15 research outputs found

    Packing and Covering with Non-Piercing Regions

    Get PDF
    In this paper, we design the first polynomial time approximation schemes for the Set Cover and Dominating Set problems when the underlying sets are non-piercing regions (which include pseudodisks). We show that the local search algorithm that yields PTASs when the regions are disks [Aschner/Katz/Morgenstern/Yuditsky, WALCOM 2013; Gibson/Pirwani, 2005; Mustafa/Raman/Ray, 2015] can be extended to work for non-piercing regions. While such an extension is intuitive and natural, attempts to settle this question have failed even for pseudodisks. The techniques used for analysis when the regions are disks rely heavily on the underlying geometry, and do not extend to topologically defined settings such as pseudodisks. In order to prove our results, we introduce novel techniques that we believe will find applications in other problems. We then consider the Capacitated Region Packing problem. Here, the input consists of a set of points with capacities, and a set of regions. The objective is to pick a maximum cardinality subset of regions so that no point is covered by more regions than its capacity. We show that this problem admits a PTAS when the regions are k-admissible regions (pseudodisks are 2-admissible), and the capacities are bounded. Our result settles a conjecture of Har-Peled (see Conclusion of [Har-Peled, SoCG 2014]) in the affirmative. The conjecture was for a weaker version of the problem, namely when the regions are pseudodisks, the capacities are uniform, and the point set consists of all points in the plane. Finally, we consider the Capacitated Point Packing problem. In this setting, the regions have capacities, and our objective is to find a maximum cardinality subset of points such that no region has more points than its capacity. We show that this problem admits a PTAS when the capacity is unity, extending one of the results of Ene et al. [Ene/Har-Peled/Raichel, SoCG 2012]

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF

    29th International Symposium on Algorithms and Computation: ISAAC 2018, December 16-19, 2018, Jiaoxi, Yilan, Taiwan

    Get PDF

    LIPIcs, Volume 244, ESA 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 244, ESA 2022, Complete Volum

    Campaigning Via LPs: Solving Blotto and Beyond

    Get PDF
    The competition between the Republican and the Democrat nominees in the U.S presidential election is known as Colonel Blotto in game theory. In the classical Colonel Blotto game -- introduced by Borel in 1921 -- two colonels simultaneously distribute their troops across multiple battlefields. The outcome of each battlefield is determined by a winner-take-all rule, independently of other battlefields. In the original formulation, the goal of each colonel is to win as many battlefields as possible. The Colonel Blotto game and its extensions have been used in a wide range of applications from political campaigns (exemplified by the U.S presidential election) to marketing campaigns, from (innovative) technology competitions, to sports competitions. For almost a century, there have been persistent efforts for finding the optimal strategies of the Colonel Blotto game, however it was left unanswered whether the optimal strategies are polynomially tractable. In this thesis, we present several algorithms for solving Blotto games in polynomial time and will discuss their applications in practice

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum
    corecore