9 research outputs found

    Segmentation-Based Bounding Box Generation for Omnidirectional Pedestrian Detection

    Full text link
    We propose a segmentation-based bounding box generation method for omnidirectional pedestrian detection that enables detectors to tightly fit bounding boxes to pedestrians without omnidirectional images for training. Due to the wide angle of view, omnidirectional cameras are more cost-effective than standard cameras and hence suitable for large-scale monitoring. The problem of using omnidirectional cameras for pedestrian detection is that the performance of standard pedestrian detectors is likely to be substantially degraded because pedestrians' appearance in omnidirectional images may be rotated to any angle. Existing methods mitigate this issue by transforming images during inference. However, the transformation substantially degrades the detection accuracy and speed. A recently proposed method obviates the transformation by training detectors with omnidirectional images, which instead incurs huge annotation costs. To obviate both the transformation and annotation works, we leverage an existing large-scale object detection dataset. We train a detector with rotated images and tightly fitted bounding box annotations generated from the segmentation annotations in the dataset, resulting in detecting pedestrians in omnidirectional images with tightly fitted bounding boxes. We also develop pseudo-fisheye distortion augmentation, which further enhances the performance. Extensive analysis shows that our detector successfully fits bounding boxes to pedestrians and demonstrates substantial performance improvement.Comment: Pre-print submitted to Journal of Multimedia Tools and Application

    People counting using an overhead fisheye camera

    Full text link
    As climate change concerns grow, the reduction of energy consumption is seen as one of many potential solutions. In the US, a considerable amount of energy is wasted in commercial buildings due to sub-optimal heating, ventilation and air conditioning that operate with no knowledge of the occupancy level in various rooms and open areas. In this thesis, I develop an approach to passive occupancy estimation that does not require occupants to carry any type of beacon, but instead uses an overhead camera with fisheye lens (360 by 180 degree field of view). The difficulty with fisheye images is that occupants may appear not only in the upright position, but also upside-down, horizontally and diagonally, and thus algorithms developed for typical side-mounted, standard-lens cameras tend to fail. As the top-performing people detection algorithms today use deep learning, a logical step would be to develop and train a new neural-network model. However, there exist no large fisheye-image datasets with person annotations to facilitate training a new model. Therefore, I developed two people-counting methods that leverage YOLO (version 3), a state-of-the-art object detection method trained on standard datasets. In one approach, YOLO is applied to 24 rotated and highly-overlapping windows, and the results are post-processed to produce a people count. In the other approach, regions of interest are first extracted via background subtraction and only windows that include such regions are supplied to YOLO and post-processed. I carried out extensive experimental evaluation of both algorithms and showed their superior performance compared to a benchmark method

    Connected Attribute Filtering Based on Contour Smoothness

    Get PDF

    Connected Attribute Filtering Based on Contour Smoothness

    Get PDF
    A new attribute measuring the contour smoothness of 2-D objects is presented in the context of morphological attribute filtering. The attribute is based on the ratio of the circularity and non-compactness, and has a maximum of 1 for a perfect circle. It decreases as the object boundary becomes irregular. Computation on hierarchical image representation structures relies on five auxiliary data members and is rapid. Contour smoothness is a suitable descriptor for detecting and discriminating man-made structures from other image features. An example is demonstrated on a very-high-resolution satellite image using connected pattern spectra and the switchboard platform

    A framework for automated landmark recognition in community contributed image corpora

    Get PDF
    Any large library of information requires efficient ways to organise it and methods that allow people to access information efficiently and collections of digital images are no exception. Automatically creating high-level semantic tags based on image content is difficult, if not impossible to achieve accurately. In this thesis a framework is presented that allows for the automatic creation of rich and accurate tags for images with landmarks as the main object. This framework uses state of the art computer vision techniques fused with the wide range of contextual information that is available with community contributed imagery. Images are organised into clusters based on image content and spatial data associated with each image. Based on these clusters different types of classifiers are* trained to recognise landmarks contained within the images in each cluster. A novel hybrid approach is proposed combining these classifiers with an hierarchical matching approach to allow near real-time classification and captioning of images containing landmarks

    Nonlinear acoustics of water-saturated marine sediments

    Get PDF

    Shortest Route at Dynamic Location with Node Combination-Dijkstra Algorithm

    Get PDF
    Abstract— Online transportation has become a basic requirement of the general public in support of all activities to go to work, school or vacation to the sights. Public transportation services compete to provide the best service so that consumers feel comfortable using the services offered, so that all activities are noticed, one of them is the search for the shortest route in picking the buyer or delivering to the destination. Node Combination method can minimize memory usage and this methode is more optimal when compared to A* and Ant Colony in the shortest route search like Dijkstra algorithm, but can’t store the history node that has been passed. Therefore, using node combination algorithm is very good in searching the shortest distance is not the shortest route. This paper is structured to modify the node combination algorithm to solve the problem of finding the shortest route at the dynamic location obtained from the transport fleet by displaying the nodes that have the shortest distance and will be implemented in the geographic information system in the form of map to facilitate the use of the system. Keywords— Shortest Path, Algorithm Dijkstra, Node Combination, Dynamic Location (key words

    Collective analog bioelectronic computation

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student submitted PDF version of thesis.Includes bibliographical references (p. 677-710).In this thesis, I present two examples of fast-and-highly-parallel analog computation inspired by architectures in biology. The first example, an RF cochlea, maps the partial differential equations that describe fluid-membrane-hair-cell wave propagation in the biological cochlea to an equivalent inductor-capacitor-transistor integrated circuit. It allows ultra-broadband spectrum analysis of RF signals to be performed in a rapid low-power fashion, thus enabling applications for universal or software radio. The second example exploits detailed similarities between the equations that describe chemical-reaction dynamics and the equations that describe subthreshold current flow in transistors to create fast-and-highly-parallel integrated-circuit models of protein-protein and gene-protein networks inside a cell. Due to a natural mapping between the Poisson statistics of molecular flows in a chemical reaction and Poisson statistics of electronic current flow in a transistor, stochastic effects are automatically incorporated into the circuit architecture, allowing highly computationally intensive stochastic simulations of large-scale biochemical reaction networks to be performed rapidly. I show that the exponentially tapered transmission-line architecture of the mammalian cochlea performs constant-fractional-bandwidth spectrum analysis with O(N) expenditure of both analysis time and hardware, where N is the number of analyzed frequency bins. This is the best known performance of any spectrum-analysis architecture, including the constant-resolution Fast Fourier Transform (FFT), which scales as O(N logN), or a constant-fractional-bandwidth filterbank, which scales as O (N2).(cont.) The RF cochlea uses this bio-inspired architecture to perform real-time, on-chip spectrum analysis at radio frequencies. I demonstrate two cochlea chips, implemented in standard 0.13m CMOS technology, that decompose the RF spectrum from 600MHz to 8GHz into 50 log-spaced channels, consume < 300mW of power, and possess 70dB of dynamic range. The real-time spectrum analysis capabilities of my chips make them uniquely suitable for ultra-broadband universal or software radio receivers of the future. I show that the protein-protein and gene-protein chips that I have built are particularly suitable for simulation, parameter discovery and sensitivity analysis of interaction networks in cell biology, such as signaling, metabolic, and gene regulation pathways. Importantly, the chips carry out massively parallel computations, resulting in simulation times that are independent of model complexity, i.e., O(1). They also automatically model stochastic effects, which are of importance in many biological systems, but are numerically stiff and simulate slowly on digital computers. Currently, non-fundamental data-acquisition limitations show that my proof-of-concept chips simulate small-scale biochemical reaction networks at least 100 times faster than modern desktop machines. It should be possible to get 103 to 106 simulation speedups of genome-scale and organ-scale intracellular and extracellular biochemical reaction networks with improved versions of my chips. Such chips could be important both as analysis tools in systems biology and design tools in synthetic biology.by Soumyajit Mandal.Ph.D
    corecore