1,099 research outputs found

    Data Reductions and Combinatorial Bounds for Improved Approximation Algorithms

    Full text link
    Kernelization algorithms in the context of Parameterized Complexity are often based on a combination of reduction rules and combinatorial insights. We will expose in this paper a similar strategy for obtaining polynomial-time approximation algorithms. Our method features the use of approximation-preserving reductions, akin to the notion of parameterized reductions. We exemplify this method to obtain the currently best approximation algorithms for \textsc{Harmless Set}, \textsc{Differential} and \textsc{Multiple Nonblocker}, all of them can be considered in the context of securing networks or information propagation

    New Algorithms for Mixed Dominating Set

    Get PDF
    A mixed dominating set is a collection of vertices and edges that dominates all vertices and edges of a graph. We study the complexity of exact and parameterized algorithms for \textsc{Mixed Dominating Set}, resolving some open questions. In particular, we settle the problem's complexity parameterized by treewidth and pathwidth by giving an algorithm running in time O∗(5tw)O^*(5^{tw}) (improving the current best O∗(6tw)O^*(6^{tw})), as well as a lower bound showing that our algorithm cannot be improved under the Strong Exponential Time Hypothesis (SETH), even if parameterized by pathwidth (improving a lower bound of O∗((2−ε)pw)O^*((2 - \varepsilon)^{pw})). Furthermore, by using a simple but so far overlooked observation on the structure of minimal solutions, we obtain branching algorithms which improve both the best known FPT algorithm for this problem, from O∗(4.172k)O^*(4.172^k) to O∗(3.510k)O^*(3.510^k), and the best known exponential-time exact algorithm, from O∗(2n)O^*(2^n) and exponential space, to O∗(1.912n)O^*(1.912^n) and polynomial space.Comment: This paper has been accepted to IPEC 202

    Twin-Width and Polynomial Kernels

    Get PDF
    We study the existence of polynomial kernels for parameterized problems without a polynomial kernel on general graphs, when restricted to graphs of bounded twin-width. It was previously observed in [Bonnet et al., ICALP\u2721] that the problem k-Independent Set allows no polynomial kernel on graph of bounded twin-width by a very simple argument, which extends to several other problems such as k-Independent Dominating Set, k-Path, k-Induced Path, k-Induced Matching. In this work, we examine the k-Dominating Set and variants of k-Vertex Cover for the existence of polynomial kernels. As a main result, we show that k-Dominating Set does not admit a polynomial kernel on graphs of twin-width at most 4 under a standard complexity-theoretic assumption. The reduction is intricate, especially due to the effort to bring the twin-width down to 4, and it can be tweaked to work for Connected k-Dominating Set and Total k-Dominating Set with a slightly worse bound on the twin-width. On the positive side, we obtain a simple quadratic vertex kernel for Connected k-Vertex Cover and Capacitated k-Vertex Cover on graphs of bounded twin-width. These kernels rely on that graphs of bounded twin-width have Vapnik-Chervonenkis (VC) density 1, that is, for any vertex set X, the number of distinct neighborhoods in X is at most c?|X|, where c is a constant depending only on the twin-width. Interestingly the kernel applies to any graph class of VC density 1, and does not require a witness sequence. We also present a more intricate O(k^{1.5}) vertex kernel for Connected k-Vertex Cover. Finally we show that deciding if a graph has twin-width at most 1 can be done in polynomial time, and observe that most graph optimization/decision problems can be solved in polynomial time on graphs of twin-width at most 1

    Structural Parameterizations for Two Bounded Degree Problems Revisited

    Get PDF
    • …
    corecore