6 research outputs found

    Neighboring-Pixel-Based Maximum Power Point Tracking Algorithm for Partially Shaded Photovoltaic (PV) Systems

    Get PDF
    In this paper, a neighboring-pixel-based virtual imaging (NPBVI) technique is developed to comprehensively detect the shading conditions on PV arrays. The proposed VI technique is then merged with a probabilistic mechanism of shaded module currents. Finally, a mathematical model is presented, which predicts the current voltage (I-V) region corresponding to the global maximum (GM) of the shaded PV array. The effectiveness of the proposed NPBVI MPPT is validated through numerous experiments that were carried out using a hardware prototype with a 150 W power rating. For the experiments, a PV array consisting of 3 × 2 (Np× Ns ) 20 W PV modules was utilized. The experiments showcase agreement that the proposed method successfully identified the GM region of a partially shaded PV array

    A New FL-MPPT High Voltage DC-DC Converter for PV Solar Application

    Get PDF
    To reduce the effects of global warming, there is an increasing need for renewable energy sources. Several studies have been carried out on photovoltaic (PV) systems to maximize their potential as an alternative electricity generator. However, various power converters for high voltage ratio applications have multiple drawbacks. This research was carried out to develop a power converter topology connected between the PV and the load for the need. In this research, the high step-up DC-DC converter for high-voltage gain conversion ratio and high efficiency is proposed. Furthermore, the fuzzy logic-based Maximum Power Point Tracking (MPPT) technique connected to the power converter was used to maximize the power converted from PV in changing atmospheric conditions. The MPPT control with fuzzy logic controller (FLC) was analysed and compared with the perturb and observe (P&O) algorithm. The results showed that the FLC algorithm could contro

    Improved Restricted Control Set Model Predictive Control (iRCS-MPC) Based Maximum Power Point Tracking of Photovoltaic Module

    No full text

    Factories of the Future

    Get PDF
    Engineering; Industrial engineering; Production engineerin

    Factories of the Future

    Get PDF
    Engineering; Industrial engineering; Production engineerin
    corecore