105,681 research outputs found

    Fast Discrete Consensus Based on Gossip for Makespan Minimization in Networked Systems

    Get PDF
    In this paper we propose a novel algorithm to solve the discrete consensus problem, i.e., the problem of distributing evenly a set of tokens of arbitrary weight among the nodes of a networked system. Tokens are tasks to be executed by the nodes and the proposed distributed algorithm minimizes monotonically the makespan of the assigned tasks. The algorithm is based on gossip-like asynchronous local interactions between the nodes. The convergence time of the proposed algorithm is superior with respect to the state of the art of discrete and quantized consensus by at least a factor O(n) in both theoretical and empirical comparisons

    Improved Bounds on the Randomized and Quantum Complexity of Initial-Value Problems

    Get PDF
    We deal with the problem, initiated in [8], of finding randomized and quantum complexity of initial-value problems. We showed in [8] that a speed-up in both settings over the worst-case deterministic complexity is possible. In the present paper we prove, by defining new algorithms, that further improvement in upper bounds on the randomized and quantum complexity can be achieved. In the H\"older class of right-hand side functions with r continuous bounded partial derivatives, with r-th derivative being a H\"older function with exponent \rho, the \epsilon-complexity is shown to be O((1/\epsilon)^{1/(r+\rho+1/3)}) in the randomized setting, and O((1/\epsilon)^{1/(r+\rho+1/2)}) on a quantum computer (up to logarithmic factors). This is an improvement for the general problem over the results from [8]. The gap still remaining between upper and lower bounds on the complexity is further discussed for a special problem. We consider scalar autonomous problems, with the aim of computing the solution at the end point of the interval of integration. For this problem, we fill up the gap by establishing (essentially) matching upper and lower complexity bounds. We show that the complexity in this case is of order (1/\epsilon)^{1/(r+\rho+1/2)} in the randomized setting, and (1/\epsilon)^{1/(r+\rho+1)} in the quantum setting (again up to logarithmic factors).Comment: 17 pages, extended version (new section added), to appear in the Journal of Complexit

    Reducing the Probability of False Positive Research Findings by Pre-Publication Validation - Experience with a Large Multiple Sclerosis Database

    Get PDF
    *Objective*
We have assessed the utility of a pre-publication validation policy in reducing the probability of publishing false positive research findings. 
*Study design and setting*
The large database of the Sylvia Lawry Centre for Multiple Sclerosis Research was split in two parts: one for hypothesis generation and a validation part for confirmation of selected results. We present case studies from 5 finalized projects that have used the validation policy and results from a simulation study.
*Results*
In one project, the "relapse and disability" project as described in section II (example 3), findings could not be confirmed in the validation part of the database. The simulation study showed that the percentage of false positive findings can exceed 20% depending on variable selection. 
*Conclusion*
We conclude that the validation policy has prevented the publication of at least one research finding that could not be validated in an independent data set (and probably would have been a "true" false-positive finding) over the past three years, and has led to improved data analysis, statistical programming, and selection of hypotheses. The advantages outweigh the lost statistical power inherent in the process
    • …
    corecore