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Abstract
We revisit two well-studied problems, Bounded Degree Vertex Deletion and Defective
Coloring, where the input is a graph G and a target degree ∆ and we are asked either to edit or
partition the graph so that the maximum degree becomes bounded by ∆. Both problems are known
to be parameterized intractable for the most well-known structural parameters, such as treewidth.

We revisit the parameterization by treewidth, as well as several related parameters and present
a more fine-grained picture of the complexity of both problems. In particular:

Both problems admit straightforward DP algorithms with table sizes (∆+2)tw and (χd(∆+1))tw

respectively, where tw is the input graph’s treewidth and χd the number of available colors.
We show that, under the SETH, both algorithms are essentially optimal, for any non-trivial
fixed values of ∆, χd, even if we replace treewidth by pathwidth. Along the way, we obtain an
algorithm for Defective Coloring with complexity quasi-linear in the table size, thus settling
the complexity of both problems for treewidth and pathwidth.
Given that the standard DP algorithm is optimal for treewidth and pathwidth, we then go on to
consider the more restricted parameter tree-depth. Here, previously known lower bounds imply
that, under the ETH, Bounded Vertex Degree Deletion and Defective Coloring cannot
be solved in time no( 4√td) and no(

√
td) respectively, leaving some hope that a qualitatively faster

algorithm than the one for treewidth may be possible. We close this gap by showing that neither
problem can be solved in time no(td), under the ETH, by employing a recursive low tree-depth
construction that may be of independent interest.
Finally, we consider a structural parameter that is known to be restrictive enough to render
both problems FPT: vertex cover. For both problems the best known algorithm in this setting
has a super-exponential dependence of the form vcO(vc). We show that this is optimal, as an
algorithm with dependence of the form vco(vc) would violate the ETH. Our proof relies on a new
application of the technique of d-detecting families introduced by Bonamy et al. [ToCT 2019].

Our results, although mostly negative in nature, paint a clear picture regarding the complexity of
both problems in the landscape of parameterized complexity, since in all cases we provide essentially
matching upper and lower bounds.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases ETH, Parameterized Complexity, SETH

Digital Object Identifier 10.4230/LIPIcs.ESA.2023.77

Related Version Full Version: https://arxiv.org/abs/2304.14724

Funding This work is partially supported by ANR projects ANR-21-CE48-0022 (S-EX-AP-PE-AL)
and ANR-18-CE40-0025-01 (ASSK).

1 Introduction

Parameterized complexity and in particular the study of structural parameters such as
treewidth is one of the most well-developed approaches for dealing with NP-hard problems
on graphs. Treewidth is of course one of the major success stories of this field, as a plethora
of hard problems become fixed-parameter tractable when parameterized by this parameter.
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Naturally, this success has motivated the effort to trace the limits of the algorithmic power
of treewidth by attempting to understand what are the problems for which treewidth-based
techniques cannot work.

When could the treewidth toolbox fail? One common scenario that seems to be shared by
a multitude of problems which are W[1]-hard1 parameterized by treewidth is when a natural
dynamic programming algorithm does exist, but the DP is forced to store for each vertex of
a bag in the tree decomposition an arbitrarily large integer – for example a number related
to the degree of the vertex. Our goal in this paper is to study situations of this type and
pose the natural question of whether one can do better than the “obvious” DP, by obtaining
an algorithm with better running time, even at the expense of looking at a parameter more
restrictive than treewidth.

Given the above, we focus on two problems which are arguably among the most natural
representatives of our scenario: Bounded Degree Vertex Deletion and Defective
Coloring. In both problems the input is a graph G and a target degree ∆ and we are
asked, in the case of Bounded Degree Vertex Deletion to delete a minimum number
of vertices so that the remaining graph has degree at most ∆, and in the case of Defective
Coloring to partition G into a minimum number of color classes such that each class
induces a graph of degree at most ∆. Both problems are well-studied, as they generalize
classical problems (Vertex Cover and Coloring respectively) and we review some of
the previous work below. However, the most relevant aspect of the two problems for our
purposes is the following: (i) both problems admit DP algorithms with complexity of the
form nO(tw) and (ii) both problems are W[1]-hard parameterized by treewidth; in fact, for
Defective Coloring, it is even known that assuming the ETH it cannot be solved in time
no(tw) [5].

Since the nO(tw) algorithms follow from standard DP techniques, it becomes a natural
question whether we can do better. Does a better algorithm exist? Realistically, one could
hope for one of two things: either an algorithm which still handles the problem parameterized
by treewidth and in view of the aforementioned lower bound only attempts a fine-grained
improvement in the running time; or an algorithm which is qualitatively faster at the expense
of using a more restricted parameter. The results of this paper give strong negative evidence
for both questions: if we parameterize by treewidth (and even by pathwidth) the running
time of the standard DP is optimal under the SETH even for all fixed values of the other
relevant parameters (∆ and the number of colors χd); while if we parameterize by more
restrictive parameters, such as tree-depth and vertex cover, we obtain lower bound results
(under the ETH) which indicate that the best algorithm is still essentially to run a form of
the standard treewidth DP, even in these much more restricted cases. Our results thus paint
a complete picture of the structurally parameterized complexity of these two problems and
indicate that the standard DP is optimal in a multitude of restricted cases.

Our contribution in more detail. Following standard techniques, the two problems admit
DP algorithms with tables of sizes (∆ + 2)tw and (χd(∆ + 1))tw respectively. Our first
result is a collection of reductions proving that, assuming the SETH, no algorithm can
improve upon these dynamic programs, even for pathwidth. More precisely, we show that no
algorithm can solve Bounded Degree Vertex Deletion and Defective Coloring
in time (∆ + 2 − ε)pwnO(1) and (χd(∆ + 1) − ε)pwnO(1) respectively, for any ε > 0 and for

1 We assume the reader is familiar with the basics of parameterized complexity theory, as given in standard
textbooks [14].
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any combination of fixed values of ∆, χd (except the combination ∆ = 0 and χd = 2, which
trivially makes Defective Coloring polynomial-time solvable). Our reductions follow the
general strategy pioneered by Lokshtanov, Marx, and Saurabh [37] and indeed generalize
their results for Vertex Cover and Coloring (which already covered the case ∆ = 0).
The main difficulty here is being able to cover all values of the secondary parameters and
for technical reasons we are forced to give separate versions of our reductions to cover the
case ∆ = 1 for both problems. Along the way we note that, even though an algorithm with
complexity (χd∆)O(tw)nO(1) was given for Defective Coloring in [5], it was not known if
an algorithm with complexity (χd(∆ + 1))twnO(1) (that is, with a quasi-linear dependence
on the table size) is possible. For completeness, we settle this by providing an algorithm of
this running time, using the FFT technique proposed by Cygan and Pilipczuk [17]. Taking
also into account the Bounded Degree Vertex Deletion algorithm of running time
(∆ + 2)twnO(1) given by van Rooij [48], we have exactly matching upper and lower bounds
for both problems, for both treewidth and pathwidth.

Given that the results above show rather conclusively that the standard DP is the best
algorithm for parameters treewidth and pathwidth, we then move on to a more restricted
case: tree-depth. We recall that graphs of tree-depth k are a proper subclass of graphs
of pathwidth k, therefore one could reasonably hope to obtain a better algorithm for this
parameter. This hope may further be supported by the fact that known lower bounds do
not match the complexity of the standard algorithm. More precisely, the W[1]-hardness
reduction given for Bounded Degree Vertex Deletion parameterized by tree-depth
by Ganian, Klute, and Ordyniak [27] has a quartic blow-up, thus only implying that no
no( 4√td) algorithm is possible; while the reduction given for Defective Coloring in [5] has
a quadratic blow-up, only implying that no no(

√
td) algorithm is possible (in both cases under

the ETH). Our contribution is to show that both reductions can be replaced by more efficient
reductions which are linear in the parameter; we thus establish that neither problem can be
solved in time no(td), implying that the treewidth-based algorithm remains (qualitatively)
optimal even in this restricted case. One interesting aspect of our reductions is that, rather
than using a modulator to a low tree-depth graph, which is common in such reductions, we
use a recursive construction that leverages the full power of the parameter and may be of
further use in tightening other lower bounds for the parameter tree-depth.

Finally, we move on to a more special case, parameterizing both problems by vertex cover.
Both problems are FPT for this parameter and, since vertex cover is very restrictive as a
parameter, one would hope that, finally, we should be able to obtain an algorithm that is more
clever than the treewidth-based DP. Somewhat disappointingly, the known FPT algorithms
for both problems have complexity vcO(vc)nO(1) [5], and the super-exponential dependence on
the parameter is due to the fact that both algorithms are simple win/win arguments which,
in one case, just execute the standard treewidth DP. We show that this is justified, as neither
problem can be solved in time vco(vc)nO(1) (under the ETH), meaning that the algorithm that
blindly executes the treewidth-based DP in some cases is still (qualitatively) best possible.
We obtain our result by applying the technique of d-detecting families, introduced by Bonamy
et al. [10]. Our results indicate that parameterization by vertex cover is a domain where this
promising, but currently under-used, technique may find more applications in parameterized
complexity.

Related work. Both Bounded Degree Vertex Deletion and Defective Coloring
are well-studied problems with a rich literature. Bounded Degree Vertex Deletion
finds application in a multitude of areas, ranging from computational biology [21] to some
related problems in voting theory [7, 9], and its dual problem, called s-Plex Detection,
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has numerous applications in social network analysis [4, 39, 40]. Various approximation
algorithms are known [24, 25, 43]. The problem has also been extensively studied under
the scope of parameterized complexity. It is W[2]-hard for unbounded values of ∆ and
parameter k (the value of the optimal) [21], while it admits a linear-size kernel parameterized
by k [21, 50], for any fixed ∆ ≥ 0; numerous FPT algorithms have been presented in the
latter setting [40, 41, 49]. FPT approximation algorithms were given for Bounded Degree
Vertex Deletion in [34] and [38]. As for Defective Coloring, which also appears in the
literature as Improper Coloring, it was introduced almost 40 years ago [1, 13]. The main
motivation behind this problem comes from the field of telecommunications, where the colors
correspond to available frequencies and the goal is to assign them to communication nodes; a
small amount of interference between neighboring nodes may be tolerable, which is modeled
by the parameter ∆. There have been plenty of works on the problem (see [2, 3, 5, 6, 12, 30]
and the references therein), especially on unit disk graphs and various classes of grids.

The previous work for both problems that is most relevant to us focuses on their
parameterized complexity for structural parameters, such as treewidth. In this setting,
Bounded Degree Vertex Deletion was one of the first problems to be discovered
to be W[1]-hard parameterized by treewidth [8], though the problem does become FPT
parameterized by tw + ∆ or tw + k. This hardness result was more recently improved by
Ganian et al. [27], who showed that Bounded Degree Vertex Deletion is W[1]-hard
parameterized by tree-depth and feedback vertex set. Defective Coloring was shown
to be W[1]-hard parameterized by tree-depth (and hence pathwidth and treewidth) in [5].
However, [5] gave a hardness reduction for pathwidth that is linear in the parameter, and
hence implies a no(pw) lower bound for Defective Coloring under the ETH, but a hardness
reduction for tree-depth that is quadratic (implying only a no(

√
td) lower bound). Similarly,

the reduction given by [27] for Bounded Degree Vertex Deletion parameterized by
tree-depth is quartic in the parameter, as it goes through an intermediate problem (a variant
of Subset Sum), implying only a no( 4√td) lower bound. Defective Coloring is known to
be FPT parameterized by vertex cover using a simple win/win argument which applies the
treewidth-based DP in one case (if ∆ > vc, then the graph is always 2-colorable; otherwise
the standard DP algorithm runs in FPT time), and the same is true for Bounded Degree
Vertex Deletion (if ∆ ≤ vc, we can use the aforementioned FPT algorithm for parameters
tw + ∆, else assume that k < vc, as otherwise the problem is trivial, follow the reduction
of [8] to Vector Dominating Set [44] and notice that at most vc vertices have degree
greater than ∆). Hence, the best algorithms for both problems for this parameter have
complexity vcO(vc)nO(1).

The fine-grained analysis of the complexity of structural parameterizations, such as by
treewidth, is an active field of research. The technique of using the SETH to establish
tight running time lower bounds was pioneered by Lokshtanov, Marx, and Saurabh [37].
Since then, tight upper and lower bounds are known for a multitude of problems for
parameterizations by treewidth and related parameters, such as pathwidth and clique-width
[15, 16, 19, 20, 23, 26, 28, 29, 31, 42, 47]. One difficulty of the results we present here is that
we need to present a family of reductions: one for each fixed value of ∆ and χd. There are a
few other problems for which families of tight lower bounds are known, such as k-Coloring,
for which the correct dependence is ktw for treewidth [37] and (2k − 2)cw for clique-width [35]
for all k ≥ 3; distance r-Dominating Set, for which the correct dependence is (2r +1)tw [11]
and (3r + 1)cw [32], for all r ≥ 1; and distance d-Independent Set, for which the correct
dependence is dtw [33]. In all these cases, the optimal algorithm is the “natural” DP, and
our results for Bounded Degree Vertex Deletion and Defective Coloring fit this
pattern.
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Table 1 Lower bounds established in the current work. The results of the first row are under
SETH, while all the rest under ETH.

Parameter Bounded Degree Vertex Deletion Defective Coloring
pathwidth + ∆ O⋆((∆ + 2 − ε)pw) O⋆((χd · (∆ + 1) − ε)pw)
treedepth no(td) no(td)

vertex cover vco(vc)nO(1) vco(vc)nO(1)

Even though the previous work mentioned above may make it seem that our SETH-based
lower bounds are not surprising, it is important to stress that it is not a given that the
naïve DP should be optimal for our problems. In particular, Bounded Degree Vertex
Deletion falls into a general category of (σ, ρ)-domination problems, which were studied
recently in [22] (we refer the reader there for the definition of (σ, ρ)-domination). One of the
main results of that work was to show that significant improvements over the basic DP are
indeed possible in some cases, and in particular when one of σ, ρ is cofinite. Since Bounded
Degree Vertex Deletion is the case where σ = {0, . . . , ∆} and ρ = N (that is, ρ is
co-finite), our result falls exactly in the territory left uncharted by [22], where more efficient
algorithms could still be found (and where indeed [22] did uncover such algorithms for some
values of σ, ρ).

Organization. In Section 2 we discuss the general preliminaries, followed by the lower
bounds for Bounded Degree Vertex Deletion in Sections 3–5, and the conclusion
in Section 6. Proofs marked with (⋆), as well as all the results pertaining to Defective
Coloring, can be found in the full version of the paper.

2 Preliminaries

Throughout the paper we use standard graph notation [18], and we assume familiarity with
the basic notions of parameterized complexity [14]. All graphs considered are undirected
without loops, unless explicitly stated otherwise. For a graph G = (V, E) and two integers
χd ≥ 1, ∆ ≥ 0, we say that G admits a (χd, ∆)-coloring if one can partition V into χd sets
such that the graph induced by each set has maximum degree at most ∆. In that case,
Defective Coloring is the problem of deciding, given G, χd, ∆, whether G admits a
(χd, ∆)-coloring. For x, y ∈ Z, let [x, y] = {z ∈ Z | x ≤ z ≤ y}, while [x] = [1, x]. Standard
O⋆ notation is used to suppress polynomial factors. For function f : A → B, and A′ ⊆ A,
let f(A′) =

∑
a∈A′ f(a). For the pathwidth bounds, we use the notion of mixed search

strategy [45], where an edge is cleared by either placing a searcher on both of its endpoints or
sliding one along the edge. We rely on a weaker form of the ETH, which states that 3-SAT
on instances with n variables and m clauses cannot be solved in time 2o(n+m).

In k-Multicolored Clique, we are given a graph G = (V, E) and a partition of V

into k independent sets V1, . . . , Vk, each of size n, and we are asked to determine whether
G contains a k-clique. It is well-known that this problem does not admit any f(k)no(k)

algorithm, where f is any computable function, unless the ETH is false [14].
In q-CSP-B, we are given a Constraint Satisfaction (CSP) instance with n variables

and m constraints. The variables take values in a set Y of size B, i.e. |Y | = B. Each
constraint involves at most q variables and is given as a list of satisfying assignments for these
variables, where a satisfying assignment is a q-tuple of values from the set Y given to each of
the q variables. The following result was shown by Lampis [35] to be a natural consequence
of the SETH, and has been used in the past for various hardness results [19, 20, 29].
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▶ Theorem 1 ([35]). For any B ≥ 2 it holds that, if the SETH is true, then for all ε > 0,
there exists a q such that n-variable q-CSP-B cannot be solved in time O⋆((B − ε)n).

3 Treewidth and Maximum Degree Lower Bounds

In this section we present tight lower bounds on the complexity of solving both Bounded
Degree Vertex Deletion and Defective Coloring parameterized by the treewidth of
the input graph plus the target degree. The latter result can be found in the full version of
the paper.

Both reductions are similar in nature: we start from an instance ϕ of q-CSP-B, and
produce an equivalent instance on a graph of pathwidth pw = n + O(1), where n denotes
the number of variables of ϕ. An interesting observation however, is that for both problems,
we have to distinguish between the case where ∆ = 1 and ∆ ≥ 2; the whole construction
becomes much more complicated in the second case.

3.1 Bounded Degree Vertex Deletion
In the following, we will present a reduction from q-CSP-B to Bounded Degree Vertex
Deletion, for any fixed ∆ ≥ 1, where ∆ = B − 2. In that case, if there exists a O⋆((∆ +
2 − ε)pw) algorithm for Bounded Degree Vertex Deletion, where ε > 0, then there
exists a O⋆((B − ε)n) algorithm for q-CSP-B, for any constant q, which due to Theorem 1
results in SETH failing.

Our reduction is based on the construction of “long paths” of Block gadgets, that are
serially connected in a path-like manner. Each such “path” corresponds to a variable of the
given formula, while each column of this construction is associated with one of its constraints.
Intuitively, our aim is to embed the Bn possible variable assignments into the (∆ + 2)tw

states of some optimal dynamic program that would solve the problem on our constructed
instance.

Below, we present a sequence of gadgets used in our reduction. The aforementioned
block gadgets, which allow a solution to choose among ∆ + 2 reasonable choices, are the
main ingredient. Notice that these gadgets will differ significantly depending on whether
∆ is equal to 1 or not. We connect these gadgets in a path-like manner that ensures that
choices remain consistent throughout the construction, and connect constraint gadgets in
different “columns” of the constructed grid in a way that allows us to verify if the choice
made represents a satisfying assignment, without increasing the graph’s treewidth.

▶ Theorem 2. For any constant ε > 0, there is no O⋆((3−ε)pw) algorithm deciding Bounded
Degree Vertex Deletion for ∆ = 1, where pw denotes the input graph’s pathwidth,
unless the SETH is false.

Proof. Fix some positive ε > 0 for which we want to prove the theorem. We will reduce
q-CSP-3, for some q that is a constant that only depends on ε, to Bounded Degree
Vertex Deletion for ∆ = 1 in a way that ensures that if the resulting Bounded Degree
Vertex Deletion instance could be solved in time O⋆((3 − ε)pw), then we would obtain an
algorithm for q-CSP-3 that would contradict the SETH. To this end, let ϕ be an instance of
q-CSP-3 of n variables X = {xi | i ∈ [n]} taking values over the set Y = [3] and m constraints
C = {cj | j ∈ [m]}. For each constraint we are given a set of at most q variables which are
involved in this constraint and a list of satisfying assignments for these variables, the size of
which is denoted by s : C → [3q], i.e. s(cj) ≤ 3q = O(1) denotes the number of satisfying
assignments for constraint cj . We will construct in polynomial time an equivalent instance
I = (G, k) of Bounded Degree Vertex Deletion for ∆ = 1, where pw(G) ≤ n + O(1).
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Block and Variable Gadgets. For every variable xi and every constraint cj , construct a
path of 3 vertices p1

i,j , p2
i,j and p3

i,j , which comprises the block gadget B̂i,j . Intuitively, we will
map the deletion of py

i,j with an assignment where xi receives value y. Next, for j ∈ [m − 1],
we add an edge between p3

i,j and p1
i,j+1, thus resulting in n paths P1, . . . , Pn of length 3m,

called variable gadgets.

P1

P2

...

Pn

p1
1,1 p2

1,1 p3
1,1 p1

1,2 p2
1,2 p3

1,2

. . .

. . .

. . .

Figure 1 Sequences of block gadgets comprise the variable gadgets.

Constraint Gadget. This gadget is responsible for determining constraint satisfaction, based
on the choices made in the rest of the graph. For constraint cj , construct the constraint
gadget Ĉj as follows:

construct a clique of s(cj) vertices vj
1, . . . , vj

s(cj), and fix an arbitrary one-to-one mapping
between those vertices and the satisfying assignments of cj ,
attach to each vertex vj

ℓ a leaf lj
ℓ ,

if variable xi is involved in the constraint cj and vj
ℓ corresponds to an assignment where

xi has value y ∈ Y , add an edge between vj
ℓ and py

i,j .

Let graph G0 be the graph containing all variable gadgets Pi as well as all the constraint
gadgets Ĉj , for i ∈ [n] and j ∈ [m]. To construct graph G, introduce κ = 2n + 1 copies
G1, . . . , Gκ of G0, such that they are connected sequentially as follows: for i ∈ [n] and
j ∈ [κ − 1], add an edge between p3

i,m(Gj) and p1
i,1(Gj+1), where py

i,j(Ga) denotes the vertex
py

i,j of graph Ga. We refer to the block gadget B̂i,j , to the variable gadget Pi and to the
constraint gadget Ĉj of Ga as B̂Ga

i,j , P Ga
i and ĈGa

j respectively. Let Pi denote the path
resulting from P G1

i , . . . , P Gκ
i . Let k′ =

∑m
j=1(s(cj) − 1 + n) = m · n +

∑m
j=1(s(cj) − 1), and

set k = κ · k′.

▶ Lemma 3. (⋆) If ϕ is satisfiable, then there exists S ⊆ V (G) such that G−S has maximum
degree at most 1 and |S| ≤ k.

▶ Lemma 4. (⋆) If there exists S ⊆ V (G) such that G − S has maximum degree at most 1
and |S| ≤ k, then ϕ is satisfiable.

▶ Lemma 5. (⋆) It holds that pw(G) ≤ n + O(1).

Therefore, in polynomial time, we can construct a graph G, of pathwidth pw(G) ≤
n + O(1) due to Lemma 5, such that, due to Lemmas 3 and 4, deciding whether there exists
S ⊆ V (G) of size |S| ≤ k and G − S has maximum degree at most 1 is equivalent to deciding
whether ϕ is satisfiable. In that case, assuming there exists a O⋆((3 − ε)pw(G)) algorithm
for Bounded Degree Vertex Deletion for ∆ = 1, one could decide q-CSP-3 in time
O⋆((3 − ε)pw(G)) = O⋆((3 − ε)n+O(1)) = O⋆((3 − ε)n) for any constant q, which contradicts
the SETH due to Theorem 1. ◀
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▶ Theorem 6. (⋆) For any constant ε > 0, there is no O⋆((∆ + 2 − ε)pw) algorithm deciding
Bounded Degree Vertex Deletion for ∆ ≥ 2, where pw denotes the input graph’s
pathwidth, unless the SETH is false.

4 Tree-depth Lower Bounds

In this section we present lower bounds on the complexity of solving Bounded Degree
Vertex Deletion and Defective Coloring, when parameterized by the tree-depth of
the input graph. The latter result can be found in the full version of the paper.

The common starting point of both reductions is an instance of k-Multicolored
Clique, where k is a power of 2. Our main technical contribution is a recursive construction
which allows us to keep the tree-depth of the constructed graph linear with respect to k,
which we briefly sketch here. The main idea behind the construction is the following:

First, we describe a choice gadget Ĉi, which encodes, for every independent set Vi of the
graph, which vertex of Vi is part of the clique.
Afterwards, we describe how one can make a copy of such a choice gadget, by using only
a constant number of vertices, while at the same time guaranteeing that the choices
between the instances of the choice gadget remain the same.
Lastly, we define an adjacency gadget Â(i1, i2, i′

1, i′
2), whose purpose is to verify that, for

the given choices of vertices, there exists an edge between Vi and Vi′ , for any i ∈ [i1, i2]
and i′ ∈ [i′

1, i′
2]. Initially we deal with the case where i1 = i2 and i′

1 = i′
2, while ensuring

that the tree-depth of the construction is constant. For the other case, the gadget is
constructed in two steps. Firstly, it contains all the choice gadgets Ĉi and Ĉi′ . Secondly,
it contains 4 instances of adjacency gadgets, due to the upper and lower half of [i1, i2]
and [i′

1, i′
2], while the occurrences of the choice gadgets in those are copies of the choice

gadgets introduced in the first step. The fact that k is a power of 2 guarantees that the
upper and lower half of both [i1, i2] and [i′

1, i′
2] are well defined.

Then, by removing the vertices used in the copy gadgets, it follows that all adjacency gadgets
constructed in the second step become disconnected. Therefore, the tree-depth of the whole
construction is given by a recursive formula of the form T (k) = O(k) + T (k/2).

4.1 Bounded Degree Vertex Deletion

▶ Theorem 7. For any computable function f , if there exists an algorithm that solves
Bounded Degree Vertex Deletion in time f(td)no(td), where td denotes the tree-depth
of the input graph, then the ETH is false.

Proof. Let (G, k) be an instance of k-Multicolored Clique, such that every vertex of G

has a self loop, i.e. {v, v} ∈ E(G), for all v ∈ V (G). Recall that we assume that G is given to
us partitioned into k independent sets V1, . . . , Vk, where Vi = {vi

1, . . . , vi
n}. Assume without

loss of generality that k = 2z, for some z ∈ N (one can do so by adding dummy independent
sets connected to all the other vertices of the graph). Moreover, let Ei1,i2 ⊆ E(G) denote
the edges of G with one endpoint in Vi1 and the other in Vi2 . Set ∆ = n3. We will construct
in polynomial time a graph H of tree-depth td(H) = O(k) and size |V (H)| = kO(1) · nO(1),
such that there exists S ⊆ V (H), |S| ≤ k′ and H − S has maximum degree at most ∆, for
some k′, if and only if G has a k-clique.
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Ĉi1

...

Ĉ⌊ i1+i2
2 ⌋

Ĉ⌈ i1+i2
2 ⌉

...

Ĉi2

Ĉi′
1

· · · Ĉ⌊
i′
1+i′

2
2

⌋ Ĉ⌈
i′
1+i′

2
2

⌉
· · · Ĉi′

2

Ĉi1

...

Ĉ⌊ i1+i2
2 ⌋

Ĉ⌈ i1+i2
2 ⌉

...

Ĉi2

Ĉi′
1

...

Ĉ⌊
i′
1+i′

2
2

⌋

Ĉi′
1

...

Ĉ⌊
i′
1+i′

2
2

⌋

Ĉi1

...

Ĉ⌊ i1+i2
2 ⌋

Ĉ⌈ i1+i2
2 ⌉

...

Ĉi2

Ĉ⌈
i′
1+i′

2
2

⌉
...

Ĉi′
2

Ĉ⌈
i′
1+i′

2
2

⌉
...

Ĉi′
2

Figure 2 Adjacency gadget Â(i1, i2, i′
1, i′

2). Dashed lines denote copies.

Choice Gadget. For an independent set Vi, we construct the choice gadget Ĉi as depicted
in Figure 3a. We first construct independent sets Ĉp

i = {vi,p
1 , . . . , vi,p

n }, where p ∈ {h, l}.
Afterwards, we connect vi,h

j and vi,l
j with a vertex qi

j , and add to the latter ∆ − 1 leaves.
Intuitively, we will consider an one-to-one mapping between the vertex vi

j of Vi belonging to
a supposed k-clique of G and the deletion of exactly j vertices of Ĉl

i and n − j from Ĉh
i .

Copy Gadget. Given two instances I1, I2 of a choice gadget Ĉi, when we say that we
connect them with a copy gadget, we introduce two vertices g1 and g2, attach to each of those
∆ − n leaves, and lastly add an edge between g1 (respectively, g2) with the vertices of Ĉl

i of
instance I1 (respectively, I2), as well as the vertices of Ĉh

i of instance I2 (respectively, I1).

Edge Gadget. Let e = {vi1
j1

, vi2
j2

} ∈ Ei1,i2 be an edge of G. Construct the edge gadget Êe as
depicted in Figure 4, where every vertex ci

j has ∆ leaves attached.

Adjacency Gadget. For i1 ≤ i2 and i′
1 ≤ i′

2, we define the adjacency gadget Â(i1, i2, i′
1, i′

2)
as follows:

Consider first the case when i1 = i2 and i′
1 = i′

2. Let the adjacency gadget contain
instances of the edge gadgets Êe, for e ∈ Ei1,i′

1 , the choice gadgets Ĉi1 and Ĉi′
1
, as well

as vertices ℓl
i1,i′

1
, ℓh

i1,i′
1
, rl

i1,i′
1

and rh
i1,i′

1
. Add edges between

ℓl
i1,i′

1
and Ĉl

i1
,

ℓh
i1,i′

1
and Ĉh

i1
,

rl
i1,i′

1
and Ĉl

i′
1
,

rh
i1,i′

1
and Ĉh

i′
1
.
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vi,l
1

· · ·
vi,l

n

vi,h
1

· · ·
vi,h

n

qi
1

· · ·
qi

n

Ĉl
i

Ĉh
i

(a) Choice gadget Ĉi.

· · ·

· · ·

Ĉl
i

Ĉh
i

I1

· · ·

· · ·

Ĉl
i

Ĉh
i

I2

g1

g2

(b) Making a copy of a choice gadget Ĉi.

Figure 3 Black vertices have ∆ − 1 and gray ∆ − n leaves attached.

r

ci1
1si1

1

...

ci1
j1

si1
j1

ci1
j1+1

si1
j1+1

...
ci1

nsi1
n

ci2
1 si2

1

...

ci2
j2

si2
j2

ci2
j2+1

si2
j2+1

...
ci2

n si2
n

Figure 4 Edge gadget Êe for e = {vi1
j1

, vi2
j2

}. Black vertices have ∆ leaves attached.

If e = {vi1
j1

, v
i′

1
j2

} ∈ Ei1,i′
1 , then add the following edges adjacent to Êe:

ℓl
i1,i′

1
with si1

κ , for κ ∈ [j1],

ℓh
i1,i′

1
with si1

κ , for κ ∈ [j1 + 1, n],

rl
i1,i′

1
with s

i′
1

κ , for κ ∈ [j2],

rh
i1,i′

1
with s

i′
1

κ , for κ ∈ [j2 + 1, n].

Let τ(x), where x ∈ {ℓl
i1,i′

1
, ℓh

i1,i′
1
, rl

i1,i′
1
, rh

i1,i′
1
}, denote the number of neighbors of x

belonging to some edge gadget. Attach ∆ − τ(x) leaves to vertex x.
Now consider the case when i1 < i2 and i′

1 < i′
2. Then, let Â(i1, i2, i′

1, i′
2) contain choice

gadgets Ĉi and Ĉi′ , where i ∈ [i1, i2] and i′ ∈ [i′
1, i′

2], which we will refer to as the original
choice gadgets of Â(i1, i2, i′

1, i′
2), as well as the adjacency gadgets

Â(i1,
⌊

i1+i2
2

⌋
, i′

1,
⌊

i′
1+i′

2
2

⌋
),

Â(i1,
⌊

i1+i2
2

⌋
,
⌈

i′
1+i′

2
2

⌉
, i′

2),

Â(
⌈

i1+i2
2

⌉
, i2, i′

1,
⌊

i′
1+i′

2
2

⌋
),

Â(
⌈

i1+i2
2

⌉
, i2,

⌈
i′

1+i′
2

2

⌉
, i′

2).

Lastly, we connect with a copy gadget any choice gadgets Ĉi and Ĉi′ appearing in said
adjacency gadgets, with the corresponding original choice gadget Ĉi and Ĉi′ . Notice that
then, every original choice gadget is taking part in two copy gadgets.

Let graph H be the adjacency gadget Â(1, k, 1, k). Notice that it holds that |V (H)| =
(n · k)O(1). Let β = 2k(2k − 1), and set k′ = 2(|E(G)| − kn) · 2n + kn · 2n + 2

(
k
2
)

+ k + n · β.
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Ĉl
i1

· · ·

Ĉh
i1

· · ·

ℓl
i1,i′

1

ℓh
i1,i′

1

Êe1

...

Êeλ

rl
i1,i′

1

rh
i1,i′

1

Ĉl
i′

1· · ·

Ĉh
i′

1

· · ·

Figure 5 Adjacency gadget Â(i1, i1, i′
1, i′

1), where Ei1,i′
1 = {ei | i ∈ [λ]}. Black vertices have

leaves attached.

▶ Lemma 8. (⋆) H has the following properties:
The number of instances of choice gadgets present in H is β,
The number of instances of edge gadget Êe present in H, where e = {vi1

j1
, vi2

j2
} ∈ E(G), is

one if i1 = i2, and two otherwise.

▶ Lemma 9. (⋆) It holds that td(H) = O(k).

▶ Lemma 10. (⋆) If G contains a k-clique, then there exists S ⊆ V (H), with |S| ≤ k′, such
that H − S has maximum degree at most ∆.

▶ Lemma 11. (⋆) If there exists S ⊆ V (H), with |S| ≤ k′, such that H − S has maximum
degree at most ∆, then G contains a k-clique.

Therefore, in polynomial time, we can construct a graph H, of tree-depth td = O(k)
due to Lemma 9, such that, due to Lemmas 10 and 11, deciding whether there exists
S ⊆ V (H) of size |S| ≤ k′ and H − S has maximum degree at most ∆ = n3 is equivalent to
deciding whether G has a k-clique. In that case, assuming there exists a f(td)|V (H)|o(td)

algorithm for Bounded Degree Vertex Deletion, where f is any computable function,
one could decide k-Multicolored Clique in time f(td)|V (H)|o(td) = g(k) · no(k), for some
computable function g, which contradicts the ETH. ◀

5 Vertex Cover Lower Bounds

In this section we present lower bounds on the complexity of solving Bounded Degree
Vertex Deletion when parameterized by the vertex cover of the input graph. An analogous
lower bound is shown for Defective Coloring, which has been deferred to the appendix
due to space restrictions. In both cases, we start from a 3-SAT instance of n variables, and
produce an equivalent instance where the input graph has vertex cover O(n/ log n), hence
any algorithm solving the latter problem in time vco(vc)nO(1) would refute the ETH. As a
consequence of the above, already known algorithms for both of these problems are essentially
optimal. We start by presenting some necessary tools used in both of these reductions, and
then prove the stated results for Bounded Degree Vertex Deletion.

5.1 Preliminary Tools
We first define a constrained version of 3-SAT, called (3,4)-XSAT. This variant is closely
related with the (3,4)-SAT problem [46] which asks whether a given formula ϕ is satisfiable,
where ϕ is a 3-SAT formula each clause of which contains exactly 3 different variables and
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each variable occurs in at most 4 clauses. As observed by Bonamy et al. [10], a corollary of
Tovey’s work [46] is that there is no 2o(n) algorithm for (3,4)-SAT unless the ETH is false,
where n denotes the number of variables of the formula. Here we prove an analogous lower
bound for (3,4)-XSAT. Subsequently, by closely following Lemma 3.2 from [10], we present a
way to partition the formula’s variables and clauses into groups such that variables appearing
in clauses of the same clause group belong to different variable groups.

(3,4)-XSAT
Input: A 3-SAT formula ϕ every clause of which contains exactly 3 distinct variables
and each variable appears in at most 4 clauses.
Task: Determine whether there exists an assignment to the variables of ϕ such that each
clause has exactly one True literal.

▶ Theorem 12. (⋆) (3,4)-XSAT cannot be decided in time 2o(n), where n denotes the number
of variables of the input formula, unless the ETH fails.

We proceed by proving that, given a (3,4)-XSAT instance, we can partition the variables
and clauses of the formula into groups such that variables appearing in clauses of the same
clause group belong to different variable groups.

▶ Lemma 13. (⋆) Let ϕ be an instance of (3,4)-XSAT, where V denotes the set of its n

variables and C the set of its clauses. Moreover, let b ≤
√

n. One can produce in time nO(1)

a partition of ϕ’s variables into nV disjoint sets V1, . . . , VnV
of size at most b as well as

a partition of its clauses into nC disjoint sets C1, . . . , CnC
of size at most

√
n, for some

integers nV = O(n/b) and nC = O(
√

n), such that, for any i ∈ [nC ], any two variables
appearing in clauses of Ci belong to different variable subsets.

▶ Definition 14. A d-detecting family is a set of subsets of a finite set U that can be used to
distinguish between different functions f, g : U → {0, . . . , d − 1}. Therefore, if f ̸= g, there
exists U ′ ⊆ U such that f(U ′) ̸= g(U ′) and U ′ belongs to said family.

Lindström [36] has provided a deterministic construction of sublinear, d-detecting families,
while Bonamy et al. [10] were the first to use them in the context of computational complexity,
proving tight lower bounds for the Multicoloring problem under the ETH. The following
theorem will be crucial towards proving the stated lower bounds.

▶ Theorem 15 ([36]). For every constant d ∈ N and finite set U , there is a d-detecting
family F on U of size 2|U |

logd |U | · (1 + o(1)). Moreover, F can be constructed in time polynomial
in |U |.

5.2 Bounded Degree Vertex Deletion
Let ϕ be an instance of (3,4)-XSAT of n variables. Assume without loss of generality that n

is a power of 4 (this can be achieved by adding dummy variables to the instance if needed).
Making use of Lemma 13, one can obtain in time nO(1) the following:

a partition of ϕ’s variables into subsets V1, . . . , VnV
, where |Vi| ≤ log n and nV =

O(n/ log n),
a partition of ϕ’s clauses into subsets C1, . . . , CnC

, where |Ci| ≤
√

n and nC = O(
√

n),
where any two variables occurring in clauses of the same clause subset belong to different
variable subsets. For i ∈ [nC ], let {Ci,1, . . . , Ci,ni

F
} be a 4-detecting family of subsets of Ci

for some ni
F = O(

√
n/ log n), produced in time nO(1) due to Theorem 15. Moreover, let

nF = maxnC
i=1 ni

F . Define ∆ = n3 and k = nV . We will construct a graph G = (V, E) such
that there exists S ⊆ V (G) of size |S| ≤ k and G − S has maximum degree at most ∆ if and
only if there exists an assignment such that every clause of ϕ has exactly one True literal.
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Choice Gadget. For each variable subset Vi, we define the choice gadget graph Gi as follows:
introduce vertices κi, λi and vj

i , where j ∈ [n],
add edges {κi, vj

i } and {λi, vj
i }, for all j ∈ [n],

attach sufficiently many leaves to κi and λi such that their degree is ∆ + 1.
Let Vi = {vj

i | j ∈ [n]}, for i = 1, . . . , nV . We fix an arbitrary one-to-one mapping so
that every vertex of Vi corresponds to a different assignment for the variables of Vi. Since
2|Vi| ≤ n, there are sufficiently many vertices to uniquely encode all the different assignments
of Vi. Let V = V1 ∪ . . . ∪ VnV

denote the set of all such vertices.

Clause Gadget. For i ∈ [nC ], let Ci be a clause subset and {Ci,1, . . . , Ci,ni
F

} its 4-detecting
family. For every subset Ci,j of the 4-detecting family, introduce vertices ci,j and c′

i,j . Add
an edge between ci,j and vq

p if there exists variable x ∈ Vp such that x occurs in some clause
c ∈ Ci,j , and vq

p corresponds to an assignment of Vp that satisfies c. Due to Lemma 13,
ci,j has exactly |Ci,j | · 3n

2 such edges: there are exactly 3|Ci,j | different variables appearing
in clauses of Ci,j , each belonging to a different variable subset, and for each such variable,
half the assignments of the corresponding variable subset result in the satisfaction of the
corresponding clause of Ci,j . Attach to ci,j a sufficient number of leaves such that its total
degree is ∆ + |Ci,j |. Moreover, for v ∈ V, let v ∈ N(c′

i,j) if v /∈ N(ci,j). Notice that then, it
holds that N(ci,j)∪N(c′

i,j) ⊇ V , while N(ci,j)∩N(c′
i,j) = ∅. Lastly, attach to c′

i,j a sufficient
number of leaves such that its total degree is ∆ + (k − |Ci,j |).

Let I = (G, ∆, k) be an instance of Bounded Degree Vertex Deletion.

▶ Lemma 16. (⋆)It holds that vc(G) = O(n/ log n).

▶ Lemma 17. (⋆) If ϕ is a Yes instance of (3,4)-XSAT, then I is a Yes instance of Bounded
Degree Vertex Deletion.

▶ Lemma 18. (⋆) If I is a Yes instance of Bounded Degree Vertex Deletion, then ϕ

is a Yes instance of (3,4)-XSAT.

We can now prove the main theorem of this section.

▶ Theorem 19. (⋆) There is no vco(vc)nO(1) time algorithm for Bounded Degree Vertex
Deletion, where vc denotes the size of the minimum vertex cover of the input graph, unless
the ETH fails.

6 Conclusion

In this work, we have examined in depth the complexity of Bounded Degree Vertex
Deletion and Defective Coloring under the perspective of parameterized complexity.
In particular, we have precisely determined the complexity of both problems parameterized
by some of the most commonly used structural parameters. As a direction for future research,
we consider the question of whether we could obtain a no(fvs) lower bound for Bounded
Degree Vertex Deletion as well as for Defective Coloring when χd = 2, where fvs
denotes the size of the minimum feedback vertex set of the input graph.
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