41 research outputs found

    AN EFFECTIVE REVERSIBLE DATA HIDING METHOD BASED ON PIXEL-VALUE-ORDERING

    Get PDF
    This paper presents a new effective reversible data hiding method based on pixel-value-ordering (iGePVO-K) which is improvement of a recent GePVO-K method that recently is considered as a PVO-used method having highest embedding capacity. In comparison with GePVO-K method, iGePVO-K has the following advantages. First, the embedding capacity of the new method is higher than that of GePVO-K method by using data embedding formulas reasonably and reducing the location map size. Second, for embedding data, in the new method, each pixel value is modified at most by one, while in GePVO-K method, each pixel value may be modified by two. In fact, in the GePVO-K method, the largest pixels are modified by two for embedding bits 1 and by one for bits 0. This is also true for the smallest pixels. Meanwhile, in the proposed method, the largest pixels are modified by one for embedding bits 1 and are unchanged if embedding bits 0. Therefore, the stego-image quality in proposed method is better than that in GePVO-K method. Theoretical analysis and experiment results show that the proposed method has higher embedding capacity and better stego image quality than GePVO-K method

    Pixel grouping of digital images for reversible data hiding

    Get PDF
    Pixel Grouping (PG) of digital images has been a key consideration in recent development of the Reversible Data Hiding (RDH) schemes. While a PG kernel with neighborhood pixels helps compute image groups for better embedding rate-distortion performance, only horizontal neighborhood pixel group of size 1×3 has so far been considered. In this paper, we formulate PG kernels of sizes 3×1, 2×3 and 3×2 and investigate their effect on the rate-distortion performance of a prominent PG-based RDH scheme. Specially, a kernel of size 3×2 (or 2×3) that creates a pair of pixel-trios having triangular shape and offers a greater possible correlation among the pixels. This kernel thus can be better utilized for improving a PG-based RDH scheme. Considering this, we develop and present an improved PG-based RDH scheme and the computational models of its key processes. Experimental results demonstrated that our proposed RDH scheme offers reasonably better  embedding rate-distortion performance than the original scheme

    Enhancement Of Pixel Value Ordering Based Data Hiding By Row Block Partition

    Get PDF
    The development of information and communication technology that support digital data transmission such as text, image, audio and video gives several effects. One of them is data security that becomes the main priority during the transmission process. Pixel-Value-Ordering (PVO) which one of data hiding methods can be implemented to achieve the requirement. It embeds data on maximum pixel and minimum pixel in a blok which is a part of the carrier image. However, PVO has capacity a problem, that only 2 bits per block can be hidden. To handle this problem, we propose a new approach by dividing blocks dinamically based on its complexity. These blocks are grouped into 4: smooth block, semi-smooth block, normal block and rough block. Using this approach, the stego capacity can be improved up to 2.6 times in average of previous method by keeping the quality stego more than 65 dB for all testing image

    ENHANCEMENT OF PIXEL VALUE ORDERING BASED DATA HIDING BY ROW BLOCK PARTITION

    Get PDF
    The development of information and communication technology that support digital data transmission such as text, image, audio and video gives several effects. One of them is data security that becomes the main priority during the transmission process. Pixel-Value-Ordering (PVO) which one of data hiding methods can be implemented to achieve the requirement. It embeds data on maximum pixel and minimum pixel in a blok which is a part of the carrier image. However, PVO has capacity a problem, that only 2 bits per block can be hidden. To handle this problem, we propose a new approach by dividing blocks dinamically based on its complexity. These blocks are grouped into 4: smooth block, semi-smooth block, normal block and rough block. Using this approach, the stego capacity can be improved up to 2.6 times in average of  previous method by keeping the quality stego more than 65 dB for all testing image

    A Survey on Reversible Image Data Hiding Using the Hierarchical Block Embedding Technique

    Get PDF
    The use of graphics for data concealment has significantly advanced the fields of secure communication and identity verification. Reversible data hiding (RDH) involves hiding data within host media, such as images, while allowing for the recovery of the original cover. Various RDH approaches have been developed, including difference expansion, interpolation techniques, prediction, and histogram modification. However, these methods were primarily applied to plain photos. This study introduces a novel reversible image transformation technique called Block Hierarchical Substitution (BHS). BHS enhances the quality of encrypted images and enables lossless restoration of the secret image with a low Peak Signal-to-Noise Ratio (PSNR). The cover image is divided into non-overlapping blocks, and the pixel values within each block are encrypted using the modulo function. This ensures that the linear prediction difference in the block remains consistent before and after encryption, enabling independent data extraction without picture decryption. In order to address the challenges associated with secure multimedia data processing, such as data encryption during transmission and storage, this survey investigates the specific issues related to reversible data hiding in encrypted images (RDHEI). Our proposed solution aims to enhance security (low Mean Squared Error) and improve the PSNR value by applying the method to encrypted images

    A Survey on Recent Reversible Watermarking Techniques

    Get PDF
    Watermarking is a technique to protect the copyright of digital media such as image, text, music and movie. Reversible watermarking is a technique in which watermark can be removed to completely restore the original image. Reversible watermarking of digital content allows full extraction of the watermark along with the complete restoration of the original image. For the last few years, reversible watermarking techniques are gaining popularity due to its applications in important and sensitive areas like military communication, healthcare, and law-enforcement. Due to the rapid evolution of reversible watermarking techniques, a latest review of recent research in this field is highly desirable. In this survey, the performances of different latest reversible watermarking techniques are discussed on the basis of various characteristics of watermarking

    Generalized PVO‐based dynamic block reversible data hiding for secure transmission using firefly algorithm

    Get PDF
    In this paper, we proposed a novel generalized pixel value ordering–based reversible data hiding using firefly algorithm (GPVOFA). The sequence of minimum and maximum number pixels value has been used to embed the secret data while prediction and modification are held on minimum, and the maximum number of pixel blocks is used to embed the secret data into multiple bits. The host image is divided into the size of noncoinciding dynamic blocks on the basis of firefly quadtree partition, whereas rough blocks are divided into a larger size; moreover, providing more embedding capacity used small flat blocks size and optimal location in the block to write the information. Our proposed method becomes able to embed large data into a host image with low distortion. The rich experimental results are better, as compared with related preceding arts

    Peningkatan Kualitas Citra Stego pada Adaptive Pixel Block Grouping Reduction Error Expansion dengan Variasi Model Scanning pada Pembentukan Kelompok Piksel

    Get PDF
    Kebutuhan komunikasi yang terus bertambah dan ditandai dengan meningkatnya jumlah IP traffic dari 744 EB menjadi 1.164 EB menjadikan keamanan sebagai salah satu kebutuhan utama dalam menjaga kerahasiaan data. Adaptive Pixel Block Grouping Reduction Error Expansion (APBG-REE) sebagai salah satu metode data hiding dapat diterapkan untuk memenuhi kebutuhan tersebut. Metode ini akan membagi citra carrier menjadi blok-blok dan membentuknya menjadi kelompok-kelompok piksel. Hasil dari proses ini akan dimanfaatkan untuk menyembunyikan data rahasia. Namun, metode ini memiliki kekurangan, yaitu belum diketahuinya metode scanning terbaik dalam pembentukan kelompok piksel untuk menciptakan citra stego dengan kualitas tinggi. Untuk mengatasi masalah ini, kami mengusulkan 4 mode (cara) scanning berdasarkan arah scanning tersebut. Mode scanning tersebut memberikan hasil yang berbeda-beda untuk masing-masing citra stego yang diujikan. Namun berdasarkan hasil uji coba, setiap mode scanning mampu menjaga kualitas citra stego diatas 57,5 dB. Hasil ini akan meningkat seiring dengan berkurangnya jumlah shifted pixel yang terbentuk.   Abstract The need of communication has increased continously which is represented by the rise of number of IP traffic, from 744 EB to 1.164 EB. This has made data security one of the main requirements in terms of securing secret data. Adaptive Pixel Block Grouping Reduction Error Expansion (APBG-REE) as one of data hiding methods can be implemented to meet that requirement. It divides the carrier image into blocks which are then used as pixel groups. The result of this process is to be a space for secret data. However, this method has a problem in the scanning when creating pixel groups to generate a high quality stego image. To handle this problem, we propose four scanning models base on its direction. This means that the scanning can be done row-by-row or column-by-column. Base on the experiment, we find that those modes deliver various results and each of them is able to maintain the stego quality of more than 57,5 dB. This result increases along with the decreasing the number of shifted pixels

    Reversible Data Hiding scheme using modified Histogram Shifting in Encrypted Images for Bio-medical images

    Get PDF
    Existing Least Significant Bit (LSB) steganography system is less robust and the stego-images can be corrupted easily by attackers. To overcome these problems Reversible data hiding (RDH) techniques are used. RDH is an efficient way of embedding confidential message into a cover image. Histogram expansion and histogram shifting are effective techniques in reversible data hiding. The embedded message and cover images can be extracted without any distortion. The proposed system focuses on implementation of RDH techniques for hiding data in encrypted bio-medical images without any loss. In the proposed techniques the bio-medical data are embedded into cover images by reversible data hiding technique. Histogram expansion and histogram shifting have been used to extract cover image and bio- medical data. Each pixel is encrypted by public key of Paillier cryptosystem algorithm. The homomorphic multiplication is used to expand the histogram of the image in encrypted domain. The histogram shifting is done based on the homomorphic addition and adjacent pixel difference in the encrypted domain. The message is embedded into the host image pixel difference. On receiving encrypted image with additional data, the receiver using his private key performs decryption. As a result, due to histogram expansion and histogram shifting embedded message and the host image can be recovered perfectly. The embedding rate is increased in host image than in existing scheme due to adjacency pixel difference
    corecore