30,130 research outputs found

    Learning Adaptive Discriminative Correlation Filters via Temporal Consistency Preserving Spatial Feature Selection for Robust Visual Tracking

    Get PDF
    With efficient appearance learning models, Discriminative Correlation Filter (DCF) has been proven to be very successful in recent video object tracking benchmarks and competitions. However, the existing DCF paradigm suffers from two major issues, i.e., spatial boundary effect and temporal filter degradation. To mitigate these challenges, we propose a new DCF-based tracking method. The key innovations of the proposed method include adaptive spatial feature selection and temporal consistent constraints, with which the new tracker enables joint spatial-temporal filter learning in a lower dimensional discriminative manifold. More specifically, we apply structured spatial sparsity constraints to multi-channel filers. Consequently, the process of learning spatial filters can be approximated by the lasso regularisation. To encourage temporal consistency, the filter model is restricted to lie around its historical value and updated locally to preserve the global structure in the manifold. Last, a unified optimisation framework is proposed to jointly select temporal consistency preserving spatial features and learn discriminative filters with the augmented Lagrangian method. Qualitative and quantitative evaluations have been conducted on a number of well-known benchmarking datasets such as OTB2013, OTB50, OTB100, Temple-Colour, UAV123 and VOT2018. The experimental results demonstrate the superiority of the proposed method over the state-of-the-art approaches

    Multispectral object segmentation and retrieval in surveillance video

    Get PDF
    This paper describes a system for object segmentation and feature extraction for surveillance video. Segmentation is performed by a dynamic vision system that fuses information from thermal infrared video with standard CCTV video in order to detect and track objects. Separate background modelling in each modality and dynamic mutual information based thresholding are used to provide initial foreground candidates for tracking. The belief in the validity of these candidates is ascertained using knowledge of foreground pixels and temporal linking of candidates. The transferable belief model is used to combine these sources of information and segment objects. Extracted objects are subsequently tracked using adaptive thermo-visual appearance models. In order to facilitate search and classification of objects in large archives, retrieval features from both modalities are extracted for tracked objects. Overall system performance is demonstrated in a simple retrieval scenari

    An improved background segmentation method for ghost removals

    Get PDF
    With ongoing research assessment in higher education and the introduction of master’s‐level work in initial teacher education, the growing need for teacher educators to develop research identities is discussed in relation to mentoring and support in two universities. Twelve interviews—with three teacher educators and three research mentors from each university—were carried out, in order to identify effective mentoring practices and other forms of support, as well as any barriers or problems encountered in developing a research profile. An innovative aspect of the methodological approach is that beginning researchers from the teacher education faculty in both universities undertook the interviewing and co‐authored the article. The need for an entitlement to and protection of research time is stressed, as well as a range of supportive practices within an active research culture. It is argued that this aspect of teacher educators’ professional development requires as much attention as the pedagogical aspects of their rol

    Comparison of fusion methods for thermo-visual surveillance tracking

    Get PDF
    In this paper, we evaluate the appearance tracking performance of multiple fusion schemes that combine information from standard CCTV and thermal infrared spectrum video for the tracking of surveillance objects, such as people, faces, bicycles and vehicles. We show results on numerous real world multimodal surveillance sequences, tracking challenging objects whose appearance changes rapidly. Based on these results we can determine the most promising fusion scheme

    Flame Detection for Video-based Early Fire Warning Systems and 3D Visualization of Fire Propagation

    Get PDF
    Early and accurate detection and localization of flame is an essential requirement of modern early fire warning systems. Video-based systems can be used for this purpose; however, flame detection remains a challenging issue due to the fact that many natural objects have similar characteristics with fire. In this paper, we present a new algorithm for video based flame detection, which employs various spatio-temporal features such as colour probability, contour irregularity, spatial energy, flickering and spatio-temporal energy. Various background subtraction algorithms are tested and comparative results in terms of computational efficiency and accuracy are presented. Experimental results with two classification methods show that the proposed methodology provides high fire detection rates with a reasonable false alarm ratio. Finally, a 3D visualization tool for the estimation of the fire propagation is outlined and simulation results are presented and discussed.The original article was published by ACTAPRESS and is available here: http://www.actapress.com/Content_of_Proceeding.aspx?proceedingid=73

    Staple: Complementary Learners for Real-Time Tracking

    Full text link
    Correlation Filter-based trackers have recently achieved excellent performance, showing great robustness to challenging situations exhibiting motion blur and illumination changes. However, since the model that they learn depends strongly on the spatial layout of the tracked object, they are notoriously sensitive to deformation. Models based on colour statistics have complementary traits: they cope well with variation in shape, but suffer when illumination is not consistent throughout a sequence. Moreover, colour distributions alone can be insufficiently discriminative. In this paper, we show that a simple tracker combining complementary cues in a ridge regression framework can operate faster than 80 FPS and outperform not only all entries in the popular VOT14 competition, but also recent and far more sophisticated trackers according to multiple benchmarks.Comment: To appear in CVPR 201

    Data association and occlusion handling for vision-based people tracking by mobile robots

    Get PDF
    This paper presents an approach for tracking multiple persons on a mobile robot with a combination of colour and thermal vision sensors, using several new techniques. First, an adaptive colour model is incorporated into the measurement model of the tracker. Second, a new approach for detecting occlusions is introduced, using a machine learning classifier for pairwise comparison of persons (classifying which one is in front of the other). Third, explicit occlusion handling is incorporated into the tracker. The paper presents a comprehensive, quantitative evaluation of the whole system and its different components using several real world data sets

    Target recognitions in multiple camera CCTV using colour constancy

    Get PDF
    People tracking using colour feature in crowded scene through CCTV network have been a popular and at the same time a very difficult topic in computer vision. It is mainly because of the difficulty for the acquisition of intrinsic signatures of targets from a single view of the scene. Many factors, such as variable illumination conditions and viewing angles, will induce illusive modification of intrinsic signatures of targets. The objective of this paper is to verify if colour constancy (CC) approach really helps people tracking in CCTV network system. We have testified a number of CC algorithms together with various colour descriptors, to assess the efficiencies of people recognitions from real multi-camera i-LIDS data set via Receiver Operating Characteristics (ROC). It is found that when CC is applied together with some form of colour restoration mechanisms such as colour transfer, the recognition performance can be improved by at least a factor of two. An elementary luminance based CC coupled with a pixel based colour transfer algorithm, together with experimental results are reported in the present paper
    • 

    corecore