query bounds with minimal adaptivity. In the context of stages, non-
adaptive strategies are 1-stage group testing whereas fully adaptive strategies
proceed with one query per stage.

The concept of multistage strategies is not new. The very first method
proposed for the group testing problem by Dorfman [8] was actually a 2-stage
PGT which was later extended to an s-stage strategy for CGT by Li [21].
Recently, multistage strategies have attracted the research community due
to its successful application in the computational molecular biology problems
such as DNA library screening. In these applications mostly 2-stage strategies
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are preferred because the problem size n is huge and a group test may take
several hours[20].

A 2-stage strategy is called trivial if stage 1 is used to find O(d) candidate
elements including all defectives, which are then tested individually in stage
2. These 2-stage strategies require an upper bound d on the number of defec-
tives and guarantee that all the defectives can be identified using cd log(n

d
)

pools, c being some constant. This was first shown in [7] with a high constant
c, more precisely 7.54 d log(n

d
). It was later improved to 4 d log(n

d
) [15] and

currently c = 1.9 for all d, and asymptotically to c = 1.44 as d grows [3].

1.4 Scope of the Thesis

Usually a GT strategy assumes the ideal situation where group tests are
considered error-free, i.e., there are no testing errors and whenever we observe
a positive pool, we are sure about the presence of at least one defective
element. Similarly a negative pool in the absence of testing errors declares
all items as nondefective.

In the discussion so far, we have been actually talking about the error-free
model of group testing. However, in group testing applications, e.g., when
screening DNA libraries, we cannot neglect testing error which presumably
increases with the pool size. Similarly there are other situations where clas-
sical error-free model cannot be applied. There have been studies [4] where
strategies that tolerate testing errors up to certain limits have been devised.
We would not go into details as our current work is not in this direction.

Another source of error called the design error, can affect the outcome of
a group testing strategy. Design error is basically due to the nature of the
group testing strategy itself when it fails to identify all defective elements. A
strategy can be based on deterministic or randomized construction of pools.
While deterministic strategies do not have design error, randomized strate-
gies sometimes allow for a small design error. Generally both deterministic
and randomized strategies aim at minimizing the number of tests, however,
in some cases randomization can achieve better complexity bounds, e.g., if
the output is allowed to be incorrect with a small prescribed error probability.
For example, an O(d log n) query number cannot be achieved deterministi-
cally in one stage [2]. Whereas, there exists a randomized 1-stage strategy
which needs asymptotically only 1.45d log n queries to identify up to d defec-
tives for small fixed error probability [3]. It does not say that a randomized
strategy with guaranteed output promises can not be constructed.

Besides some results for the deterministic case, our contributions are
mainly based on randomized constructions.
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1.5 Main Contributions

In the following, we first motivate for the need of work in our line of research.
Then, we formulate some basic questions and highlight our main results.
Later in the next chapter we will discuss some of them in detail.

1.5.1 Motivation

In the previous section 1.3.1, we studied competitive strategies. The main
result for competitive GT is that despite the ignorance of d, we can devise
GT strategies with a query number within a constant factor of optimum. A
major ingredient of the best known competitive strategies is adaptivity [14]
[24]. In many applications of GT, the time consuming nature of adaptive
strategies is hardly acceptable. Therefore, competitive strategies that run in
small fixed number of stages are desirable.

There are 2-stage strategies which are more favorable in these situations.
However, these strategies suffer again from the restriction that the searcher
must know d, or some close upper bound on d, in advance. Usually in GT
applications d is unknown and some large enough d is assumed as upper
bound. Such a 2-stage strategy guarantees an almost optimal query com-
plexity (within constant factor) relative to this assumed d only. However,
the strategy fails to find all defectives if the assumed bound was too small.
On the other hand, it can be much larger than the true number of defec-
tives in the particular case, leading to unnecessarily many tests. For these
strategies, a good bound on d can save many tests.

Turning towards special situations such as, knowing a priori that there
is a constant defective rate or d grows smaller than n, one may ask, can we
exploit this additional information and what are characteristics of optimal
strategies in these cases.

1.5.2 Research Questions and Results Highlights

We can enjoy using O(d log n) queries without knowing d, but we have to
pay the cost of this freedom in terms of adaptivity. A natural demand is to
ask for GT strategies which are “competitive” as well as “minimal adaptive”.
Now, we turn to the main focus of our research and define the following re-
search question:

Can we take the best of two worlds and perform group testing without prior
knowledge of d in a few stages, using a number of pools close to the information-
theoretic lower bound?
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We distinguish between deterministic and randomized strategies and sepa-
rately state the two versions of the problem as follows:

• Can we achieve competitive group testing that insists on O(d log n) pools
in a constant number of stages using deterministic strategies?

Unfortunately the answer is No. There can not be a deterministic
competitive strategy that succeeds in constant number of stages to
achieve O(d log n) queries. In Paper-I it is proved that a strategy with
above demands would require Ω( log d

log log d
) stages.

• Does there exist randomized constructions for previously unknown d
that work in small fixed stages of parallel queries and closely achieve
optimal query bounds?

Still the answer is No, because the proof in Paper-I is more general
and also extends to randomized constructions with strict demands on
stages and query number.

The key focus of our problem is to derive strategies for the case of unknown
d where the complexity bounds are not influenced when the number of de-
fectives vary a lot between the problem instances. At the same time, to
minimize adaptivity, we can not allow for sequential queries. Then, a natu-
ral idea is that a strategy with such set of demands should start by estimating
the magnitude of defectives in the given problem instance. Hence, to answer
the research question, we can follow the two steps procedure:

• Step-1: Use nonadaptive queries and determine d; exactly or an upper
bound.

• Step-2: Using d from step-1, apply the best known 1- or 2-stage group
testing strategy.

While step-2 just involves selecting an appropriate strategy from the already
established results, finding the number but not the identities of defective
elements has been rarely studied. Therefore, all we need to achieve our goal
is to have a group testing strategy that implements step-1. This problem
can also be of independent interest in situations where one only wants an
estimate of the number of defectives.
Following the above discussion, in order to answer our main question, we
proceed further and redefine it as:

Can we estimate a previously unknown d using nonadaptive queries?

Once again our initial result is negative, i.e., determining d exactly would be
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as hard as the group testing problem itself. However, we have shown that
using O(log n) randomized nonadaptive queries and allowing the strategy to
fail for a small prescribed probability, we can estimate d subject to a constant
factor. Hence, according to the above two steps procedure, we can construct
a randomized 2- or 3-stage competitive group testing strategy with O(d log n)
pools that succeeds with given fixed probability. Results presented so far are
based on Paper-I.

Related to the proposed randomized strategy, next obvious question an
be formulated as follows.

Do we really need O(log n) pools to find an upper bound for d? Moreover,
what are optimal constant factors in the query number and the accuracy of d
depending on the prescribed error probability?

Main result in this direction is that a lower bound of Ω(log n) pools is proved,
for our particular but very natural way of choosing randomized pools for the
1-stage estimator. However, we have reasons to conjecture that Ω(log n) is
also a lower bound for any other randomized pooling design for our problem.

We have also put in quite a lot of efforts to minimize the hidden constant
factors. We give practical methods to derive upper bound tradeoffs between
the hidden constant in the query number O(log n) and the ratio of esti-
mated versus true d for given error probability. To interpret the asymptotic
behaviour, we devise a special method to generate sequence of randomized
pools with a nice invariance property. Paper-II is entirely devoted to this
lower bound proof and finding optimal constant factors.

Next, as part of our recent work in Paper-III, we extend our objective to-
wards minimal-adaptive strategies where the constant factor in the leading
term d log n is as close as possible to 1. Firstly, we consider the situations
where defectives are rare and define the following question:

For d growing slower than n, can we have group testing strategies that work
in a small fixed number of stages and their query complexity asymptotically
reaches the information-theoretic lower bound?

We have shown that there exist randomized 2- or 3-stage strategies where the
complexity bound converges to the entropy lower bound for d growing slowly
with n. Again the construction allows for a small prescribed failure proba-
bility. we also considered the case of unknown d and derived similar bounds
at the cost of one additional stage devoted to find a randomized estimate for
d.
We have also considered a special case of statistical model of group testing,
that is, when defectives appear at some constant rate r = d

n
. Here, as opposed
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to the previous case, now we assume that d grows as fast as n. We again put
the same question but with the new adaption:

For fixed defective rate r, can we have group testing strategies that work
in a small fixed number of stages and their query complexity asymptotically
reaches the entropy lower bound?

For this particular case, we have presented a 4-stage randomized strategy
that asymptotically achieves entropy lower bound for r → 0. Here again, for
unknown r, we can use our nonadaptive defectives estimation strategy.





Chapter 2
Randomized Constructions

The research has been carried out as a joint collaborative work, however,
contributions made by an author vary for certain sections of the produced
papers. The purpose of this chapter is to provide a brief summary of major
results where author of this thesis has contributed substantially. For details of
each section in this chapter, obviously one should consult the corresponding
sections in the papers.

In the following, we divide the discussion into three main sections. First,
we elaborate on the important aspects of the randomized construction that
has been developed to estimate the number of defectives for competitive
minimal-adaptive group testing strategies. In the next section, we will mainly
focus on the particular strategy that we have adopted to find optimal con-
stant factors in our randomized estimate of defectives. These constant factors
are important to determine the minimum competitive ratio for the proposed
strategies. The first two sections are based on our results in Paper-I and
Paper-II.

In the last section, we discuss some results from Paper-III where again
we have proposed randomized group testing strategies which require a fixed
small number of stages. These strategies asymptotically attain entropy lower
bound when defectives grow according to the certain criteria.

15
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2.1 Competitive Group Testing in Only 2 or

3 Stages

Apparently we were the first to study this combination of demands, i.e.,
competitive and minimal-adaptive group testing strategies. As discussed in
previous chapter, the core of this problem lies in deciding on how to tackle
with unknown value of d. Once we have an estimate for d, subsequently
we can use it in any 2-stage O(d log n) strategy that works for known d
to obtain a randomized 3-stage competitive strategy. If we instead append
a probabilistic 1-stage strategy from [3], which requires O(d log n) queries
and succeeds with high probability, we even get a competitive group testing
strategy that needs only 2 stages.

Now, we motivate our particular way to figure out a reasonable strategy
to deal with unknown d.

2.1.1 Why A Randomized Estimate for Unknown d?

In the ideal case, aiming at minimum adaptivity, one would ask for a strategy
that can determine d exactly using nonadaptive queries where the complexity
bound of the strategy depends on d only. Unfortunately, this is not possible.
We made the counterintuitive observation that determining d exactly would
be as hard as the combinatorial group testing itself. Hence, the known lower
complexity bounds for group testing carry over to this seemingly “simpler”
problem. Thus, it would require Ω( d2

log d
log n) nonadaptive queries. Then,

the natural choice is to hope for a method to estimate a close and reliable
upper bound for d.

It was also proved that for unknown d, any deterministic strategy can not
run in constant number of stages, i.e., deterministic competitive group testing
in fixed number of stages is not possible. Therefore, we opted for randomized
constructions. Particularly, we have derived a strategy to estimate d within
a constant factor in 1 stage. We remark that an estimate of d subject to
some constant is necessary for minimal-adaptive competitive group testing.

Our problem with unknown d was also raised in [19]. However, they have
studied the problem only experimentally using several batching strategies.
To our best knowledge, our work [6, 5], is the first to establish rigorous
results.



2.2. ENGINEERING OPTIMAL COMPETITIVE RATIO 17

2.1.2 Outline of the Randomized Strategy

we have developed a randomized strategy using nonadaptive queries to esti-
mate d. The outline of our 1-stage strategy is as follows. To prepare a pool
we fix some probability q, and put every element in the pool with probability
1− q. The pool is negative with probability qd, since this is the probability
that d defectives are outside the pool. We increment 1 − q in small steps
such that we prepare O(log n) random pools of exponentially growing size
and then query them simultaneously. The query results are independent
because we put elements independently in each pool.

Now, pools of sizes smaller than n
d

will most probably be negative. Simi-
larly those having sizes larger than n

d
will most probably be positive. Thus,

such pools convey very little information about the magnitude of d. How-
ever, the cut-off point between negative and positive pool sizes can be used
to estimate d.

We have actually shown that a “conservative bound” d̂ on the number d
of defectives in a set of n elements can be determined by O(log n) randomized
nonadaptive group tests, such that:

• On the one hand, d is underestimated (that is, d̂ < d) with probability
at most ε.

• On the other hand, the expected ratio d̂
d
, in the good case d̂ ≥ d, is

bounded by some constant expected factor c, independently of d.

Thus, d̂ can be further used in any group testing strategy that needs an
upper bound on d: such a strategy fails only with a small probability due to

d̂ < d, but it is also unlikely to waste too many tests due to a large d̂
d
.

2.2 Engineering Optimal Competitive Ratio

Let g be some constant and suppose that we use L = g log n nonadaptive

queries to get the estimate d̂ with expected factor c = d̂
d

for a given error
probability ε. As discussed in section 1.3.3, there are 2-stage group testing
strategies where c′d log n queries are sufficient for known d. Just to remind,
for the best result in this direction, constant factor c′ = 1.9 [3].

Now, for unknown d we can use our randomized estimation to get d̂ = cd
in stage 1 and appending the best known 2-stage strategy afterwards, we
get a 3-stage competitive group testing strategy with g log n + c′cd log n or
( g
d
+c′c)d log n expected queries in total. In GT strategies aiming at unknown

d, the constant factor in the query number is usually called the competitive
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ratio. In our case as discussed above, the competitive ratio is determined by
the factor g

d
+ c′c. For d = 1, the competitive ratio becomes g + c′c while

asymptotically for growing d we have c′c. Since in any case the factor c has
direct impact on the total expected query number, an optimal value for c
can save many pools.

Apparently, at the cost of a large g, we can make c arbitrarily close to 1.
However, the worst-case competitive ratio g + c′c depends on both. There-
fore, to minimize the competitive ratio, an optimal strategy should balance
the number g log n of pools and the expected ratio c. Driven by this, our next
goal was to achieve optimal values of the constants c and g for given error
probability ε. Getting an optimal tradeoff turns out to be a highly nontrivial
problem in itself. We first formalize it as an independent problem and then
present a systematic approach to solve it.

Formalizing the Problem: Now we formally describe the problem of es-
timating d from the test outcomes with the objective to achieve optimal
factors. Let us represent a positive test outcome with 1 and a negative test
outcome with 0. As discussed above in the section 2.1, we fix some q and se-
lect each element independently with the same probability 1−q. In this way,
we characterize each randomized pool by only one number: the probability
qk not to put an element in the kth pool.

For the given problem size n, we fix some value for g, e.g., 1, 1.5, 2, etc.,
and prepare L = g log n pools using corresponding qk probabilities where
k = 0, 1, ..., L − 1. Let s = s0 . . . sL−1 be the binary string representing
nonadaptive query outcomes for our randomized estimator, the problem can
be defined as:

For already fixed L = g log n and the probabilities qk, predict the unknown
number d ∈ [1, n] from the string s of test outcomes such that the expected

accuracy d̂
d

is minimized, but at the same time d̂ < d with probability at most
ε.

The essence of this problem depends on two things. First, how we define
the sequence of probabilities qk. Second and most important, once the pool
sizes are fixed, how we use the information contained in the result string s
to make efficient guess. Remember, test outcomes where pool sizes are fairly
smaller(larger) than n

d
will most probably be negative(positive). Therefore,

a searcher can ignore extreme ends of the binary string s and estimate d from
the pool sizes where test results toggle between 0 and 1. The situation is
depicted in Figure 2.1.

However, the searcher may utilize the entire binary string s. Although
a pool size far from n

d
has a low probability to produce an unexpected out-

come, in case it happens, the searcher needs to quantify its influence on the
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Figure 2.1: A typical Pools versus Test Outcomes Scenario

estimated value of d.

we will discuss a practical method to achieve optimal competitive ratio for
our randomized competitive minimal-adaptive group testing strategies. We
again emphasis that worst case competitive ratio for our 3-stage competitive
GT strategy is determined by the factor g+c′c. Here c′ is the constant factor
due to the 2-stage strategy whereas g and c are the factors which we get as a
result of our randomized estimate for d in stage 1. Now, to derive asymptotic
upper bound, we actually need to find the best possible tradeoff between the

pool number L = g log n and the expected accuracy d̂
d
≤ c. We will also

discuss results for fixed n.

2.2.1 Ad hoc Rules

As first attempts we tried out some ad hoc rules. First, we give an equivalent
definition of our problem, based on which we will construct our particular
rules to solve the problem.

Suppose that qkd denotes the conditional probability that the kth pool is
negative when there are d defectives. Since a pool is negative if and only if
none of the defectives is selected, and elements are selected independently,
this simply yields qkd = qdk and we have d = log qk

log qkd
. Then the task of finding

d̂ can be formulated as follows:

Based on the result string s, the objective is to estimate q̂kd for any fixed
k, i.e., the probability with which kth pool produces a negative outcome.



20 RANDOMIZED CONSTRUCTIONS

Since qk is known, now using our estimate q̂kd instead of the actual qkd, we
can predict the corresponding d̂. Note that a good estimate of q̂kd is crucial.
If it is lesser than the actual, then the predicted d̂ will be larger and we will
observe a large factor c. On the other hand an overestimated q̂kd fails to
predict d̂ ≥ d.

We started with a basic approach and the idea is as follows. We prepare
a number of pools for fixed g = L

logn
using the already defined probabilities

qk. Let us index the pools according to increasing size and perform parallel
queries to get the result string s. Let i be the largest index of a negative
pool. We call it the main index and let qi be the probability with which this
pool was prepared. Now, assuming q̂jd = 1

2
, where j := i−m for some previ-

ously fixed m that depends on the desired failure probability bound, we can
compute our estimate d̂j = 1

log 1
qj

. Initially we considered m = 0, 1, 2, . . . , i.

However, we realized that this approach is not reliable because the position
of the main index can easily be an outlier. To overcome this, we considered
m moving along the negative pool indices only, jumping over the positive
pools.

Similar to the main index approach, we can base our estimate on the index
of the smallest positive pool. Let l denotes this index. Test outcomes between
pool numbers l and i form the window that captures the most informative
queries. In order to get more robust estimates, we have tried different rules
that combine the test outcomes in this window and estimated d accordingly.
We implemented all rules and compared their results empirically. Variant of
main index approach where we loop over negative pool indices only, and some
averaging rule gave the best results. We will discuss the numerical results in
a separate section.

2.2.2 A Linear Programming Formulation

In the previous discussion we mentioned index j := i −m which represents
the pool on which we based our estimation. Choosing most relevant j ac-
tually plays an important role in minimizing the factor c and also observing
the given failure probability constraint. There, for some fixed ε, we empiri-
cally predicted appropriate m based on several runs of the simulation. From
this we learned that we can formulate it as a linear program that returns
probabilities of choosing j for a given error bound and fixed number of pools
and their sizes. For practical purposes also, it is nice to know which c we can
accomplish for a given problem size n, L = g log n pools of predefined sizes
and error probability ε.

This again led us towards an experimental work. We formulated the
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problem of minimizing c as a linear programming (LP) optimization problem.
For given ε and predetermined pools, our LP minimizes the expected upper
bound on c by assigning probabilities of choosing every d ∈ [1, n] against
each possible string s of query outcomes (2L in total). To explore c vs. g
tradeoff, for the same ε we can increment g at fixed steps to get corresponding
c values. For exact LP formulation and related discussion, we refer to section
5 in Paper-II.

In the next section we discuss construction of randomized pools which we
used in our LP followed by the numerical results.

2.2.3 Translation Invariant Pooling Design

Before we go into further details to derive the asymptotic behaviour, we first
elaborate a nice way of choosing qk probabilities. These probabilities deter-
mine the pool sizes for our strategy and provide us an important structure
required to interpret optimal results from the test outcomes.

We can extend over the fact used in ad hoc rules. That is, choosing
qkd = 1

2
, we can compute corresponding value dk of the defective number using

dk = 1
log 1

qk

for all k. In other words, for every qk there exists a corresponding

dk such that the pool would answer 0 or 1 with probability 1
2
. We call such

dk a query point which is actually a function of the corresponding probability
qk.

Our goal is to estimate d for every possible 1 ≤ d ≤ n within some
constant factor c. In the Ω(log n) lower bound proof, it is actually shown
that remote query points (on the logarithmic axis of defective numbers) being
almost surely positive or negative, give too little information about the exact
position of d. It means that we should carefully choose probabilities qk such
that the resulting sequence of query points is within a constant factor of
every d. Intuitively, the ratio c we can achieve is related to the largest
multiplicative gap dk+1

dk
between neighbored query points. Hence, it was also

suggested as part of the lower bound proof that in an optimal pooling design
for our randomized estimation problem, the query points should divide the
logarithmic axis between 1 and n defectives equidistantly.

From the above discussion, it is evident that choice of the probability val-
ues qk is crucial. So far in our discussion of ad hoc rules and LP formulation,
we have not mentioned how we choose these values. There, we assumed that
these probabilities are already defined. Now, here we motivate a specific way
of choosing them. We take some starting value q0 < 1. Then, for some fixed
ratio b > 1, we define corresponding probabilities qk such that every number
is the bth power of the previous number and bth root of the next number.
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Table 2.1: Optimal values c for 1 ≤ d ≤ 32 .
g ε 0.01 ε 0.02 ε 0.03 ε 0.04 ε 0.05

0.5 10.67 9.29 8.41 7.77 7.20
1 5.24 4.46 4.03 3.74 3.55

1.5 4.09 3.58 3.21 2.99 2.82
2 3.69 3.20 2.92 2.78 2.63

2.5 3.61 3.08 2.83 2.59 2.50
3 3.42 3.01 2.81 2.63 2.42

Thus, we have qk−1 = qbk for all k. This gives us translation invariance, i.e.,
query points are placed equidistant on the logarithm axis of the defective
numbers.

Now, we are ready to present some numerical results in the next section.

2.2.4 Numerical Results

For a given problem size n, we actually prepare L = logn
log b

pools, and we

have g = 1
log b

. For the ad hoc rules, extensive simulations done in Matlab
with independent random choices of d and very large n, suggested that for
0.01 ≤ ε ≤ 0.05 asymptotically we have 2.5 ≤ c ≤ 5 for 1.7 ≤ g ≤ 2.7.
Structure of this simple approach does not allow us to observe a single value
c, against fixed ε. However, we observed that value of g when b is somewhere
between 1.3 and 1.5 reveals the best c. For detailed discussion on the results
and comparative performance of different rules that we used to estimate d,
we refer to section 7 of Paper-I.

For the LP implementation, we used GLPK and run it for different pa-
rameter combinations. The results suggest that always some g around 2 gives
optimal results. For some of the LP results we refer to the Table 2.1. GLPK
could not handle higher number of variables n2L arising when n > 32 and
stopped us to go to the limits. But some experiments with another optimiza-
tion formulation of the problem confirms that LP results are already nearly
optimal.

2.2.5 Asymptotic Competitive Ratio

Our estimate c is independent of d and only depends on ε and g. However,
if we fix both ε and g, we observe that c also increases with n. Our LP
formulation works for a given number n, and we could test up to n = 32.
We were unable to find the upper bound for c when n → ∞ using the
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LP approach because of the exponentially increasing number of variables
for increasing n. However, in our randomized approach, the specific way of
choosing pool elements together with some hints that we learned from the
lower bound proof of Ω(log n) for this problem, guided us to make progress
towards obtaining asymptotic value for c.

To calculate the actual limit, we formulated the problem of finding opti-
mal competitive ratio as another nonlinear constraint optimization problem.
The new problem is actually an “infinite extension” of our 1-stage random-
ized estimator, but uses an alternative tool to solve. Still it follows the same
idea of translation invariant query points. According to the lower bound
proof, we actually have L = lnn

ln c
, which means lnn

L
must be a constant, say

u. We call this constant u the query density, i.e., the number of queries per
length unit on the logarithmic axis. We can have translation invariant query
points as: fix u, place queries at points t = ju + v, where j being integer
−∞ < j <∞, v a random shift such that 0 ≤ v < u. We use infinitely many
query points just to obtain upper bounds on c for n → ∞. Nevertheless,
their total influence is bounded and the result is an upper bound for our
randomized estimate. Of course above is a high-level description and the
details can be found in Paper-III.

Now, to find optimal value of c, let g = ln 2
u

. Using g log n queries, we
solve the optimization problem of minimizing c using Matlab. For instance,
fixing ε = 0.01, for very large n, asymptotically we achieved c = 3.69 when
g = 1.5 and similarly c = 2.99 when g = 2. Combining our estimate with
the best result of 1.9d log n for the 2-stage strategy [3] working for known
d, the resultant 3-stage competitive group testing has competitive ratio 7.68
for d = 1, while it tends to 5.68 asymptotically for growing d. Although
the constant factor for the 2-stage strategy is 1.9, we remind that instead of
the actual defective number, here in the query number 1.9d log n, d actually
refers to the assumed upper bound. On the contrary, when we combine it
with our estimate for d, now in our result, e.g., 5.68d log n, d refers to the
actual number of defectives.

2.3 Asymptotically Query-Optimal Strategies

In Paper-III we have used randomization and present different strategies
which asymptotically get closer to the entropy lower bound when the defec-
tives grow within certain limits with respect to the problem size. We discuss
two cases and explain them for known d or defective rate, but we can easily
extend them for the unknown case using our randomized pooling design for
estimation prior to these strategies.
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2.3.1 Defectives Growing Slowly with the Problem Size

According to the best known deterministic 2-stage strategy using O(d log n)
queries for known d, we know that the hidden constant factor is 1.9 for all d
and tends to 1.44 for growing d [3]. Recently in a lower bound proof [23] for
2-stage strategies which insist on O(d log n) queries, it is shown that when
d = nδ, δ < 1, then the hidden constant factor in the query number is strictly
greater than 1. They have actually shown it for the statistical model of GT
with independent random defectives, but asymptotically it extends to the
combinatorial model as well.

Above mentioned lower bound says that we can not have a query-optimal
strategy for the GT problem in 2 stages. However, we have shown that when
defectives grow at a very slow rate than the problem size (e.g., polylogarith-
mic), we can have a 2-stage strategy that succeeds with probability 1− ε for
known d with a constant factor of 1 in the leading term d log n subject to
some minor terms which depend on d and ε only. Thus, asymptotically our
results achieve the information-theoretic lower bound. We refer to Theorems
3 and 6 and related Lemmas discussed in section 2 of Paper-III for the exact
statements and technical details. Here, we describe some important aspects
of our strategy.

Outline of the Strategy: Given n and d, we use onlyO(d log d)+O(d log(1
ε
))

queries in stage 1 to divide the elements with probability 1− ε into disjoint
subsets called cells such that each cell contains at most one defective. Like
pools, we discriminate between positive and negative cells. Now, a pool-
ing design constructed over these cells (instead of the individual elements)
identifies up to d positive cells. Then, in stage 2, we can find the individual
defective elements by asking log n nonadaptive queries to each of the positive
cells in parallel. In stage 1, we make q cells and choose q large enough so that
the separation of defectives into the cells works with the required probability.
Thus, in total our strategy requires d log n queries plus the query complexity
for stage 1.

We discuss stage 1 in detail. To make q cells, we select elements for every
cell uniformly at random and independent of each other. This implies that
a defective element is put in any cell with probability 1

q
. We define collision

be the event Cij such that an unordered pair of defectives elements i and
j, (i 6= j) is present in the same cell. Since elements are assigned to cells
equally likely and the choice of a cell for a defective element is independent
of whether the cell already has a defective or not, the collision probability
Pr(Cij) is simply 1

q
. Because we have d defectives, there are

(
d
2

)
possible

distinct pairs of defectives. We want to choose minimum number q such
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that any collision occurs with probability at most ε1. Collision events are
not independent. Even so, we can apply union bound to bound the collision
probability as follows. Pr[

⋃
i 6=j Cij] ≤

(
d
2

)
1
q
≤ d2

2q
≤ ε1. Choosing q = d2

2ε1
we

get log q = 2 log d+ log( 1
ε1

)− 1.
As described in Theorem 10 of [3], there is a probabilistic pooling design

with success probability at least 1 − ε2, that correctly identifies up to d
defectives from n elements using O(d(log n+log 1

ε2
)) queries. We can use their

result as a black box with parameters d and q, such that each pool in their
design is actually constructed over the cells rather than individual elements.
Overall we get an incorrect result with probability at most ε := ε1 + ε2.
Now, using standard calculations we find that log(1/ε1) + log(1/ε2) under
the constraint ε = ε1 + ε2 is minimum when ε1 = ε2 = ε/2. This concludes
the stage 1 of our strategy and we use at most O(d(log d+ log 1

ε
)) queries.

2.3.2 Defectives Growing at a Constant Rate

Now we consider a strategy for the statistical model of group testing and try
to get an expected query number as close as possible to the entropy lower
bound. The previous result for 2-stage strategy holds asymptotically when d
grows much slower than n whereas here we are interested in studying the case
when defectives grow at a constant rate. We denote the defective rate with
r. As per the entropy lower bound discussed in previous chapter under the
section Statistical Model, for small r we need log(1

r
) + log e expected queries

per defective. In Paper-III, we have shown that we can solve the group
testing problem in 4 stages using (1 + o(1)) log(1/r) queries per defective.
The term o(1) vanishes for r → 0. Actually, we have first reviewed results
for adaptive strategies for the fixed rate r, and already observed that the
o(1) term cannot be avoided.

For details and other technicalities, we refer to the section 4 of Paper-III.
Here we just want to emphasis that result do not follow from the 2-stage
strategy discuss in the previous section. Remember the lower order terms
depending only on d, that we get as the query number of stage 1 there. In
that setting these terms although monotone in d, do not affect the asymptotic
behaviour of the strategy because we have only considered the situation when
there are a few defectives while problem size is huge and the defectives grow
at a much smaller rate compared to the problem size. On the contrary, now
considering a fixed defective rate r, defectives will grow with the problem size
which means we cannot simply ignore terms which grow unbounded with the
defective number. Therefore, we need more stages to avoid them.





Chapter 3
Future Plans

In this chapter, we will briefly outline need and road map of possible direction
for future work.

27
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3.1 Need

From the previous discussions, we realize that optimally attainable bounds
differ based on the testing method and construction of the pools which may
be deterministic or randomized. Results also differ when a strategy assumes
that an upper bound on number d is known while others aim for unknown d.
We have also discussed scenarios when, e.g., allowing for a small prescribed
failure probability ε, randomized strategies guarantee constant number of
queries and stages which otherwise cannot be achieved using deterministic
constructions. There are also differences due to the growth rate of defectives.
For example, in the previous section we observed that a 2-stage randomized
strategy with prescribed success probability can asymptotically achieve the
entropy lower bound for d � n and growing much slower than n, whereas
we can approach the entropy lower bound in 4 stages when d = o(n).

Thus in practice, it becomes difficult to decide which group testing results
from the literature are suitable for the particular needs of a given group test-
ing problem instance. To address this problem, we first need to characterize
the available results with respect to:

• Design Differences: We differentiate between deterministic and ran-
domized strategies. A strategy can be adaptive, nonadaptive or mul-
tistage. In multistage, we further distinguish between strategies which
work in a fixed number s of stages versus strategies with expected num-
ber of stages. Design difference also incorporates the case of known
versus unknown number of defectives (or rate of defectives).

• Reliability Demands: We consider whether query complexity of a
strategy refers to guaranteed or expected upper bound. We need not
only the asymptotic results, but here we also require the exact ex-
pressions for the query number including the minor terms which are
normally neglected during asymptotic analysis. In this way, we will be
able to compare them based on exact query number arising from these
expressions for specific input parameters. With respect to output re-
liability, we study whether the output is always correct, or probably
correct according to a fixed probability of success. A probably correct
strategy may verify its result and report its correctness, obviously at
the cost of more queries. In case of failure, one may choose to run
it until a correct and verified output is achieved. Similarly, reliability
issues also arise due to testing errors. Therefore, complexity bounds
are also different when tests err within certain limits.

From the study of established results for the group testing problem, our
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objective is to sort them out in the light of above points and organize the
results in the form of an easily accessible knowledge base. Later, one can
access this knowledge base and figure out which group testing strategy can
efficiently solve a given problem instance. Our special concern is to focus at
the problem size, i.e., to find out optimal strategies for fixed values of n and
d. Most of the known results primarily present asymptotic query complexity.
They do not say much about the exact query number for fixed problem size,
especially for small n and d and we may need to develop new strategies for
these particular situations.

3.2 Road Map

As first steps, to capture the variations in terms of design differences and
reliability constraints, we have proposed a classification of search strategies
in Paper-I. There we have specified problem constraints in terms of queries,
stages and output reliability. At the moment we have not considered the
noisy group testing, i.e., when tests are not reliable and err with some fixed
probability. Later on, we plan to develop appropriate classification for this
case also.

For a group testing problem instance at hand, we can proceed as follows.
At first, we determine input parameters. Generally input refers to a set
X of n elements. Here it is sufficient to fix an exact value of n. Next
and very important input parameter is the number of defectives d or rate
r of defectives. We will discuss different models depending on the available
information about d or r. Naturally, one model will be for the case of known
d or r. Usually d is unknown and we may only have expected upper bound
for d. Similarly we always do not know exact r. Thus another model could
be for the cases when we have a promised bound for d or r. Here a promised
bound means that in reality the actual number may be more than what is
initially given. For this situation, we will discuss whether a GT strategy
can actually recognize this fact and still find all defectives or not. Once,
input characteristics are specified, we can further move towards the problem
specific design and reliability constraints and narrow down a strategy with
the best matching demands.
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